Resveratrol in the treatment of neuroblastoma: a review
-
Kamil Leis
, Aleksandra Baska, Weronika Bereźnicka
, Agata Marjańska , Ewelina Mazur , Bartosz Tadeusz Lewandowski , Krystian Kałużny und Przemysław Gałązka
Abstract
Resveratrol, polyphenol naturally occurring in grapes or nuts, has anti-cancer properties in the treatment of neuroblastoma – the most common childhood solid tumor. It affects cancer cells by increasing apoptosis, inducing cell necrosis and reducing tumor mass. Mechanism of action – (1) converting procaspases, mainly procaspases three and nine into active forms – caspases, (2) blocking kinases, and also (3) leading the cell to the S-cell cycle, where it is most effective while increasing the concentration of cyclin E and lowering the concentration of p21 protein. In vitro, as well as, rodent animal models studies are available and show promising results. Therapeutic doses, currently within 10–100 μmol/L, are also being tested, as well as other forms of resveratrol, such as its trans-4,4′-dihydroxystilbene analog and polyphenol lipoconjugates. In our review, we presented the known molecular mechanisms of polyphenol anti-tumor activity against neuroblastoma and discussed the studies confirming its effectiveness.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Chen, Y., Tseng, S.H., Lai, H.S., and Chen, W.J. (2004). Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136: 57–66, https://doi.org/10.1016/j.surg.2004.01.017.Suche in Google Scholar
Chillemi, R., Cardullo, N., Greco, V., Malfa, G., Tomasello, B., and Sciuto, S. (2015). Synthesis of amphiphilic resveratrol lipoconjugates and evaluation of their anticancer activity towards neuroblastoma SH-SY5Y cell line. Eur. J. Med. Chem. 96: 467–481. https://doi.org/10.1016/j.ejmech.2015.04.038.Suche in Google Scholar
Chkhikvishvili, I., Gogia, N., and Sirbiladze, G. (2008). Study of resveratrol and antioxidant activity in Georgian brand red wines and a number of foreign red wines. Georgian Med. News 159: 53–57.Suche in Google Scholar
Dudley, J.I., Lekli, I., Mukherjee, S., Das, M., Bertelli, A.A., and Das, D.K. (2008). Does white wine qualify for French paradox? comparison of the cardioprotective effects of red and white wines and their constituents: resveratrol, tyrosol, and hydroxytyrosol. J. Agric. Food Chem. 56: 9362–9373, https://doi.org/10.1021/jf801791d.Suche in Google Scholar
Franks, L.M., Bollen, A., Seeger, R.C., Stram, D.O., and Matthay, K.K. (1997). Neuroblastoma in adults and adolescents: an indolent course with poor survival. Cancer Interdiscip. Int. J. ACS 79: 2028–2035, https://doi.org/10.1002/(sici)1097-0142(19970515)79:10<2028::aid-cncr26>3.0.co;2-v.10.1002/(SICI)1097-0142(19970515)79:10<2028::AID-CNCR26>3.0.CO;2-VSuche in Google Scholar
Gerszon, J. and Rodacka, A. (2016). Determination of trans-resveratrol action on two different types of neuronal cells, neuroblastoma and hippocampal cells. Czech J. Food Sci. 34: 118–126, https://doi.org/10.17221/401/2015-cjfs.Suche in Google Scholar
Graham, R.M., Hernandez, F., Puerta, N., De Angulo, G., Webster, K.A., and Vanni, S. (2016). Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp. Mol. Med. 48: e210, https://doi.org/10.1038/emm.2015.116.Suche in Google Scholar
Graham, R.M., Puerta, N., Webster, K.A., and Vanni, S. (2012). Resveratrol potentiates glycolytic inhibitor-induced neuroblastoma cell death independent of SIRT activity. Cancer Res. 72: 3214. https://doi.org/10.1158/1538-7445.AM2012-3214.Suche in Google Scholar
Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.Suche in Google Scholar
Gurney, J.G., Ross, J.A., Wall, D.A., Bleyer, W.A., Severson, R.K., and Robison, L.L. (1997). Infant cancer in the US: histology-specific incidence and trends, 1973 to 1992. Pediatr. Hematol. Oncol. J. 19: 428–432, https://doi.org/10.1097/00043426-199709000-00004.Suche in Google Scholar
Howman-Giles, R., Shaw, P.J., Uren, R.F., and Chung, D.K. (2007). Neuroblastoma and other neuroendocrine tumors. Seminars in nuclear medicine 2007. WB Saunders, USA.10.1053/j.semnuclmed.2007.02.009Suche in Google Scholar
Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220, https://doi.org/10.1126/science.275.5297.218.Suche in Google Scholar
Jie, X., Cheng, Y., Xue, Q., Luo, Y., Cao, Y., and Cao, Y. (2018). The research progress of p53 tumour suppressor activity controlled by Numb in triple-negative breast cancer. bioRxiv: 463802. https://doi.org/10.1101/463802.Suche in Google Scholar
Kenealey, J.D., Subramanian, L., Van Ginkel, P.R., Darjatmoko, S., Lindstrom, M.J., Somoza, V., Ghosh, S.K., Song, Z., Hsung, R.P., Kwon, G.S., et al. (2011). Resveratrol metabolites do not elicit early pro-apoptotic mechanisms in neuroblastoma cells. J. Agric Food Chem. 59: 4979–4986, https://doi.org/10.1021/jf104901g.Suche in Google Scholar PubMed PubMed Central
Ko, J.H., Sethi, G., Um, J.Y., Shanmugam, M.K., Arfuso, F., Kumar, A.P., Bishayee, A., and Ahn, K.S. (2017). The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 18: 2589, https://doi.org/10.3390/ijms18122589.Suche in Google Scholar PubMed PubMed Central
Kuršvietienė, L., Stanevičienė, I., Mongirdienė, A., and Bernatonienė, J. (2016). Multiplicity of effects and health benefits of resveratrol. Medicina 52: 148–155. https://doi.org/10.1016/j.medici.2016.03.003.Suche in Google Scholar PubMed
Ladenstein, R., Pötschger, U., Hartman, O., Pearson, A.D.J., Klingebiel, T., Castel, V., Yaniv, I., Demirer, T., and Dini, G. (2008). 28 years of high-dose therapy and SCT for neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow Transplant. 41: S118–S127, https://doi.org/10.1038/bmt.2008.69.Suche in Google Scholar PubMed
Lee, M.K., Kang, S.J., Poncz, M., Song, K.J., and Park, K.S. (2007). Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp. Mol. Med. 39: 376–384, https://doi.org/10.1038/emm.2007.42.Suche in Google Scholar PubMed
Li, F., Gong, Q., Dong, H., and Shi, J. (2012). Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des. 18: 27–33, https://doi.org/10.2174/138161212798919075.Suche in Google Scholar PubMed
Lofrumento, D.D., Nicolardi, G., Cianciulli, A., Nuccio, F.D., Pesa, V.L., Carofiglio, V., Dragone, T., Calvello, R., and Panaro, M.A. (2014). Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 20: 249–260, https://doi.org/10.1177/1753425913488429.Suche in Google Scholar PubMed
Lopez-Miranda, V., Soto-Montenegro, M.L., Vera, G., Herradon, E., Desco, M., and Abalo, R. (2012). Resveratrol: a neuroprotective polyphenol in the Mediterranean diet. Rev. Neurol. 54: 349–356.10.33588/rn.5406.2011611Suche in Google Scholar
Lu, H. and Huang, H. (2011). FOXO1: a potential target for human diseases. Curr. Drug Targets 12: 1235–1244, https://doi.org/10.2174/138945011796150280.Suche in Google Scholar PubMed PubMed Central
Madden, E., Logue, S.E., Healy, S.J., Manie, S., and Samali, A. (2019). The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol. Cell 111: 1–17, https://doi.org/10.1111/boc.201800050.Suche in Google Scholar PubMed
Miloso, M., Bertelli, A.A., Nicolini, G., and Tredici, G. (1999). Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 264: 141–144, https://doi.org/10.1016/s0304-3940(99)00194-9.Suche in Google Scholar
National Cancer Institute (2020a). Drugs approved for neuroblastoma.Suche in Google Scholar
National Cancer Institute (2020b). Neuroblastoma treatment (PDQ®)–patient version.Suche in Google Scholar
Nicolini, G., Rigolio, R., Scuteri, A., Miloso, M., Saccomanno, D., Cavaletti, G., and Tredici, G. (2003). Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuroch. Int. 42: 419–429, https://doi.org/10.1016/s0197-0186(02)00132-8.Suche in Google Scholar
Pizarro, J. G., Verdaguer, E., Ancrenaz, V., Junyent, F., Sureda, F., Pallàs, M., Folch, J., and Camins, A. (2011). Resveratrol inhibits proliferation and promotes apoptosis of neuroblastoma cells: role of sirtuin 1. Neurochem. Res. 36: 187–194, https://doi.org/10.1007/s11064-010-0296-y.Suche in Google Scholar PubMed
