Home Channels to consciousness: a possible role of gap junctions in consciousness
Article
Licensed
Unlicensed Requires Authentication

Channels to consciousness: a possible role of gap junctions in consciousness

  • Dorothea Dere , Armin Zlomuzica and Ekrem Dere ORCID logo EMAIL logo
Published/Copyright: August 27, 2020
Become an author with De Gruyter Brill

Abstract

The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.


Corresponding author: Ekrem Dere, Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la VieCampus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard,F-75005ParisCedex, France, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Agarwal, A., Dibaj, P., Kassmann, C.M., Goebbels, S., Nave, K.A., and Schwab, M.H. (2012). In vivo imaging and non-invasive ablation of pyramidal neurons in adult NEX-CreERT2 mice. Cerebr. Cortex 22: 1473–1486, https://doi.org/10.1093/cercor/bhr214.Search in Google Scholar PubMed

Alev, C., Urschel, S., Sonntag, S., Zoidl, G., Fort, A.G., Höher, T., Matsubara, M., Willecke, K., Spray, D.C., and Dermietzel, R. (2008). The neuronal connexin-36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc. Natl. Acad. Sci. USA 105: 20964–20969, https://doi.org/10.1073/pnas.0805408105.Search in Google Scholar PubMed PubMed Central

Allen, K., Fuchs, E.C., Jaschonek, H., Bannerman, D.M., and Monyer, H. (2011). Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J. Neurosci. 31: 6542–6552, https://doi.org/10.1523/jneurosci.6512-10.2011.Search in Google Scholar

Allison, D.W., Ohran, A.J., Stobbs, S.H., Mameli, M., Valenzuela, C.F., Sudweeks, S.N., Ray, A.P., Henriksen, S.J., and Steffensen, S.C. (2006). Connexin-36 gap junctions mediate electrical coupling between ventral tegmental area GABA neurons. Synapse 60: 20–31, https://doi.org/10.1002/syn.20272.Search in Google Scholar PubMed

Anders, S., Minge, D., Griemsmann, S., Herde, M.K., Steinhauser, C., and Henneberger, C. (2014). Spatial properties of astrocyte gap junction coupling in the rat hippocampus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369: 20130600, https://doi.org/10.1098/rstb.2013.0600.Search in Google Scholar PubMed PubMed Central

Antony, J.W. and Schapiro, A.C. (2019). Active and effective replay: systems consolidation reconsidered again. Nat. Rev. Neurosci. 20: 506–507, https://doi.org/10.1038/s41583-019-0191-8.Search in Google Scholar PubMed

Ardila, A. (2016). Is “self-consciousness” equivalent to “executive function”? Psychol. Neurosci. 9: 215–220, https://doi.org/10.1037/pne0000052.Search in Google Scholar

Augustin, V., Bold, C., Wadle, S.L., Langer, J., Jabs, R., Philippot, C., Weingarten, D.J., Rose, C.R., Steinhäuser, C., and Stephan, J. (2016). Functional anisotropic panglial networks in the lateral superior olive. Glia 64: 1892–1911, https://doi.org/10.1002/glia.23031.Search in Google Scholar PubMed

Baars, B.J. (1988). A cognitive theory of consciousness. Cambridge University Press, Cambridge.Search in Google Scholar

Bargiello, T.A., Oh, S., Tang, Q., Bargiello, N.K., Dowd, T.L., and Kwon, T. (2018). Gating of Connexin channels by transjunctional-voltage: conformations and models of open and closed states. Biochim. Biophys. Acta Biomembr. 1860: 22–39, https://doi.org/10.1016/j.bbamem.2017.04.028.Search in Google Scholar PubMed PubMed Central

Beardslee, M.A., Laing, J.G., Beyer, E.C., and Saffitz, J.E. (1998). Rapid turnover of connexin-43 in the adult rat heart. Circ. Res. 83: 629–635, https://doi.org/10.1161/01.res.83.6.629.Search in Google Scholar PubMed

Belousov, A.B. and Fontes, J.D. (2013). Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci. 36: 227–236, https://doi.org/10.1016/j.tins.2012.11.001.Search in Google Scholar

Belousov, A.B., Fontes, J.D., Freitas-Andrade, M., and Naus, C.C. (2017). Gap junctions and hemichannels: communicating cell death in neurodevelopment and disease. BMC Cell Biol. 18(Suppl. 1): 4, https://doi.org/10.1186/s12860-016-0120-x.Search in Google Scholar

Ben Achour, S., Pont-Lezica, L., Béchade, C., and Pascual, O. (2010). Is astrocyte calcium signaling relevant for synaptic plasticity? Neuron Glia Biol. 6: 147–155, https://doi.org/10.1017/s1740925x10000207.Search in Google Scholar

Bennett, M.V. and Zukin, R.S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41: 495–511, https://doi.org/10.1016/s0896-6273(04)00043-1.Search in Google Scholar

Berthoud, V., Minogue, P., Laing, J., and Beyer, E. (2004). Pathways for degradation of connexins and gap junctions. Cardiovasc. Res. 62: 256–267, https://doi.org/10.1016/j.cardiores.2003.12.021.Search in Google Scholar PubMed

Beheshti, S., Zeinali, R., and Esmaeili, A. (2017). Rapid upregulation of the hippocampal connexins 36 and 45 mRNA levels during memory consolidation. Behav. Brain Res. 320: 85–90, https://doi.org/10.1016/j.bbr.2016.11.048.Search in Google Scholar PubMed

