Startseite Lifestyle intervention to prevent Alzheimer’s disease
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lifestyle intervention to prevent Alzheimer’s disease

  • Yi Ko und Soi Moi Chye EMAIL logo
Veröffentlicht/Copyright: 17. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease that leads to significant morbidities in elderly. The major pathological hallmark of AD is beta-amyloid plaques (Aβ) and intracellular neurofibrillary tangles (NFTs) deposition in hippocampus of the brain. These abnormal protein deposition damages neuronal cells resulting in neurodegeneration and cognitive decline. As a result of limited treatment options available for this disease, there is huge economic burden for patients and social health care system. Thus, alternative approaches (lifestyle intervention) to prevent this disease are extremely important. In this systemic review, we summarized epidemiological evidence of lifestyle intervention and the mechanisms involved in delaying and/or preventing AD. Lifestyle interventions include education, social engagement and cognitive stimulation, smoking, exercise, depression and psychological stress, cerebrovascular disease (CVD), hypertension (HTN), dyslipidaemia, diabetes mellitus (DM), obesity and diet. The methods are based on a literature review of available sources found on the research topic in four acknowledged databases: Web of Science, Scopus, Medline and PubMed. Results of the identified original studies revealed that lifestyle interventions have significant effects and our conclusion is that combination of early lifestyle interventions can decrease the risk of developing AD.


Corresponding author: Soi Moi Chye, School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, 57000, Malaysia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdul-Rasheed, O.F. and Al-Rubayee, W.T. (2012). Effects of cigarette smoking on lipid peroxidation and antioxidant status in Iraqi men at Baghdad city. Int. J. Basic Appl. Sci. 2: 47–50, https://doi.org/10.14419/ijbas.v2i1.516.Suche in Google Scholar

Alford, S., Patel, D., Perakakis, N., and Mantzoros, C.S. (2017). Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes. Rev. 19: 269–280, https://doi.org/10.1111/obr.12629.Suche in Google Scholar

Anbarasi, K., Vani, G., and Devi, C.S. (2005). Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats. J. Environ. Pathol. Toxicol. Oncol. 24: 225–234, https://doi.org/10.1615/jenvpathtoxoncol.v24.i3.80.Suche in Google Scholar

Anbarasi, K., Kathirvel, G., Vani, G., Jayaraman, G., and Shyamala Devi, C.S. (2006). Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: modulation by bacoside A. Neuroscience 138: 1127–1135, https://doi.org/10.1016/j.neuroscience.2005.11.029.Suche in Google Scholar

Anstey, K.J., von Sanden, C., Salim, A., and O’Kearney, R. (2007). Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am. J. Epidemiol. 66: 367–378, https://doi.org/10.1093/aje/kwm116.Suche in Google Scholar

Arenaza-Urquijo, E.M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., Desgranges, B., Bartrés-Faz, D., Eustache, F., and Chételat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. Neuroimage 83: 450–457, https://doi.org/10.1016/j.neuroimage.2013.06.053.Suche in Google Scholar

Arsenault-Lapierre, G., Chertkow, H., and Lupien, S. (2010). Seasonal effects on cortisol secretion in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 31: 1051–1054, https://doi.org/10.1016/j.neurobiolaging.2008.07.011.Suche in Google Scholar

Bailey, T.L., Rivara, C.B., Rocher, A.B., and Hof, P.R. (2004). The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol. Res. 26: 73–78, https://doi.org/10.1179/016164104225016272.Suche in Google Scholar

Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J.F., and Alpérovitch, A. (2007). Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 69: 1921–1930, https://doi.org/10.1212/01.wnl.0000278116.37320.52.Suche in Google Scholar

Barnes, D.E. and Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10: 819–828, https://doi.org/10.1016/s1474-4422(11)70072-2.Suche in Google Scholar

Barr, J., Sharma, C.S., Sarkar, S., Wise, K., Dong, L., Periyakaruppan, A., and Ramesh, G.T. (2007). Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol. Cell. Biochem. 297: 93–99, https://doi.org/10.1007/s11010-006-9333-1.Suche in Google Scholar PubMed PubMed Central

Beydoun, M.A., Fanelli-Kuczmarski, M.T., Kitner-Triolo, M.H., Beydoun, H.A., Kaufman, J.S., Mason, M.A., Evans, M.K., and Zonderman, A.B. (2015). Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosom. Med. 77: 68–82, https://doi.org/10.1097/psy.0000000000000129.Suche in Google Scholar