Rahman, M., Kim, N.H., Kim, S.H., Oh, S.M., and Huh, S.O. (2012). Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. Korean J. Physiol. Pharmacol. 16: 321–326, https://doi.org/10.4196/kjpp.2012.16.5.321.Suche in Google Scholar PubMed PubMed Central
Ren, X., Bai, X., Zhang, X., Li, Z., Tang, L., Zhao, X., Li, Z., Ren, Y., Wei, S., Wang, Q., et al. (2015). Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics 14: 316–328, https://doi.org/10.1074/mcp.m114.041905.Suche in Google Scholar PubMed PubMed Central
Rocha-González, H.I., Ambriz-Tututi, M., and Granados-Soto, V. (2008). Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci. Ther. 14: 234–247, https://doi.org/10.1111/j.1755-5949.2008.00045.x.Suche in Google Scholar PubMed PubMed Central
Saha, B., Patro, B.S., Koli, M., Pai, G., Ray, J., Bandyopadhyay, S.K., and Chattopadhyay, S. (2017). trans-4, 4’-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget 8: 73905, https://doi.org/10.18632/oncotarget.17879.Suche in Google Scholar PubMed PubMed Central
Siddiqui, I.A., Sanna, V., Ahmad, N., Sechi, M., and Mukhtar, H. (2015). Resveratrol nanoformulation for cancer prevention and therapy. Ann. N.Y. Acad. Sci. 1348: 20–31, https://doi.org/10.1111/nyas.12811.Suche in Google Scholar PubMed
Singh, C.K., Ndiaye, M.A., and Ahmad, N. (2015). Resveratrol and cancer: challenges for clinical translation. Biochim. Biophys. Acta 1852: 1178–1185, https://doi.org/10.1016/j.bbadis.2014.11.004.Suche in Google Scholar PubMed PubMed Central
Soto, B.L., Hank, J.A., Van De Voort, T.J., Subramanian, L., Polans, A.S., Rakhmilevich, A.L., Yang, R.K., Seo, S., Kim, K., Reisfeld, R.A., et al. (2011). The anti-tumor effect of resveratrol alone or in combination with immunotherapy in a neuroblastoma model. Cancer Immunol. Immun. 60: 731–738, https://doi.org/10.1007/s00262-011-0971-0.Suche in Google Scholar PubMed PubMed Central
Spix, C., Pastore, G., Sankila, R., Stiller, C.A., and Steliarova-Foucher, E. (2006). Neuroblastoma incidence and survival in European children (1978–1997): report from the automated childhood cancer information system project. Eur. J. Cancer 42: 2081–2091, https://doi.org/10.1016/j.ejca.2006.05.008.Suche in Google Scholar PubMed
Van Ginkel, P.R., Sareen, D., Subramanian, L., Walker, Q., DarjatmokoLindstrom, S. R.M.J., and Polans, A.S. (2007). Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res. 13: 5162–5169, https://doi.org/10.1158/1078-0432.ccr-07-0347.Suche in Google Scholar PubMed
Wight, R.D., Tull, C.A., Deel, M.W., Stroope, B.L., Eubanks, A.G., Chavis, J.A., Drew, P.D., and Hensley, L.L. (2012). Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem. Biophys. Res. 426: 112–115, https://doi.org/10.1016/j.bbrc.2012.08.045.Suche in Google Scholar PubMed PubMed Central
Yen, C.M., Tsai, C.W., Chang, W.S., Yang, Y.C., Hung, Y.W., Lee, H.T., Shen, C.C., Sheu, M.L., Wang, J.Y., Gong, C.L., et al. (2018). Novel combination of arsenic trioxide (As2O3) plus resveratrol in inducing programmed cell death of human neuroblastoma SK-N-SH cells. Cancer Genom. Proteom. 15: 453–460, https://doi.org/10.21873/cgp.20104.Suche in Google Scholar PubMed PubMed Central
Zhang, L., Zhang, J., and Liu, J. (2010). Resveratrol affects cell growth of SH-SY5Y human neuroblastoma. Chin. J. Neuroanat. 26: 150–154.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A bigger brain for a more complex environment
- Lifestyle intervention to prevent Alzheimer’s disease
- Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
- Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review
- Resveratrol in the treatment of neuroblastoma: a review
- Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye
- Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis
Artikel in diesem Heft
- Frontmatter
- A bigger brain for a more complex environment
- Lifestyle intervention to prevent Alzheimer’s disease
- Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
- Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review
- Resveratrol in the treatment of neuroblastoma: a review
- Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye
- Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis