Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is identified as the cause of coronavirus disease 2019 (COVID-19), and is often linked to extreme inflammatory responses by over activation of neutrophil extracellular traps (NETs), cytokine storm, and sepsis. These are robust causes for multi-organ damage. In particular, potential routes of SARS-CoV2 entry, such as angiotensin-converting enzyme 2 (ACE2), have been linked to central nervous system (CNS) involvement. CNS has been recognized as one of the most susceptible compartments to cytokine storm, which can be affected by neuropilin-1 (NRP-1). ACE2 is widely-recognized as a SARS-CoV2 entry pathway; However, NRP-1 has been recently introduced as a novel path of viral entry. Apoptosis of cells invaded by this virus involves Fas receptor–Fas ligand (FasL) signaling; moreover, Fas receptor may function as a controller of inflammation. Furthermore, NRP-1 may influence FasL and modulate cytokine profile. The neuroimmunological insult by SARS-CoV2 infection may be inhibited by therapeutic approaches targeting soluble Fas ligand (sFasL), cytokine storm elements, or related viral entry pathways. In the current review, we explain pivotal players behind the activation of cytokine storm that are associated with vast CNS injury. We also hypothesize that sFasL may affect neuroinflammatory processes and trigger the cytokine storm in COVID-19.
Acknowledgment
We thank the National Elite Foundation, Mazandaran Province Branch from Iran. Illustrations and figures were created with BioRender.com.
-
Author contributions: K. Saleki, M. Banazadeh, and NS. Miri conceptualized the study and prepared the initial draft. K. Saleki and A. Azadmehr prepared the final draft. A. Azadmehr designed and supervised the project, and prepared the manuscript.
-
Research funding: There is no funding for the present study.
-
Conflict of interest statement: The authors declare that they have no competing interests.
-
Consent for publication: All authors have approved and agreed to publish this manuscript.
References
Arbour, N., Day, R., Newcombe, J., and Talbot, P.J. (2000). Neuroinvasion by human respiratory coronaviruses. J. Virol. 74: 8913–8921, https://doi.org/10.1128/jvi.74.19.8913-8921.2000.Search in Google Scholar PubMed PubMed Central
Barnes, B.J., Adrover, J.M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J.M., Dassler-Plenker, J., Guerci, P., Huynh, C., Knight, J.S., et al.. (2020). Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 217: e20200652, https://doi.org/10.1084/jem.20200652.Search in Google Scholar PubMed PubMed Central
Beazley-Long, N., Hua, J., Jehle, T., Hulse, R.P., Dersch, R., Lehrling, C., Bevan, H., Qiu, Y., Lagrèze, W.A., Wynick, D., et al.. (2013). VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am. J. Pathol. 183: 918–929, https://doi.org/10.1016/j.ajpath.2013.05.031.Search in Google Scholar PubMed PubMed Central
Bernal-Bello, D., Jaenes-Barrios, B., Morales-Ortega, A., Ruiz-Giardin, J.M., García-Bermúdez, V., Frutos-Pérez, B., Farfán-Sedano, A.I., de Ancos-Aracil, C., Bermejo, F., and García-Gil, M. (2020). Imatinib might constitute a treatment option for lung involvement in COVID-19. Autoimmun. Rev. 218: 108518.10.1016/j.autrev.2020.102565Search in Google Scholar PubMed PubMed Central
Blanco-Melo, D., Nilsson-Payant, B., Liu, W.-C., Møller, R., Panis, M., Sachs, D., and Albrecht, R. (2020). SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. Cell. 181(5): 1036–1045, doi:10.1016/j.cell.2020.04.026. 32416070.10.1101/2020.03.24.004655Search in Google Scholar PubMed
Brea, D., Sobrino, T., Rodríguez-Yáñez, M., Ramos-Cabrer, P., Agulla, J., Rodríguez-González, R., Campos, F., Blanco, M., and Castillo, J. (2011). Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke. Clin. Immunol. 139: 193–198, https://doi.org/10.1016/j.clim.2011.02.001.Search in Google Scholar PubMed
Cabler, S., French, A., and Orvedahl, A. (2020). A cytokine circus with a viral ringleader: SARS-CoV-2-associated cytokine storm syndromes. Trends Mol. Med. 26: 1078–1085, https://doi.org/10.1016/j.molmed.2020.09.012.Search in Google Scholar PubMed PubMed Central
Cameron, M.J., Ran, L., Xu, L., Danesh, A., Bermejo-Martin, J.F., Cameron, C.M., Muller, M.P., Gold, W.L., Richardson, S.E., Poutanen, S.M., et al.. (2007). Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol. 81: 8692–8706, https://doi.org/10.1128/jvi.00527-07.Search in Google Scholar PubMed PubMed Central
Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., et al.. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370: 856–860, https://doi.org/10.1126/science.abd2985.Search in Google Scholar PubMed PubMed Central
Carboni, S., Aboul-Enein, F., Waltzinger, C., Killeen, N., Lassmann, H., and Peña-Rossi, C. (2003). CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J. Neuroimmunol. 145: 1–11.https://doi.org/10.1016/j.jneuroim.2003.07.001.Search in Google Scholar PubMed
Cardona, G.C., Pájaro, L.D.Q., Marzola, I.D.Q., Villegas, Y.R., and Salazar, L.R.M. (2020). Neurotropism of SARS-CoV 2: mechanisms and manifestations. J. Neurol. Sci. 412: 116824, https://doi.org/10.1016/j.jns.2020.116824.Search in Google Scholar PubMed PubMed Central
Cariboni, A., Davidson, K., Dozio, E., Memi, F., Schwarz, Q., Stossi, F., Parnavelas, J.G., and Ruhrberg, C. (2011). VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development 138: 3723–3733, https://doi.org/10.1242/dev.063362.Search in Google Scholar PubMed PubMed Central
Cavalcante, P., Galbardi, B., Franzi, S., Marcuzzo, S., Barzago, C., Bonanno, S., Camera, G., Maggi, L., Kapetis, D., and Andreetta, F. (2016). Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–Barr virus infection. Immunobiology 221: 516–527, https://doi.org/10.1016/j.imbio.2015.12.007.Search in Google Scholar PubMed
Che, Y., Qiu, J., Jin, T., Yin, F., Li, M., and Jiang, Y. (2016). Circulating memory T follicular helper subsets, Tfh2 and Tfh17, participate in the pathogenesis of Guillain–Barré syndrome. Sci. Rep. 6: 20963, https://doi.org/10.1038/srep20963.Search in Google Scholar PubMed PubMed Central
Chen, P., Yan, Q., Wang, S., Wang, C., and Zhao, P. (2016). Transfer of three transcription factors via a lentiviral vector ameliorates spatial learning and memory impairment in a mouse model of Alzheimer’s disease. Gene 587: 59–63, https://doi.org/10.1016/j.gene.2016.04.032.Search in Google Scholar PubMed
Chen, W. (2020). A potential treatment of COVID-19 with TGF-β blockade. Int. J. Biol. Sci. 16: 1954–1955, https://doi.org/10.7150/ijbs.46891.Search in Google Scholar PubMed PubMed Central
Cheng, Y., Wong, R., Soo, Y., Wong, W., Lee, C., Ng, M., Chan, P., Wong, K., Leung, C., and Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 24: 44–46, https://doi.org/10.1007/s10096-004-1271-9.Search in Google Scholar PubMed PubMed Central
Colotta, F., Re, F., Polentarutti, N., Sozzani, S., and Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80: 2012–2020, https://doi.org/10.1182/blood.v80.8.2012.2012.Search in Google Scholar
Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N., and Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176: 104742, https://doi.org/10.1016/j.antiviral.2020.104742.Search in Google Scholar PubMed PubMed Central
Cronstein, B.N., Molad, Y., Reibman, J., Balakhane, E., Levin, R.I., and Weissmann, G. (1995). Colchicine alters the quantitative and qualitative display of selections on endothelial cells and neutrophils. J. Clin. Invest. 96: 994–1002, https://doi.org/10.1172/jci118147.Search in Google Scholar PubMed PubMed Central
Csencsits-Smith, K., Suescun, J., Li, K., Luo, S., Bick, D.L., and Schiess, M. (2016). Serum lymphocyte-associated cytokine concentrations change more rapidly over time in multiple system atrophy compared to Parkinson disease. Neuroimmunomodulation 23: 301–308, https://doi.org/10.1159/000460297.Search in Google Scholar
Cuervo, N.Z. and Grandvaux, N. (2020). ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife 9: e61390, https://doi.org/10.7554/eLife.61390.Search in Google Scholar
Cufi, P., Dragin, N., Weiss, J.M., Martinez‐Martinez, P., De Baets, M.H., Roussin, R., Fadel, E., Berrih‐Aknin, S., and Le Panse, R. (2013). Implication of double‐stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann. Neurol. 73: 281–293, https://doi.org/10.1002/ana.23791.Search in Google Scholar
Čulić, O., Eraković, V., Čepelak, I., Barišić, K., Brajša, K., Ferenčić, Ž., Galović, R., Glojnarić, I., Manojlović, Z., Munić, V., et al.. (2002). Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur. J. Pharmacol. 450: 277–289.10.1016/S0014-2999(02)02042-3Search in Google Scholar
Daly, J.L., Simonetti, B., Klein, K., Chen, K.-E., Williamson, M.K., Antón-Plágaro, C., Shoemark, D.K., Simón-Gracia, L., Bauer, M., Hollandi, R., et al.. (2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370: 861–865, https://doi.org/10.1126/science.abd3072.Search in Google Scholar PubMed
Davies, J., Randeva, H.S., Chatha, K., Hall, M., Spandidos, D.A., Karteris, E., and Kyrou, I. (2020). Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 22: 4221–4226, https://doi.org/10.3892/mmr.2020.11510.Search in Google Scholar PubMed PubMed Central
De Rivero Vaccari, J.P., Brand, F.J., Sedaghat, C., Mash, D.C., Dietrich, W.D., and Keane, R.W. (2014). RIG-1 Receptor expression in the pathology of Alzheimer’s disease. J. Neuroinflammation 11: 67, https://doi.org/10.1186/1742-2094-11-67.Search in Google Scholar PubMed PubMed Central
De Virgiliis, F. and Di Giovanni, S. (2020). Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19. Nat. Rev. Neurol. 16: 645–652.10.1038/s41582-020-0402-ySearch in Google Scholar PubMed PubMed Central
Deng, L., Pan, J., Peng, Q., Dong, Z., and Wang, Y. (2017). Toll-like receptor 3 and interferon β mRNA expressions were increased in peripheral blood of ischemic stroke patients with good outcome. J. Stroke Cerebrovasc. Dis. 26: 559–566, https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.122.Search in Google Scholar PubMed
Derkow, K., Bauer, J.M., Hecker, M., Paap, B.K., Thamilarasan, M., Koczan, D., Schott, E., Deuschle, K., Bellmann-Strobl, J., Paul, F., et al.. (2013). Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon-β includes upregulation of TLR7 in plasmacytoid dendritic cells. PLoS One 8: e70626, https://doi.org/10.1371/journal.pone.0070626.Search in Google Scholar PubMed PubMed Central
Desideri, G., Cipollone, F., Necozione, S., Marini, C., Lechiara, M.C., Taglieri, G., Zuliani, G., Fellin, R., Mezzetti, A., Di Orio, F., et al.. (2008). Enhanced soluble CD40 ligand and Alzheimer’s disease: evidence of a possible pathogenetic role. Neurobiol. Aging 29: 348–356, https://doi.org/10.1016/j.neurobiolaging.2006.10.019.Search in Google Scholar PubMed
Diaz, J.H. (2020). Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J. Travel Med. 27, taaa041, https://doi.org/10.1093/jtm/taaa041.Search in Google Scholar PubMed PubMed Central
Didangelos, A. (2020). COVID-19 hyperinflammation: what about neutrophils?, mSphere. 5: e00367–e00320. https://doi.org/10.1128/mSphere.00367-20.Search in Google Scholar PubMed PubMed Central
Dumond, A., Brachet, E., Durivault, J., Vial, V., Puszko, A.K., Lepelletier, Y., Montemagno, C., Pagnuzzi-Boncompagni, M., Hermine, O., Garbay, C., et al.. (2021). Neuropilin 1 and Neuropilin 2 gene invalidation or pharmacological inhibition reveals their relevance for the treatment of metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res. 40: 1–18, https://doi.org/10.1186/s13046-021-01832-x.Search in Google Scholar PubMed PubMed Central
Durante, M.A., Kurtenbach, S., Sargi, Z.B., Harbour, J.W., Choi, R., Kurtenbach, S., Goss, G.M., Matsunami, H., and Goldstein, B.J. (2020). Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 23: 323–326, https://doi.org/10.1038/s41593-020-0587-9.Search in Google Scholar PubMed PubMed Central
Fajgenbaum, D.C. and June, C.H. (2020). Cytokine storm. N. Engl. J. Med. 383: 2255–2273, https://doi.org/10.1056/nejmra2026131.Search in Google Scholar
Famous, K.R., Delucchi, K., Ware, L.B., Kangelaris, K.N., Liu, K.D., Thompson, B.T., and Calfee, C.S. (2017). Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195: 331–338, https://doi.org/10.1164/rccm.201603-0645oc.Search in Google Scholar
Fazzini, E., Fleming, J., and Fahn, S. (1992). Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov. Disord. 7: 153–158, https://doi.org/10.1002/mds.870070210.Search in Google Scholar PubMed PubMed Central
Felderhoff-Mueser, U., Herold, R., Hochhaus, F., Koehne, P., Ring-Mrozik, E., Obladen, M., and Buhrer, C. (2001). Increased cerebrospinal fluid concentrations of soluble Fas (CD95/Apo-1) in hydrocephalus. Arch. Dis. Child. 84: 369–372, https://doi.org/10.1136/adc.84.4.369.Search in Google Scholar PubMed PubMed Central
Geleijns, K., Laman, J.D., van Rijs, W., Tio-Gillen, A.P., Hintzen, R.Q., van Doorn, P.A., and Jacobs, B.C. (2005). Fas polymorphisms are associated with the presence of anti-ganglioside antibodies in Guillain–Barré syndrome. J. Neuroimmunol. 161: 183–189, https://doi.org/10.1016/j.jneuroim.2004.12.001.Search in Google Scholar PubMed
Ghode, S.S., Bajaj, M.S., Kulkarni, R.S., Limaye, L.S., Shouche, Y.S., and Kale, V.P. (2017). Neuropilin-1 is an important niche component and exerts context-dependent effects on hematopoietic stem cells. Stem Cell. Dev. 26: 35–48, https://doi.org/10.1089/scd.2016.0096.Search in Google Scholar
González-Nicolás, M.Á., González-Guerrero, C., Pérez-Fernández, V.A., and Lázaro, A. (2020). Cilastatin: a potential treatment strategy against COVID-19 that may decrease viral replication and protect from the cytokine storm. Clin. Kidney J. 13: 903–905, https://doi.org/10.1093/ckj/sfaa193.Search in Google Scholar
Gralinski, L.E., Sheahan, T.P., Morrison, T.E., Menachery, V.D., Jensen, K., Leist, S.R., Whitmore, A., Heise, M.T., and Baric, R.S. (2018). Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 9: e01753–18, https://doi.org/10.1128/mBio.01753-18.Search in Google Scholar
Guo, H.-F. and Vander Kooi, C.W. (2015). Neuropilin functions as an essential cell surface receptor. J. Biol. Chem. 290: 29120–29126, https://doi.org/10.1074/jbc.r115.687327.Search in Google Scholar
Guo, J., Huang, Z., Lin, L., and Lv, J. (2020). Coronavirus disease 2019 (COVID‐19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin‐converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J. Am. Heart Assoc. 9: e016219, https://doi.org/10.1161/JAHA.120.016219.Search in Google Scholar
Gutierrez, E.G., Banks, W.A., and Kastin, A.J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J. Neuroimmunol. 47: 169–176, https://doi.org/10.1016/0165-5728(93)90027-v.Search in Google Scholar
Haick, A.K., Rzepka, J.P., Brandon, E., Balemba, O.B., and Miura, T.A. (2014). Neutrophils are needed for an effective immune response against pulmonary rat coronavirus infection, but also contribute to pathology. J. Gen. Virol. 95: 578–590, https://doi.org/10.1099/vir.0.061986-0.Search in Google Scholar PubMed PubMed Central
Hanchate, N.K., Giacobini, P., Lhuillier, P., Parkash, J., Espy, C., Fouveaut, C., Leroy, C., Baron, S., Campagne, C., Vanacker, C., et al.. (2012). SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS Genet. 8: e1002896, https://doi.org/10.1371/journal.pgen.1002896.Search in Google Scholar PubMed PubMed Central
Herold, T., Jurinovic, V., Arnreich, C., Lipworth, B.J., Hellmuth, J.C., von Bergwelt-Baildon, M., Klein, M., and Weinberger, T. (2020). Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 146: 128–136.e4, https://doi.org/10.1016/j.jaci.2020.05.008.Search in Google Scholar PubMed PubMed Central
Hintzen, R.Q., Paty, D., and Oger, J. (1999). Cerebrospinal fluid concentrations of soluble CD27 in HTLV-I associated myelopathy and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 66: 791–793, https://doi.org/10.1136/jnnp.66.6.791.Search in Google Scholar PubMed PubMed Central
Hirano, T. and Murakami, M. (2020). COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 52: 731–733, https://doi.org/10.1016/j.immuni.2020.04.003.Search in Google Scholar
Hopkins, C., Lechien, J.R., and Saussez, S. (2021). More that ACE2? NRP1 may play a central role in the underlying pathophysiological mechanism of olfactory dysfunction in COVID-19 and its association with enhanced survival. Med. Hypotheses 146: 110406, https://doi.org/10.1016/j.mehy.2020.110406.Search in Google Scholar
Huang, K.J., Su, I.J., Theron, M., Wu, Y.C., Lai, S.K., Liu, C.C., and Lei, H.Y. (2005). An interferon‐γ‐related cytokine storm in SARS patients. J. Med. Virol. 75: 185–194, https://doi.org/10.1002/jmv.20255.Search in Google Scholar
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al.. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506, https://doi.org/10.1016/s0140-6736(20)30183-5.Search in Google Scholar
Hulse, R.P. (2017). Role of VEGF-A in chronic pain. Oncotarget 8: 10775, https://doi.org/10.18632/oncotarget.14615.Search in Google Scholar PubMed PubMed Central
Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., et al.. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112–116, https://doi.org/10.1038/nature03712.Search in Google Scholar PubMed PubMed Central
Isacson, O. (2020). The consequences of coronavirus-induced cytokine storm are associated with neurological diseases, which may be preventable. Front. Neurol. 11: 745, https://doi.org/10.3389/fneur.2020.00745.Search in Google Scholar PubMed PubMed Central