Caamano-Isorna, F., Corral, M., Montes-Martínez, A., and Takkouche, B. (2006). Education and dementia: a meta-analytic study. Neuroepidemiology 26: 226–232, https://doi.org/10.1159/000093378.Suche in Google Scholar PubMed

Carnevale, D., Perrotta, M., Lembo, G., and Trimarco, B. (2015). Pathophysiological links among hypertension and Alzheimer’s disease. High Blood Pres. Cardiovasc. Prev. 23: 3–7, https://doi.org/10.1007/s40292-015-0108-1.Suche in Google Scholar PubMed

Cataldo, J.K., Prochaska, J.J., and Glantz, S.A. (2010). Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J. Alzheimers Dis. 19: 465–480, https://doi.org/10.3233/jad-2010-1240.Suche in Google Scholar PubMed PubMed Central

Chovatiya, R. and Medzhitov, R. (2014). Stress, inflammation, and defense of homeostasis. Mol. Cell 54: 281–288, https://doi.org/10.1016/j.molcel.2014.03.030.Suche in Google Scholar PubMed PubMed Central

Clarke, R., Jobst, K.A., Refsum, H., Sutton, L., and Ueland, P.M. (1998). Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55: 1449–1455, https://doi.org/10.1001/archneur.55.11.1449.Suche in Google Scholar PubMed

Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., Webb, A., Jerome, G.J., Marquez, D.X., and Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101: 3316–3321, https://doi.org/10.1073/pnas.0400266101.Suche in Google Scholar PubMed PubMed Central

Corrada, M.M., Kawas, C.H., Hallfrisch, J., Muller, D., and Brookmeyer, R. (2005). Reduced risk of Alzheimer’s disease with high folate intake: the Baltimore longitudinal study of aging. Alzheimer’s Dementia 1: 11–18, https://doi.org/10.1016/j.jalz.2005.06.001.Suche in Google Scholar PubMed PubMed Central

Cukierman, T., Gerstein, H.C., and Williamson, J. D. (2005). Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 48: 2460–2469, https://doi.org/10.1007/s00125-005-0023-4.Suche in Google Scholar PubMed

De Felice, F.G. (2013). Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J. Clin. Invest. 123: 531–539, https://doi.org/10.1172/jci64595.Suche in Google Scholar

Devi, L., Alldred, M.J., Ginsberg, S.D., and Ohno, M. (2012). Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PloS One 7: e32792, https://doi.org/10.1371/journal.pone.0032792.Suche in Google Scholar

Devore, E., Buring, J.E., and Grodstein, F. (2004). Plasma cholesterol levels and cognitive function in older women. Neurobiol. Aging 25: S52, https://doi.org/10.1016/s0197-4580(04)80176-3.Suche in Google Scholar

Donley, G.A.R., Lönnroos, E., Tuomainen, T.P., and Kauhanen, J. (2018). Association of childhood stress with late-life dementia and Alzheimer’s disease: the KIHD study. Eur. J. Publ. Health 28: 1069–1073, https://doi.org/10.1093/eurpub/cky134.Suche in Google Scholar PubMed

Droogsma, E., van Asselt, D., Bieze, H., Veeger, N., Deyn, D., and P.P. (2015). The relationship of weight change trajectory with medial temporal lobe atrophy in patients with mild Alzheimer’s disease: results from a cohort study. Alzheimer’s Res. Ther. 7: 18, https://doi.org/10.1186/s13195-015-0098-1.Suche in Google Scholar PubMed PubMed Central

Epperly, T., Dunay, M.A., and Boice, J.L. (2017). Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am. Fam. Physician 95: 771–778.Suche in Google Scholar

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S., Heo, S., Alves, H., White, S.M., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108: 3017–3022, https://doi.org/10.1073/pnas.1015950108.Suche in Google Scholar PubMed PubMed Central

Eriksson, U.K., Bennet, A.M., Gatz, M., Dickman, P.W., and Pedersen, N.L. (2010). Nonstroke cardiovascular disease and risk of Alzheimer’s disease and dementia. Alzheimer Dis. Assoc. Disord. 24: 213–219.10.1097/WAD.0b013e3181d1b99bSuche in Google Scholar PubMed PubMed Central

Ewers, M., Insel, P.S., Stern, Y., and Weiner, M.W. (2013). Alzheimer’s disease neuroimaging initiative – ADNI. cognitive reserve associated with FDG-PET in preclinical Alzheimer’s disease. Neurology 80: 1194–1201, https://doi.org/10.1212/wnl.0b013e31828970c2.Suche in Google Scholar

Feng, Y. and Wang, X. (2012). Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell Longev 2012: 1–17, https://doi.org/10.1155/2012/472932.Suche in Google Scholar PubMed PubMed Central

Flicker, L. (2009). Life style interventions to reduce the risk of dementia. Maturitas 63: 319–322, https://doi.org/10.1016/j.maturitas.2009.06.008.Suche in Google Scholar PubMed

Fratiglioni, L., Wang, H.X., Ericsson, K., Maytan, M., and Winblad, B. (2000). Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet 355: 1315–1319, https://doi.org/10.1016/s0140-6736(00)02113-9.Suche in Google Scholar

Frodl, T. and O’Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol. Dis. 52: 24–37, https://doi.org/10.1016/j.nbd.2012.03.012.Suche in Google Scholar PubMed

Gardener, S.L., Rainey-Smith, S.R., Barnes, M.B., Sohrabi, H.R., Weinborn, M., Lim, Y.Y., Harrington, K., Taddei, K., Gu, Y., Rembach, A., et al. (2015). Dietary patterns and cognitive decline in an Australian study of ageing. Mol. Psychiatr. 20: 860–866, https://doi.org/10.1038/mp.2014.79.Suche in Google Scholar PubMed

Giunta, B., Deng, J., Jin, J., Sadic, E., Rum, S., Zhou, H., Sanberg, P., and Tan, J. (2012). Evaluation of how cigarette smoke is a direct risk factor for Alzheimer’s disease. Technol. Innovat. 14: 39–48, https://doi.org/10.3727/194982412x13378627621752.Suche in Google Scholar

Goedeke, L. and Fernandez-Hernando, C. (2012). Regulation of cholesterol homeostasis. Cell. Mol. Life Sci. 69: 915–930, https://doi.org/10.1007/s00018-011-0857-5.Suche in Google Scholar PubMed

Helmer, C., Damon, D., Letenneur, L., Fabrigoule, C., Barberger-Gateau, P., Lafont, S., Fuhrer, R., Antonucci, T., Commenges, D., Orgogozo, J.M., et al. (1999). Marital status and risk of Alzheimer’s disease: a French population-based cohort study. Neurology 53, 1953–1953, https://doi.org/10.1212/wnl.53.9.1953.Suche in Google Scholar PubMed

Hersi, M., Irvine, B., Gupta, P., Gomes, J., Birkett, N., and Krewski, D. (2017). Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology 61: 143–187, https://doi.org/10.1016/j.neuro.2017.03.006.Suche in Google Scholar PubMed

Hooshmand, B., Lokk, J., Solomon, A., Mangialasche, F., Miralbell, J., Spulber, G., Annerbo, S., Andreasen, N., Winblad, B., Cedazo-Minguez, A., et al. (2014). Vitamin D in relation to cognitive impairment, cerebrospinal fluid biomarkers, and brain volumes. J. Gerontol. A Biol. Sci. Med. Sci. 69: 1132–1138, https://doi.org/10.1093/gerona/glu022.Suche in Google Scholar PubMed

Hsieh, S.W., Kim, S.Y., Shim, Y.S., Huang, L.C., and Yang, Y.H. (2020). A comparison of sociobehavioral impact on cognitive preservation in Alzheimer’s disease between Taiwan and Korea: a cross-national study. Medicine (Baltim.) 99: e19690, https://doi.org/10.1097/md.0000000000019690.Suche in Google Scholar

Hu, J., Igarashi, A., Kamata, M., and Nakagawa, H. (2001). Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276: 47863–47868, https://doi.org/10.1074/jbc.m104068200.Suche in Google Scholar PubMed

Iadecola, C., Yaffe, K., Biller, J., Bratzke, L.C., Faraci, F.M., Gorelick, P.B., Gulati, M., Kamel, H., Knopman, D.S., Launer, L.J., et al. (2016). Impact of hypertension on cognitive function. A scientific statement from the American heart association. Hypertension 68: e67–e94, https://doi.org/10.1161/hyp.0000000000000053.Suche in Google Scholar

Johansson, L., Guo, X., Waern, M., Ostling, S., Gustafson, D., Bengtsson, C., and Skoog, I. (2010). Midlife psychological stress and risk of dementia: a 35-year longitudinal population study. Brain 133: 2217–2224, https://doi.org/10.1093/brain/awq116.Suche in Google Scholar

Jolivalt, C.G., Hurford, R., Lee, C.A., Dumaop, W., Rockenstein, E., and Masliah, E. (2010). Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp. Neurol. 223: 422–431, https://doi.org/10.1016/j.expneurol.2009.11.005.Suche in Google Scholar

Kakinuma, Y., Hama, H., Sugiyama, F., Goto, K., Murakami, K., and Fukamizu, A. (1997). Anti-apoptotic action of angiotensin fragments to neuronal cells from angiotensinogen knock-out mice. Neurosci. Lett. 232: 167–170, https://doi.org/10.1016/s0304-3940(97)00605-8.Suche in Google Scholar

Kalaria, R.N., Akinyemi, R., and Ihara, M. (2012). Does vascular pathology contribute to Alzheimer changes? J. Neurol. Sci. 322: 141–147, https://doi.org/10.1016/j.jns.2012.07.032.Suche in Google Scholar PubMed

Kanoski, S.E. and Davidson, T.L. (2010). Different patterns of memory impairments accompany short-and longer-term maintenance on a high-energy diet. J. Exp. Psychol. Anim. Behav. Process. 36: 313–319, https://doi.org/10.1037/a0017228.Suche in Google Scholar PubMed

Karp, A., Paillard-Borg, S., Wang, H.X., Silverstein, M., Winblad, B., and Fratiglioni, L. (2006). Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement. Geriatr. Cognit. Disord. 21: 65–73, https://doi.org/10.1159/000089919.Suche in Google Scholar PubMed

Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X., and Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23: 138–144, https://doi.org/10.1002/ana.410230206.Suche in Google Scholar PubMed

Kim, H., Kim, G., Jang, W., Kim, S.Y., and Chang, N. (2014). Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment. Nutr. J. 13: 118, https://doi.org/10.1186/1475-2891-13-118.Suche in Google Scholar PubMed PubMed Central

Kivipelto, M., Helkala, E.L., Laakso, M.P., Hänninen, T., Hallikainen, M., Alhainen, K., Livonen, S., Mannermaa, A., Tuomilehto, J., Nissinen, A., et al. (2002). Apolipoprotein E ϵ4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer’s disease. Ann. Intern. Med. 137: 149, https://doi.org/10.7326/0003-4819-137-3-200208060-00006.Suche in Google Scholar PubMed

Kivipelto, M., Ngandu, T., Fratiglioni, L., Viitanen, M., Kåreholt, I., Winblad, B., Helkala, E.L., Tuomilehto, J., Soininen, H., and Nissinen, A. (2005). Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer’s disease. Arch. Neurol. 62: 1556–1560, https://doi.org/10.1001/archneur.62.10.1556.Suche in Google Scholar

Launer, L.J., Masaki, K., Petrovitch, H., Foley, D., and Havlik, R.J. (1995). The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia aging study. J. Am. Med. Assoc. 274: 1846–1851, https://doi.org/10.1001/jama.1995.03530230032026.Suche in Google Scholar

Launer, L.J., Ross, G.W., Petrovitch, H., Masaki, K., Foley, D., White, L.R., and Havlik, R.J. (2000). Midlife blood pressure and dementia: the Honolulu–Asia aging study. Neurobiol. Aging 21: 49–55, https://doi.org/10.1016/s0197-4580(00)00096-8.Suche in Google Scholar

Lee, H.J., Seo, H.I., Cha, H.Y., Yang, Y.J., Kwon, S.H., and Yang, S.J. (2018). Diabetes and Alzheimer’s disease: mechanisms and nutritional aspects. Clin. Nutr. Res. 7: 229–240, https://doi.org/10.7762/cnr.2018.7.4.229.Suche in Google Scholar PubMed PubMed Central

Lu, Y., Dong, Y., Tucker, D., Wang, R., Ahmed, M.E., Brann, D., and Zhang, Q. (2017). Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a Streptozotocin-induced rat model of sporadic Alzheimer’s disease. J. Alzheim. Dis. 56: 1469–1484, https://doi.org/10.3233/jad-160869.Suche in Google Scholar PubMed PubMed Central

Lucassen, P.J., Pruessner, J., Sousa, N., Almeida, O.F., Van Dam, A.M., Rajkowska, G., Swaab, D.F., and Czeh, B. (2014). Neuropathology of stress. Acta Neuropathol. 127: 109–135, https://doi.org/10.1007/s00401-013-1223-5.Suche in Google Scholar PubMed PubMed Central

Luchsinger, J.A., Patel, B., Tang, M.X., Schupf, N., and Mayeux, R. (2007a). Measures of adiposity and dementia risk in elderly persons. Arch. Neurol. 64: 392–398, https://doi.org/10.1001/archneur.64.3.392.Suche in Google Scholar PubMed PubMed Central

Luchsinger, J.A., Tang, M.X., Miller, J., Green, R., and Mayeux, R. (2007b). Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch. Neurol. 64: 86–92, https://doi.org/10.1001/archneur.64.1.86.Suche in Google Scholar PubMed

Lumeng, C.N. and Saltiel, A.R. (2011). Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121: 2111–2117, https://doi.org/10.1172/jci57132.Suche in Google Scholar PubMed PubMed Central

Manoharan, S., Guillemin, G.J., Abiramasundari, R.S., Essa, M.M., Akbar, M., and Akbar, M.D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev 2016: 8590578, https://doi.org/10.1155/2016/8590578.Suche in Google Scholar PubMed PubMed Central

Marfany, A., Sierra, C., Camafort, M., Doménech, M., and Coca, A. (2018). High blood pressure, Alzheimer disease and antihypertensive treatment. Panminerva Med. 60: 8–16. https://doi.org/10.23736/S0031-0808.18.03360-8.Suche in Google Scholar

Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., and Mattson, M.P. (1997). Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17: 1046–1054, https://doi.org/10.1523/jneurosci.17-03-01046.1997.Suche in Google Scholar

Martin-Jiménez, C.A., Gaitán-Vaca, D.M., Echeverria, V., González, J., and Barreto, G.E. (2016). Relationship between obesity, Alzheimer’s disease, and Parkinson’s disease: an astrocentric view. Mol. Neurobiol. 54: 7096–7115, https://doi.org/10.1007/s12035-016-0193-8.Suche in Google Scholar

Matthews, F.E., Stephan, B.C.M., Robinson, L., Jagger, C., Barnes, L.E., Arthur, A., and Brayne, C. (2016). Cognitive function and ageing studies (CFAS) collaboration. A two-decade dementia incidence comparison from the cognitive function and ageing studies I and II. Nat. Commun. Now. 7: 11398, https://doi.org/10.1038/ncomms11398.Suche in Google Scholar

McEwen, B.S. (2012). Brain on stress: how the social environment gets under the skin. Proc. Natl. Acad. Sci. U.S.A. 109: 17180–17185, https://doi.org/10.1073/pnas.1121254109.Suche in Google Scholar

Merched, A., Xia, Y., Visvikis, S., Serot, J., and Siest, G. (2000). Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol. Aging 21: 27–30, https://doi.org/10.1016/s0197-4580(99)00103-7.Suche in Google Scholar

Morris, M.C. (2004a). Diet and Alzheimer’s disease: what the evidence shows. Medsc. Gen. Med. 6: 48.Suche in Google Scholar

Morris, M.C., Evans, D.A., Bienias, J.L., Scherr, P.A., Tangney, C.C., Hebert, L.E., and Aggarwal, N. (2004b). Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J. Neurol. Neurosurg. Psychiatry 75: 1093–1099, https://doi.org/10.1136/jnnp.2003.025858.Suche in Google Scholar PubMed PubMed Central

Mosconi, L., Murray, J., Davies, M., Williams, S., Pirraglia, E., Spector, N., Tsui, W.H., Li, Y., Butler, T., Osorio, R.S., et al. (2014). Nutrient intake and brain biomarkers of Alzheimer’s disease in at-risk cognitively normal individuals: a cross-sectional neuroimaging pilot study. BMJ Open 4: e004850, https://doi.org/10.1136/bmjopen-2014-004850.Suche in Google Scholar PubMed PubMed Central

Mulder, M., Ravid, R., Swaab, D.F., de Kloet, E.R., Haasdijk, E.D., Julk, J., van der Boom, J.J., and Havekes, L.M. (1998). Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4. Alzheimer Dis. Assoc. Disord. 12: 198–203, https://doi.org/10.1097/00002093-199809000-00012.Suche in Google Scholar PubMed

Neth, B.J. and Craft, S. (2017). Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front. Aging Neurosci. 9: 345, https://doi.org/10.3389/fnagi.2017.00345.Suche in Google Scholar PubMed PubMed Central

Niu, H., Qu, Y., Li, Z., Wang, R., Li, L., Li, M., Lv, X., Gao, C., Song, Y., and Li, B. (2018). Smoking and risk for Alzheimer disease: a meta-analysis based on both case-control and cohort study. J. Nerv. Ment. Dis. 206: 680–685, https://doi.org/10.1097/nmd.0000000000000859.Suche in Google Scholar PubMed

Ohshima, K., Mogi, M., and Horiuchi, M. (2013). Therapeutic approach for neuronal disease by regulating renin–angiotensin system. Curr. Hypertens. Rev. 9: 99–107, https://doi.org/10.2174/15734021113099990004.Suche in Google Scholar PubMed

Ownby, R.L., Crocco, E., Acevedo, A., John, V., and Loewenstein, D. (2006). Depression and risk for Alzheimer disease. Arch. Gen. Psychiatr. 63: 530–538, https://doi.org/10.1001/archpsyc.63.5.530.Suche in Google Scholar PubMed PubMed Central

Panza, G.A., Taylor, B.A., MacDonald, H.V., Johnson, B.T., Zaleski, A.L., Livingston, J., Thompson, P.D., and Pescatello, L.S. (2018). Can exercise improve cognitive symptoms of Alzheimer’s Disease?. J. Am. Geriatr. Soc. 66: 487–495, https://doi.org/10.1111/jgs.15241.Suche in Google Scholar PubMed

Pedersen, W.A., Cashman, N.R., and Mattson, M.P. (1999). The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp. Neurol. 155: 1–10, https://doi.org/10.1111/jgs.15241.Suche in Google Scholar

Peng, X., Xing, P., Li, X., Qian, Y., Song, F., Bai, Z., Han, G., and Lei, H. (2016). Towards personalized intervention for Alzheimer’s disease. Dev. Reprod. Biol. 14: 289–297, https://doi.org/10.1016/j.gpb.2016.01.006.Suche in Google Scholar PubMed PubMed Central

Pietropaolo, S., Sun, Y., Li, R., Brana, C., Feldon, J., and Yee, B.K. (2008). The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav. Brain Res. 192: 42–60, https://doi.org/10.1016/j.bbr.2008.03.014.Suche in Google Scholar PubMed

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., and Ferri, C.P. (2013). The global prevalence of dementia: a systematic review and meta-analysis. Alzheimer’s Dementia 9: 63–75, https://doi.org/10.1016/j.jalz.2012.11.007.Suche in Google Scholar PubMed

Purdy, J. (2013). Chronic physical illness: a psychophysiological approach for chronic physical illness. Yale J. Biol. Med. 86: 15–28.Suche in Google Scholar

Qian, W., Schweizer, T.A., and Fischer, C.E. (2014). Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic. Int. Psychogeriatr. 26: 597–603, https://doi.org/10.1017/s1041610213002299.Suche in Google Scholar

Querfurth, H.W. and LaFerla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 62: 329–344, https://doi.org/10.1056/nejmra0909142.Suche in Google Scholar

Ramirez, A., Wolfsgruber, S., Lange, C., Kaduszkiewicz, H., Weyerer, S., Werle, J., Pentzek, M., Fuchs, A., Riedel-Heller, S.G., Luck, T., et al. (2015). Elevated HbA1c is associated with increased risk of incident dementia in primary care patients. J. Alzheimers Dis. 44: 1203–1212, https://doi.org/10.3233/jad-141521.Suche in Google Scholar

Reitz, C., Tang, M.X., Luchsinger, J., and Mayeux, R. (2004). Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol. 61: 705–714, https://doi.org/10.1001/archneur.61.5.705.Suche in Google Scholar

Ries, M. and Sastre, M. (2016). Mechanisms of Aβ clearance and degradation by glial cells. Front. Aging Neurosci. 8: 715–719, https://doi.org/10.3389/fnagi.2016.00160.Suche in Google Scholar

Ríos, J.A., Cisternas, P., Arrese, M., Barja, S., and Inestrosa, N.C. (2014). Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog. Neurobiol. 121: 125–146, https://doi.org/10.1016/j.pneurobio.2014.07.004.Suche in Google Scholar