Jarvis, A., Allerston, C.K., Jia, H., Herzog, B., Garza-Garcia, A., Winfield, N., Ellard, K., Aqil, R., Lynch, R., Chapman, C., et al.. (2010). Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem. 53: 2215–2226, https://doi.org/10.1021/jm901755g.Search in Google Scholar PubMed PubMed Central
Johnson, T.P., Tyagi, R., Patel, K., Schiess, N., Calabresi, P.A., and Nath, A. (2013). Impaired toll-like receptor 8 signaling in multiple sclerosis. J. Neuroinflammation 10: 1–4, https://doi.org/10.1186/1742-2094-10-74.Search in Google Scholar PubMed PubMed Central
Kielian, M. (2020). Enhancing host cell infection by SARS-CoV-2. Science 370: 765–766, https://doi.org/10.1126/science.abf0732.Search in Google Scholar PubMed
Kriszta, G., Kriszta, Z., Váncsa, S., Hegyi, P.J., Frim, L., Erőss, B., Hegyi, P., Pethő, G., and Pintér, E. (2021). Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on angiotensin-converting enzyme 2 levels: a comprehensive analysis based on animal studies. Front. Pharmacol. 12: 619524, https://doi.org/10.3389/fphar.2021.619524.Search in Google Scholar PubMed PubMed Central
Kyrou, I., Randeva, H.S., Spandidos, D.A., and Karteris, E. (2021). Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal. Transduct. Target. Ther. 6: 1–3, https://doi.org/10.1038/s41392-020-00460-9.Search in Google Scholar PubMed PubMed Central
Lamontagne, F., Agoritsas, T., Siemieniuk, R., Rochwerg, B., Bartoszko, J., Askie, L., Macdonald, H., Amin, W., Bausch, F.J., Burhan, E., et al.. (2021). A living WHO guideline on drugs to prevent COVID-19. BMJ 372: n526, https://doi.org/10.1136/bmj.n526.Search in Google Scholar PubMed
Landau, A.M., Luk, K.C., Jones, M.-L., Siegrist-Johnstone, R., Young, Y.K., Kouassi, E., Rymar, V.V., Dagher, A., Sadikot, A.F., and Desbarats, J. (2005). Defective Fas expression exacerbates neurotoxicity in a model of Parkinson’s disease. J. Exp. Med. 202: 575–581, https://doi.org/10.1084/jem.20050163.Search in Google Scholar PubMed PubMed Central
Lehmann, S.M., Krüger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., et al.. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15: 827–835, https://doi.org/10.1038/nn.3113.Search in Google Scholar PubMed
Li, Y., Zeng, Z., Cao, Y., Liu, Y., Ping, F., Liang, M., Xue, Y., Xi, C., Zhou, M., and Jiang, W. (2016). Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways. Sci. Rep. 6: 27911, https://doi.org/10.1038/srep27911.Search in Google Scholar PubMed PubMed Central
Li, J., Sun, Y., and Chen, J. (2019). Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson’s disease. Genes Genet. Syst. 94: 61–69, https://doi.org/10.1266/ggs.18-00036.Search in Google Scholar PubMed
Liu, B., Li, M., Zhou, Z., Guan, X., and Xiang, Y. (2020a). Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun. 111: 102452, https://doi.org/10.1016/j.jaut.2020.102452.Search in Google Scholar PubMed PubMed Central
Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., et al.. (2020b). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 63: 364–374, https://doi.org/10.1007/s11427-020-1643-8.Search in Google Scholar PubMed PubMed Central
Long, Q.-X., Tang, X.-J., Shi, Q.-L., Li, Q., Deng, H.-J., Yuan, J., Hu, J.-L., Xu, W., Zhang, Y., Lv, F.-J., et al.. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26: 1200–1204, https://doi.org/10.1038/s41591-020-0965-6.Search in Google Scholar PubMed
Longping, V.T., Hamilton, A.M., Friling, T., and Whittaker, G.R. (2014). A novel activation mechanism of avian influenza virus H9N2 by furin. J. Virol. 88: 1673–1683, https://doi.org/10.1128/JVI.02648-13.Search in Google Scholar PubMed PubMed Central
Lopes, M.I., Bonjorno, L.P., Giannini, M.C., Amaral, N.B., Menezes, P.I., Dib, S.M., Gigante, S.L., Benatti, M.N., Rezek, U.C., Emrich-Filho, L.L., et al.. (2021). Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial. RMD Open 7: e001455, https://doi.org/10.1136/rmdopen-2020-001455.Search in Google Scholar PubMed PubMed Central
López, R.L., Fernández, S.C., Pérez, L.L., Palacios, A.R., Fernández-Roldán, M.C., Alonso, E.A., Camacho, I.P., Rodriguez-Baño, J., Merchante, N., Olalla, J., et al.. (2020). Efficacy and safety of early treatment with sarilumab in hospitalised adults with COVID-19 presenting cytokine release syndrome (SARICOR STUDY): protocol of a phase II, open-label, randomised, multicentre, controlled clinical trial. BMJ Open 10: e039951, https://doi.org/10.1136/bmjopen-2020-039951.Search in Google Scholar PubMed PubMed Central
Louapre, C., Collongues, N., Stankoff, B., Giannesini, C., Papeix, C., Bensa, C., Deschamps, R., Créange, A., Wahab, A., Pelletier, J., et al.. (2020). Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 77: 1079–1088, https://doi.org/10.1001/jamaneurol.2020.2581.Search in Google Scholar PubMed PubMed Central
Lu, Y., Liu, D.X., and Tam, J.P. (2008). Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369: 344–349, https://doi.org/10.1016/j.bbrc.2008.02.023.Search in Google Scholar PubMed PubMed Central
Ma, J., Ketkar, H., Geng, T., Lo, E., Wang, L., Xi, J., Sun, Q., Zhu, Z., Cui, Y., Yang, L., et al.. (2018). Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front. Microbiol. 9: 1350, https://doi.org/10.3389/fmicb.2018.01350.Search in Google Scholar PubMed PubMed Central
Maes, B., Bosteels, C., De Leeuw, E., Declercq, J., Van Damme, K., Delporte, A., Demeyere, B., Vermeersch, S., Vuylsteke, M., Willaert, J., et al.. (2020). Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): a structured summary of a study protocol for a randomised controlled trial. Trials 21: 1–2, https://doi.org/10.1186/s13063-020-04453-5.Search in Google Scholar PubMed PubMed Central
Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S., and Nabipour, I. (2020). COVID-19 cytokine storm: the anger of inflammation. Cytokine 133: 155151, https://doi.org/10.1016/j.cyto.2020.155151.Search in Google Scholar PubMed PubMed Central
Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou, Y., Wang, D., et al.. (2020a). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77: 683–690, https://doi.org/10.1001/jamaneurol.2020.1127.Search in Google Scholar PubMed PubMed Central
Mao, L.-L., Chen, W.-Y., Ma, A.-J., Ji, L.-L., and Huang, T.-T. (2020b). High serum OX40 ligand correlates with severity and mortality in patients with massive cerebral infarction. Medicine 99: e20883, https://doi.org/10.1097/md.0000000000020883.Search in Google Scholar PubMed PubMed Central
Margaryan, S., Witkowicz, A., Arakelyan, A., Partyka, A., Karabon, L., and Manukyan, G. (2018). sFasL-mediated induction of neutrophil activation in patients with type 2 diabetes mellitus. PLoS One 13: e0201087, https://doi.org/10.1371/journal.pone.0201087.Search in Google Scholar
Mattson, M.P. (1997). Neuroprotective signal transduction: relevance to stroke. Neurosci. Biobehav. Rev. 21: 193–206, https://doi.org/10.1016/s0149-7634(96)00010-3.Search in Google Scholar
McGonagle, D., Sharif, K., O’Regan, A., and Bridgewood, C. (2020). The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 19: 102537, https://doi.org/10.1016/j.autrev.2020.102537.Search in Google Scholar
Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., and Manson, J.J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395: 1033–1034, https://doi.org/10.1016/s0140-6736(20)30628-0.Search in Google Scholar
Meng, J., Xiao, G., Zhang, J., He, X., Ou, M., Bi, J., Yang, R., Di, W., Wang, Z., and Li, Z. (2020). Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect 9: 757–760, https://doi.org/10.1080/22221751.2020.1746200.Search in Google Scholar PubMed PubMed Central
Merzon, E., Green, I., Vinker, S., Golan‐Cohen, A., Gorohovski, A., Avramovich, E., Frenkel‐Morgenstern, M., and Magen, E. (2021). The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID‐19 infection. FEBS J., https://doi.org/10.1111/febs.15784 (Epub ahead of print).Search in Google Scholar PubMed PubMed Central
Meshkat, S., Salimi, A., Joshaghanian, A., Sedighi, S., Sedighi, S., and Aghamollaii, V. (2020). Chronic neurological diseases and COVID-19: associations and considerations. Transl. Neurosci. 11: 294–301, https://doi.org/10.1515/tnsci-2020-0141.Search in Google Scholar PubMed PubMed Central
Middleton, E.A., He, X.-Y., Denorme, F., Campbell, R.A., Ng, D., Salvatore, S.P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A.C., Loda, M., et al.. (2020). Neutrophil extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136: 1169–1179, https://doi.org/10.1182/blood.2020007008.Search in Google Scholar PubMed PubMed Central
Mogi, M., Fukuo, K., Yang, J., Suhara, T., and Ogihara, T. (2001). Hypoxia stimulates release of the soluble form of fas ligand that inhibits endothelial cell apoptosis. Lab. Invest. 81: 177–184, https://doi.org/10.1038/labinvest.3780225.Search in Google Scholar PubMed
Moin, A.S.M., Sathyapalan, T., Atkin, S.L., and Butler, A.E. (2021). The relationship of soluble neuropilin-1 to severe COVID-19 risk factors in polycystic ovary syndrome. Metabol. Open 9: 100079, https://doi.org/10.1016/j.metop.2021.100079.Search in Google Scholar PubMed PubMed Central
Morales, D.R., Conover, M.M., You, S.C., Pratt, N., Kostka, K., Duarte-Salles, T., Fernández-Bertolín, S., Aragón, M., DuVall, S.L., et al.. (2021). Angiotensin system blockers and susceptibility to COVID-19: an international, open science, cohort analysis. Lancet Digit. Health 3: e98–e114, https://doi.org/10.1016/s2589-7500(20)30289-2.Search in Google Scholar
Moussa, C., Hebron, M., Huang, X., Ahn, J., Rissman, R.A., Aisen, P.S., and Turner, R.S. (2017). Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation 14: 1, https://doi.org/10.1186/s12974-016-0779-0.Search in Google Scholar PubMed PubMed Central
Moutal, A., Martin, L.F., Boinon, L., Gomez, K., Ran, D., Zhou, Y., Stratton, H.J., Cai, S., Luo, S., Gonzalez, K.B., et al.. (2021). SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 162: 243–252, https://doi.org/10.1097/j.pain.0000000000002097.Search in Google Scholar PubMed PubMed Central
Nagata, S. and Golstein, P. (1995). The Fas death factor. Science 267: 1449–1456, https://doi.org/10.1126/science.7533326.Search in Google Scholar PubMed
Nakanishi, T., Fujita, Y., and Yamashita, T. (2019). Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury. Cell Death Dis. 10: 1–11, https://doi.org/10.1038/s41419-019-1338-2.Search in Google Scholar PubMed PubMed Central
Netland, J., Meyerholz, D.K., Moore, S., Cassell, M., and Perlman, S. (2008). Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82: 7264–7275, https://doi.org/10.1128/jvi.00737-08.Search in Google Scholar
Ottonello, L., Tortolina, G., Amelotti, M., and Dallegri, F. (1999). Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J. Immunol. 162: 3601–3606.10.4049/jimmunol.162.6.3601Search in Google Scholar
Pan, W., Xiang, S., Tu, H., and Kastin, A. (2006). Blood-brain barrier interfaces: from ontogeny to artificial barriers. Q. Rev. Biol. 81: 423.Search in Google Scholar
Peng, Y.-J., Peng, C.-T., Lin, Y.-H., Lin, G.-J., Huang, S.-H., Chen, S.-J., Sytwu, H.-K., and Cheng, C.-P. (2020). Decoy receptor 3 promotes preosteoclast cell death via reactive oxygen species-induced fas ligand expression and the IL-1α/IL-1 receptor antagonist pathway. Mediators Inflamm. 2020: 1237281, https://doi.org/10.1155/2020/1237281.Search in Google Scholar PubMed PubMed Central
Perez-Miller, S., Patek, M., Moutal, A., Duran, P., Cabel, C.R., Thorne, C.A., Campos, S.K., and Khanna, R. (2021). Novel compounds targeting neuropilin receptor 1 with potential to interfere with SARS-CoV-2 virus entry. ACS Chem. Neurosci. 12: 1299–1312, https://doi.org/10.1021/acschemneuro.0c00619.Search in Google Scholar PubMed PubMed Central
Pettit, N.N., MacKenzie, E.L., Ridgway, J.P., Pursell, K., Ash, D., Patel, B., and Pho, M.T. (2020). Obesity is associated with increased risk for mortality among hospitalized patients with COVID‐19. Obesity 28: 1806–1810, https://doi.org/10.1002/oby.22941.Search in Google Scholar PubMed PubMed Central
Powell, J., Mota, F., Steadman, D., Soudy, C., Miyauchi, J.T., Crosby, S., Jarvis, A., Reisinger, T., Winfield, N., Evans, G., et al.. (2018). Small molecule neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGFβ) production in regulatory T-cells. J. Med. Chem. 61: 4135–4154, https://doi.org/10.1021/acs.jmedchem.8b00210.Search in Google Scholar PubMed PubMed Central
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., and Wang, W. (2020). Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 71 (15) : 762–768, https://doi.org/10.1093/cid/ciaa248.Search in Google Scholar
Rahmani, A., Baee, M., Saleki, K., Moradi, S., and Nouri, H.R. (2021). Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. J. Biomol. Struct. Dyn.: 1–17, https://doi.org/10.1080/07391102.2021.1876774.Search in Google Scholar
Rahmani, A., Saleki, K., Javanmehr, N., Khodaparast, J., Saadat, P., and Nouri, H.R. (2020). Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res. Rev. 62: 101106, https://doi.org/10.1016/j.arr.2020.101106.Search in Google Scholar
Raine, C., Bonetti, B., and Cannella, B. (1998). Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev. Neurol. 154: 577–585.Search in Google Scholar
Rasoulinejad, S.A., Karkhah, A., Paniri, A., Saleki, K., Pirzadeh, M., and Nouri, H.R. (2020). Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy. Immunopharmacol. Immunotoxicol. 42: 400–407, https://doi.org/10.1080/08923973.2020.1808986.Search in Google Scholar
Ray, P.R., Wangzhou, A., Ghneim, N., Yousuf, M.S., Paige, C., Tavares-Ferreira, D., Mwirigi, J.M., Shiers, S., Sankaranarayanan, I., McFarland, A.J., et al.. (2020). A pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction. Brain Behav. Immun. 89: 559–568, https://doi.org/10.1016/j.bbi.2020.05.078.Search in Google Scholar
Reichard, R.R., Kashani, K.B., Boire, N.A., Constantopoulos, E., Guo, Y., and Lucchinetti, C.F. (2020). Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140: 1–6, https://doi.org/10.1007/s00401-020-02166-2.Search in Google Scholar
Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., Rawling, M., Savory, E., and Stebbing, J. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395: e30–e31, https://doi.org/10.1016/s0140-6736(20)30304-4.Search in Google Scholar
Ryabkova, V.A., Churilov, L.P., and Shoenfeld, Y. (2020). Influenza infection, SARS, MERS and COVID-19: cytokine storm–the common denominator and the lessons to be learned. Clin. Immunol. 223: 108652, https://doi.org/10.1016/j.clim.2020.108652.Search in Google Scholar PubMed PubMed Central
Salah, H.M. and Mehta, J.L. (2021). Meta-Analysis of the effect of aspirin on mortality in COVID-19. Am. J. Cardiol. 142: 158–159, https://doi.org/10.1016/j.amjcard.2020.12.073.Search in Google Scholar PubMed PubMed Central
Salehi, P., Ge, M.X., Gundimeda, U., Michelle Baum, L., Lael Cantu, H., Lavinsky, J., Tao, L., Myint, A., Cruz, C., and Wang, J. (2017). Role of neuropilin-1/semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genet. 13: e1007048, https://doi.org/10.1371/journal.pgen.1007048.Search in Google Scholar PubMed PubMed Central
Saleki, K., Banazadeh, M., Saghazadeh, A., and Rezaei, N. (2020). The involvement of the central nervous system in patients with COVID-19. Rev. Neurosci. 31: 453–456, https://doi.org/10.1515/revneuro-2020-0026.Search in Google Scholar PubMed
Saponaro, F., Rutigliano, G., Sestito, S., Bandini, L., Storti, B., Bizzarri, R., and Zucchi, R. (2020). ACE2 in the era of SARS-CoV-2: controversies and novel perspectives. Front. Mol. Biosci. 7: 588618, https://doi.org/10.3389/fmolb.2020.588618.Search in Google Scholar PubMed PubMed Central
Saresella, M., Gatti, A., Tortorella, P., Marventano, I., Piancone, F., La Rosa, F., Caputo, D., Rovaris, M., Biasin, M., and Clerici, M. (2014). Toll-like receptor 3 differently modulates inflammation in progressive or benign multiple sclerosis. Clin. Immunol. 150: 109–120, https://doi.org/10.1016/j.clim.2013.10.012.Search in Google Scholar PubMed
Saunders, J.A.H., Estes, K.A., Kosloski, L.M., Allen, H.E., Dempsey, K.M., Torres-Russotto, D.R., Meza, J.L., Santamaria, P.M., Bertoni, J.M., Murman, D.L., et al.. (2012). CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J. Neuroimmune Pharmacol. 7: 927–938, https://doi.org/10.1007/s11481-012-9402-z.Search in Google Scholar PubMed PubMed Central
Serrao, K.L., Fortenberry, J.D., Owens, M.L., Harris, F.L., and Brown, L.A.S. (2001). Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L298–L305, https://doi.org/10.1152/ajplung.2001.280.2.l298.Search in Google Scholar
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., et al.. (2020). Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. J. Am. Med. Assoc. 323: 1582–1589, https://doi.org/10.1001/jama.2020.4783.Search in Google Scholar PubMed PubMed Central
Sherafat, A., Pfeiffer, F., Reiss, A.M., Wood, W.M., and Nishiyama, A. (2021). Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat. Commun. 12: 1–17, https://doi.org/10.1038/s41467-021-22532-2.Search in Google Scholar PubMed PubMed Central
Siemieniuk, R.A., Bartoszko, J.J., Ge, L., Zeraatkar, D., Izcovich, A., Kum, E., Pardo-Hernandez, H., Rochwerg, B., Lamontagne, F., Han, M.A., et al.. (2020a). Drug treatments for COVID-19: living systematic review and network meta-analysis. BMJ 370: m2980, https://doi.org/10.1136/bmj.m2980.Search in Google Scholar PubMed PubMed Central