Rosano, C., Venkatraman, V.K., Guralnik, J., Newman, A.B., Glynn, N.W., Launer, L., Taylor, C.A., Williamson, J., Studenski, S., Pahor, M, et al. (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J. Gerontol. A Biol. Sci. Med. Sci. 65: 639–647.10.1093/gerona/glq038Suche in Google Scholar

Rushworth, J.V. and Hooper, N.M. (2010). Lipid rafts: linking Alzheimer’s amyloid-beta production, aggregation, and toxicity at neuronal membranes. Int. J. Alzheimer’s Dis. 2010: 603052.10.4061/2011/603052Suche in Google Scholar

Satizabal, C.L., Beiser, A.S., Chouraki, V., Chêne, G., Dufouil, C., and Seshadri, S. (2016). Incidence of dementia over three decades in the Framingham Heart Study. N. Engl. J. Med. 374: 523–532, https://doi.org/10.1056/nejmoa1504327.Suche in Google Scholar

Savaskan, E., Hock, C., Olivieri, G., Bruttel, S., Rosenberg, C., Hulette, C., and Muller-Spahn, F. (2001). Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol. Aging 22: 541–546, https://doi.org/10.1016/s0197-4580(00)00259-1.Suche in Google Scholar

Sayre, L.M., Zelasko, D.A., Harris, P.L., Perry, G., Salomon, R.G., and Smith, M.A. (1997). 4- Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68: 2092–2097. https://doi.org/10.1046/j.1471-4159.1997.68052092.x.Suche in Google Scholar

Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., and Van der Flier, W.M. (2016). Alzheimer’s disease. Lancet Neurol. 388: 505–517, https://doi.org/10.1016/s0140-6736(15)01124-1.Suche in Google Scholar

Schneider, J.A., Arvanitakis, Z., Bang, W., and Bennett, D.A. (2007). Mixed brain pathologies account for most dementia cases in community dwelling older persons. Neurology 69: 2197–2204, https://doi.org/10.1212/01.wnl.0000271090.28148.24.Suche in Google Scholar

Shepardson, N.E., Shankar, G.M., and Selkoe, D.J. (2011). Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch. Neurol. 68: 1239–1244, https://doi.org/10.1001/archneurol.2011.203.Suche in Google Scholar

Smith, P.J.Blumenthal, J.A., Hoffman, B.M.Cooper, H., Strauman, T.A., Welsh-Bohmer, K., Browndyke, J.N., and Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72: 239–252. https://doi.org/10.1097/PSY.0b013e3181d14633.Suche in Google Scholar

Snowdon, D.A., Greiner, L.H., Mortimer, J.A., Riley, K.P., Greiner, P.A., and Markesbery, W.R. (1997). Brain infarction and the clinical expression of Alzheimer disease. The nun study. J. Am. Med. Assoc. 277: 813–817, https://doi.org/10.1001/jama.1997.03540340047031.10.1001/jama.277.10.813Suche in Google Scholar

Solfrizzi, V., Custodero, C., Lozupone, M., Imbimbo, B.P., Valiani, V., Agosti, P., Schilardi, A., D’Introno, A., La Montagna, M., Calvani, M., et al. (2017). Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer’s disease and late-life cognitive disorders: a systematic review. J. Alzheim. Dis. 59: 815–849, https://doi.org/10.3233/jad-170248.Suche in Google Scholar

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11: 1006–1012, https://doi.org/10.1016/s1474-4422(12)70191-6.Suche in Google Scholar

Stringhini, S., Sabia, S., Shipley, M., Brunner, E., Nabi, H., Kivimaki, M., and Singh-Manoux, A. (2010). Association of socioeconomic position with health behaviors and mortality. J. Am. Med. Assoc. 303: 1159–1166, https://doi.org/10.1001/jama.2010.297.Suche in Google Scholar PubMed PubMed Central

Sutherland, G.T., Chami, B., Youssef, P., and Witting, P.K. (2013). Oxidative stress in Alzheimer’s disease: primary villain or physiological by-product? Redox Rep. 18: 134–141, https://doi.org/10.1179/1351000213y.0000000052.Suche in Google Scholar PubMed PubMed Central

Tan, S.H., Karri, V., Tay, N.W.R., Chang, K.H., Ah, H.Y., Ng, P.Q., Ho, H.S., Keh, H.W., and Candasamy, M. (2019). Emerging pathways to neurodegeneration: dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother. 111: 765–777, https://doi.org/10.1016/j.biopha.2018.12.101.Suche in Google Scholar PubMed

Wahidi, N. and Lerner, A.J. (2019). Blood pressure control and protection of the aging brain. Neurotherapeutics 16: 569–579, https://doi.org/10.1007/s13311-019-00747-y.Suche in Google Scholar PubMed PubMed Central

Wajman, J.R., Mansur, L.L., and Yassuda, M.S. (2018). Lifestyle patterns as a modifiable risk factor for late-life cognitive decline: a narrative review regarding dementia prevention. Curr. Aging Sci. 11: 90–99. https://doi.org/10.2174/1874609811666181003160225.Suche in Google Scholar PubMed

Walker, K.A., Power, M.C., and Gottesman, R.F. (2017). Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr. Hypertens. Rep. 19: 24, https://doi.org/10.1007/s11906-017-0724-3.Suche in Google Scholar PubMed PubMed Central

Wang, S., Cui, Y., Wang, C., Xie, W., Ma, L., Zhu, J., Zhang, Y., Dang, R., Wang, D., Wu, Y., and Wu, Q. (2015). Protective effects of dietary supplementation with a combination of nutrients in a transgenic mouse model of Alzheimer’s disease. PloS One 10: e0143135, https://doi.org/10.1371/journal.pone.0143135.Suche in Google Scholar PubMed PubMed Central

Watson, G.S. and Craft, S. (2003). The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17: 27–45, https://doi.org/10.2165/00023210-200317010-00003.Suche in Google Scholar PubMed

White, L., Petrovitch, H., Hardman, J., Nelson, J., Davis, D.G., Ross, G.W., Masaki, K., Launer, L., and Markesbery, W.R. (2002). Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann. N. Y. Acad. Sci. 977: 9–23, https://doi.org/10.1111/j.1749-6632.2002.tb04794.x.Suche in Google Scholar PubMed

Wiesmann, M., Kiliaan, A.J., and Claassen, J.A. (2013). Vascular aspects of cognitive impairment and dementia. J. Cerebr. Blood Flow Metabol. 33: 1696–1706, https://doi.org/10.1038/jcbfm.2013.159.Suche in Google Scholar PubMed PubMed Central

Wilson, R.S., Evans, D.A., Bienias, J.L., Mendes de Leon, C.F., Schneider, J.A., and Bennett, D.A. (2003). Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology 61: 1479–1485, https://doi.org/10.1212/01.wnl.0000096167.56734.59.Suche in Google Scholar PubMed

Wilson, R.S., Arnold, S.E., Schneider, J.A., Kelly, J.F., Tang, Y., and Bennett, D.A. (2006). Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology 27: 143–153, https://doi.org/10.1159/000095761.Suche in Google Scholar PubMed

Wilson, R.S., Scherr, P.A., Schneider, J.A., Tang, Y., and Bennett, D.A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 69: 1911–1920, https://doi.org/10.1212/01.wnl.0000271087.67782.cb.Suche in Google Scholar PubMed

Wilson, V.K., Houston, D.K., Kilpatrick, L., Lovato, J., Yaffe, K., Cauley, J.A., Harris, T.B., Simonsick, E.M., Ayonayon, H.N., Kritchevsky, S.B., et al. (2014). Relationship between 25-hydroxyvitamin D and cognitive function in older adults: the health, aging and body composition study. J. Am. Geriatr. Soc. 62: 636–641, https://doi.org/10.1111/jgs.12765.Suche in Google Scholar PubMed PubMed Central

Yaffe, K., Barrett- Connor, E., Lin, F., and Grady, D. (2002). Serum lipoprotein levels, statin use, and cognitive function in older women. Arch. Neurol. 59: 378–384, https://doi.org/10.1001/archneur.59.3.378.Suche in Google Scholar PubMed

Zhang, J., Chen, C., Hua, S., Liao, H., Wang, M., Xiong, Y., and Cao, F. (2017). An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 124: 41–47, https://doi.org/10.1016/j.diabres.2016.10.024.Suche in Google Scholar PubMed

Zheng, C., Zhou, X.W., and Wang, J.Z. (2016). The dual roles of cytokines in Alzheimer’s disease: update on interleukins TNF-α, TGF-β and IFN-γ. Transl. Neurodegeneration 5: 7, https://doi.org/10.1186/s40035-016-0054-4.Suche in Google Scholar PubMed PubMed Central

Received: 2020-07-13
Accepted: 2020-07-18
Published Online: 2020-08-17
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0072/html?lang=de
Button zum nach oben scrollen