Siemieniuk, R. A. C., Bartoszko, J.J., Ge, L., Zeraatkar, D., Izcovich, A., Kum, E., Pardo-Hernandez, H., Qasim, A., Martinez, J. P. D., and Rochwerg, B. (2020b). Update to living systematic review on drug treatments for COVID-19. Br. Med. J. 370: m3536.Search in Google Scholar
Siemieniuk, R. A. C., Bartoszko, J.J., Ge, L., Zeraatkar, D., Izcovich, A., Kum, E., Pardo-Hernandez, H., Qasim, A., Martinez, J. P. D., and Rochwerg, B. (2020c). Update to living systematic review on drug treatments for COVID-19. Br. Med. J. 371: m4852.Search in Google Scholar
Siemieniuk, R. A. C., Bartoszko, J.J., Ge, L., Zeraatkar, D., Izcovich, A., Kum, E., Pardo-Hernandez, H., Qasim, A., Martinez, J. P. D., and Rochwerg, B. (2021a). Update to living systematic review on drug treatments for COVID-19. Br. Med. J. 372: n858.Search in Google Scholar
Siemieniuk, RA, Bartoszko, J.J., Ge, L., Zeraatkar, D., Izcovich, A., Kum, E., Pardo-Hernandez, H., Rochwerg, B., Lamontagne, F., Han, M.H., et al.. (2021b). Drug treatments for COVID-19: living systematic review and network meta-analysis. BMJ. 373: n967.10.1136/bmj.m2980Search in Google Scholar
Sinha, P., Delucchi, K.L., Thompson, B.T., McAuley, D.F., Matthay, M.A., and Calfee, C.S. (2018). Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44: 1859–1869, https://doi.org/10.1007/s00134-018-5378-3.Search in Google Scholar PubMed PubMed Central
Sinha, P., Matthay, M.A., and Calfee, C.S. (2020). Is a “cytokine storm” relevant to COVID-19? JAMA Intern. Med. 180: 1152–1154, https://doi.org/10.1001/jamainternmed.2020.3313.Search in Google Scholar
Skipper, C.P., Pastick, K.A., Engen, N.W., Bangdiwala, A.S., Abassi, M., Lofgren, S.M., Williams, D.A., Okafor, E.C., Pullen, M.F., Nicol, M.R., et al.. (2020). Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann. Intern. Med. 173: 623–631, https://doi.org/10.7326/m20-4207.Search in Google Scholar
Soker, S., Takashima, S., Miao, H.Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745, https://doi.org/10.1016/s0092-8674(00)81402-6.Search in Google Scholar
Spray, D.C., Dermietzel, R., and Nedergaard, M. (2006). Blood-brain barriers: from ontogeny to artificial interfaces, (2 volume set). Wiley, Hoboken, New Jersey, p. 1.10.1002/9783527611225Search in Google Scholar
Su, J.H., Anderson, A.J., Cribbs, D.H., Tu, C., Tong, L., Kesslack, P., and Cotman, C.W. (2003). Fas and Fas Ligand are associated with neuritic degeneration in the AD brain and participate in β-amyloid-induced neuronal death. Neurobiol. Dis. 12: 182–193.10.1016/S0969-9961(02)00019-0Search in Google Scholar
Suidan, G.L., Dickerson, J.W., Johnson, H.L., Chan, T.W., Pavelko, K.D., Pirko, I., Seroogy, K.B., and Johnson, A.J. (2012). Preserved vascular integrity and enhanced survival following neuropilin-1 inhibition in a mouse model of CD8 T cell-initiated CNS vascular permeability. J. Neuroinflammation 9: 218.10.1186/1742-2094-9-218Search in Google Scholar PubMed PubMed Central
Suzuki, Y., Nakano, Y., Mishiro, K., Takagi, T., Tsuruma, K., Nakamura, M., Yoshimura, S., Shimazawa, M., and Hara, H. (2013). Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci. Rep. 3: 1–7.10.1038/srep03177Search in Google Scholar PubMed PubMed Central
Tay, M.Z., Poh, C.M., Rénia, L., MacAry, P.A., and Ng, L.F. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20: 363–374.10.1038/s41577-020-0311-8Search in Google Scholar PubMed PubMed Central
Teesalu, T., Sugahara, K.N., Kotamraju, V.R., and Ruoslahti, E. (2009). C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. U S A 106: 16157–16162.10.1073/pnas.0908201106Search in Google Scholar PubMed PubMed Central
Turner, A.J. (2015). ACE2 cell biology, regulation, and physiological functions. In: The protective arm of the renin angiotensin system (RAS). Elsevier, p. 185.10.1016/B978-0-12-801364-9.00025-0Search in Google Scholar
Tüzün, E., Scott, B.G., Goluszko, E., Higgs, S., and Christadoss, P. (2003). Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol. 171: 3847–3854.10.4049/jimmunol.171.7.3847Search in Google Scholar PubMed
Varzari, A., Bruch, K., Deyneko, I.V., Chan, A., Epplen, J.T., and Hoffjan, S. (2014). Analysis of polymorphisms in RIG-I-like receptor genes in German multiple sclerosis patients. J. Neuroimmunol. 277: 140–144.10.1016/j.jneuroim.2014.09.015Search in Google Scholar PubMed
Volpe, E., Sambucci, M., Battistini, L., and Borsellino, G. (2016). Fas–fas ligand: checkpoint of t cell functions in multiple sclerosis. Front. Immunol. 7: 382.10.3389/fimmu.2016.00382Search in Google Scholar PubMed PubMed Central
Walls, A.C., Park, Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181: 281–292.10.1016/j.cell.2020.02.058Search in Google Scholar PubMed PubMed Central
Wang, L., Azad, N., Kongkaneramit, L., Chen, F., Lu, Y., Jiang, B.-H., and Rojanasakul, Y. (2008). The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J. Immunol. 180: 3072–3080.10.4049/jimmunol.180.5.3072Search in Google Scholar PubMed PubMed Central
Wang, Y.-Z., Liang, Q.-H., Ramkalawan, H., Wang, Y.-L., Yang, Y.-F., Zhou, W.-B., Tian, F.-F., Li, J., and Yang, H. (2012). Expression of Toll-like receptors 2, 4 and 9 in patients with Guillain-Barré syndrome. Neuroimmunomodulation 19: 60–68.10.1159/000328200Search in Google Scholar PubMed
Wang, Y.-L., Tan, M.-S., Yu, J.-T., Zhang, W., Hu, N., Wang, H.-F., Jiang, T., and Tan, L. (2013a). Toll-like receptor 9 promoter polymorphism is associated with decreased risk of Alzheimer’s disease in Han Chinese. J. Neuroinflammation 10: 101.10.1186/1742-2094-10-101Search in Google Scholar PubMed PubMed Central
Wang, Y.-Z., Yan, M., Tian, F.-F., Zhang, J.-M., Liu, Q., Yang, H., Zhou, W.-B., and Li, J. (2013b). Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36: 121–130.10.1007/s10753-012-9526-6Search in Google Scholar PubMed
Wang, J., Liu, Y., Liu, Y., Zhu, K., and Xie, A. (2020). The association between TLR3 rs3775290 polymorphism and sporadic Parkinson’s disease in Chinese Han population. Neurosci. Lett. 728: 135005.10.1016/j.neulet.2020.135005Search in Google Scholar PubMed
Woolf, S.H., Chapman, D.A., Sabo, R.T., Weinberger, D.M., and Hill, L. (2020). Excess deaths from COVID-19 and other causes, March–April 2020. J. Am. Med. Assoc. 324: 510–513.10.1001/jama.2020.11787Search in Google Scholar PubMed PubMed Central
Wu, C., Chen, X., Cai, Y., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., et al.. (2020a). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 180: 934–943.10.1001/jamainternmed.2020.0994Search in Google Scholar
Wu, Z., Hu, R., Zhang, C., Ren, W., Yu, A., and Zhou, X. (2020b). Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit. Care 24: 1–3.10.1186/s13054-020-03015-0Search in Google Scholar
Xiaoyan, Z., Pirskanen, R., Malmstrom, V., and Lefvert, A. (2006). Expression of OX40 (CD134) on CD4+ T‐cells from patients with myasthenia gravis. Clin. Exp. Immunol. 143: 110–116.10.1111/j.1365-2249.2005.02955.xSearch in Google Scholar
Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., et al.. (2020a). Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. U S A 117: 10970–10975.10.1073/pnas.2005615117Search in Google Scholar
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., et al.. (2020b). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8: 420–422.10.1016/S2213-2600(20)30076-XSearch in Google Scholar
Yao, X.H., Li, T.Y., He, Z.C., Ping, Y.F., Liu, H.W., Yu, S.C., Mou, H.M., Wang, L.H., Zhang, H.R., Fu, W.J., et al.. (2020). A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi 49: E009.Search in Google Scholar
Yaqinuddin, A. and Kashir, J. (2020). Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using monalizumab, cholroquine, and antiviral agents. Med. Hypotheses 140: 109777.10.1016/j.mehy.2020.109777Search in Google Scholar PubMed PubMed Central
Yasuhara, T., Shingo, T., and Date, I. (2004). The potential role of vascular endothelial growth factor in the central nervous system. Rev. Neurosci. 15: 293–307.10.1515/REVNEURO.2004.15.4.293Search in Google Scholar
Yazdanpanah, N., Saghazadeh, A., and Rezaei, N. (2020). Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19). Rev. Neurosci. 31: 691–701.10.1515/revneuro-2020-0039Search in Google Scholar PubMed
Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., and Faden, H. (2004). Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113: e73–e76.10.1542/peds.113.1.e73Search in Google Scholar PubMed
Yilmaz, V., Oflazer, P., Aysal, F., Parman, Y.G., Direskeneli, H., Deymeer, F., and Saruhan-Direskeneli, G.B. (2015). Cells produce less IL-10, IL-6 and TNF-α in myasthenia gravis. Autoimmunity 48: 201–207.10.3109/08916934.2014.992517Search in Google Scholar PubMed
Yongzhi, X. (2021). COVID-19-associated cytokine storm syndrome and diagnostic principles: an old and new Issue. Emerg Microbes Infec. 10: 266–276.10.1080/22221751.2021.1884503Search in Google Scholar
Zanin, L., Saraceno, G., Panciani, P.P., Renisi, G., Signorini, L., Migliorati, K., and Fontanella, M.M. (2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 162: 1491–1494.10.1007/s00701-020-04374-xSearch in Google Scholar
Zelano, G., Lino, M., Evoli, A., Settesoldi, D., Batocchi, A.P., Torrente, I., and Tonali, P.A. (1998). Tumour necrosis factor β gene polymorphisms in myasthenia gravis. Eur. J. Immunogenet. 25: 403–408.10.1046/j.1365-2370.1998.00129.xSearch in Google Scholar
Zhang, H., Wang, Z., Liu, R., Qian, T., Liu, J., Wang, L., and Chu, Y. (2018). Reactive oxygen species stimulated pulmonary epithelial cells mediate the alveolar recruitment of FasL+ killer B cells in LPS‐induced acute lung injuries. J. Leukoc. Biol. 104: 1187–1198.10.1002/JLB.3A0218-075RSearch in Google Scholar
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., et al.. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054–1062.10.1016/S0140-6736(20)30566-3Search in Google Scholar
Zhou, Y., Fang, L., Peng, L., and Qiu, W. (2017). TLR9 and its signaling pathway in multiple sclerosis. J. Neurol. Sci. 373: 95–99.10.1016/j.jns.2016.12.027Search in Google Scholar PubMed
Zhu, K., Teng, J., Zhao, J., Liu, H., and Xie, A. (2016). Association of TLR9 polymorphisms with sporadic Parkinson’s disease in Chinese Han population. Int. J. Neurosci. 126: 612–616.10.3109/00207454.2015.1050591Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Cell assembly formation and structure in a piriform cortex model
- Scoping review of the risk factors and time frame for development of post-traumatic hydrocephalus
- Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1
- New insights into neural networks of error monitoring and clinical implications: a systematic review of ERP studies in neurological diseases
- Metabolomics and metabolites in ischemic stroke
- Post-stroke recrudescence—a possible connection to autoimmunity?
- Neuroplasticity mediated by motor rehabilitation in Parkinson’s disease: a systematic review on structural and functional MRI markers
Articles in the same Issue
- Frontmatter
- Cell assembly formation and structure in a piriform cortex model
- Scoping review of the risk factors and time frame for development of post-traumatic hydrocephalus
- Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1
- New insights into neural networks of error monitoring and clinical implications: a systematic review of ERP studies in neurological diseases
- Metabolomics and metabolites in ischemic stroke
- Post-stroke recrudescence—a possible connection to autoimmunity?
- Neuroplasticity mediated by motor rehabilitation in Parkinson’s disease: a systematic review on structural and functional MRI markers