Beyer, E. and Berthoud, V.M. (2018). Gap junction gene and protein families: connexins, innexins and pannexins. Biochim. Biophys. Acta 1860: 5–8, https://doi.org/10.1016/j.bbamem.2017.05.016.Search in Google Scholar PubMed PubMed Central

Bissiere, S., Zelikowsky, M., Ponnusamy, R., Jacobs, N.S., Blair, H.T., and Fanselow, M.S. (2011). Electrical synapses control hippocampal contributions to fear learning and memory. Science 331: 87–91, https://doi.org/10.1126/science.1193785.Search in Google Scholar PubMed PubMed Central

Blouw, P., Solodkin, E., Thagard, P., and Eliasmith, C. (2015). Concepts as semantic pointers: a framework and computational model. Cognit. Sci. 40: 1–35, https://doi.org/10.1111/cogs.12265.Search in Google Scholar PubMed

Bluck, S. and Alea, N. (2008). Remembering being me: the self-continuity function of autobiographical memory in younger and older adults. In: Sani, F. (Ed.), Self-continuity: Individual and collective perspectives. Psychology Press, New York, pp. 55–70.Search in Google Scholar

Bocian, R., Posłuszny, A., Kowalczyk, T., Gołebiewski, H., and Konopacki, J. (2009). The effect of carbenoxolone on hippocampal formation theta rhythm in rats: in vitro and in vivo approaches. Brain Res. Bull. 78: 290–298, https://doi.org/10.1016/j.brainresbull.2008.10.005.Search in Google Scholar PubMed

Bocian, R., Posluszny, A., Kowalczyk, T., Kazmierska, P., and Konopacki, J. (2011). Gap junction modulation of hippocampal formation theta and local cell discharges in anesthetized rats. Eur. J. Neurosci. 33: 471–481, https://doi.org/10.1111/j.1460-9568.2010.07545.x.Search in Google Scholar

Boitano, S., Dirksen, E.R., and Evans, W.H. (1998). Sequence-specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 23: 1–9, https://doi.org/10.1016/s0143-4160(98)90069-0.Search in Google Scholar

Bokor, H., Acsády, L., and Deschênes, M. (2008). Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J. Neurosci. 28: 5169–5177, https://doi.org/10.1523/jneurosci.0490-08.2008.Search in Google Scholar

Boly, M., Massimini, M., Tsuchiya, N., Postle, B.R., Koch, C., and Tononi, G. (2017). Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37: 9603–9613, https://doi.org/10.1523/jneurosci.3218-16.2017.Search in Google Scholar

Bor, D. and Seth, A.K. (2012). Consciousness and the prefrontal parietal network: insights from attention, working memory, and chunking. Front. Psychol. 3: 63, https://doi.org/10.3389/fpsyg.2012.00063.Search in Google Scholar PubMed PubMed Central

Boyce, A.K.J., Epp, A.L., Nagarajan, A., and Swayne, L.A. (2018). Transcriptional and post-translational regulation of pannexins. Biochim. Biophys. Acta Biomembr. 1860: 72–82, https://doi.org/10.1016/j.bbamem.2017.03.004.Search in Google Scholar PubMed

Breeden, P., Dere, D., Zlomuzica, A., and Dere, E. (2016). The mental time travel continuum: on the architecture, capacity, versatility and extension of the mental bridge into the past and future. Rev. Neurosci. 27: 421–434, https://doi.org/10.1515/revneuro-2015-0053.Search in Google Scholar PubMed

Brocardo, L., Acosta, L.E., Piantanida, A.P., and Rela, L. (2019). Beneficial and detrimental remodeling of glial connexin and pannexin functions in rodent models of nervous system diseases. Front. Cell. Neurosci. 13: 491, https://doi.org/10.3389/fncel.2019.00491.Search in Google Scholar PubMed PubMed Central

Brown, E.N., Lydic, R., and Schiff, N.D. (2010). General anesthesia, sleep, and coma. N. Engl. J. Med. 363: 2638–2650, https://doi.org/10.1056/nejmra0808281.Search in Google Scholar PubMed PubMed Central

Buhl, D.L., Harris, K.D., Hormuzdi, S.G., Monyer, H., and Buzsáki, G. (2003). Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci. 23: 1013–1018, https://doi.org/10.1523/jneurosci.23-03-01013.2003.Search in Google Scholar

Buhr, E.D. and Takahashi, J.S. (2013). Molecular components of the mammalian circadian clock. Handb. Exp. Pharmacol. 217: 3–27, https://doi.org/10.1007/978-3-642-25950-0_1.Search in Google Scholar

Buskila, Y., Bellot-Saez, A., and Morley, J.W. (2019). Generating brain waves, the power of astrocytes. Front. Neurosci. 13: 1125, https://doi.org/10.3389/fnins.2019.01125.Search in Google Scholar

Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31: 551–570, https://doi.org/10.1016/0306-4522(89)90423-5.Search in Google Scholar

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33: 325–340, https://doi.org/10.1016/s0896-6273(02)00586-x.Search in Google Scholar

Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press, Oxford.10.1093/acprof:oso/9780195301069.001.0001Search in Google Scholar

Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., and Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science 256: 1025–1027, https://doi.org/10.1126/science.1589772.Search in Google Scholar PubMed

Buzsáki, G. and Tingley, D. (2018). Space and time: the hippocampus as a sequence generator. Trends Cognit. Sci. 22: 853–869, https://doi.org/10.1016/j.tics.2018.07.006.Search in Google Scholar PubMed PubMed Central

Cavaliere, C., Aiello, M., Di Perri, C., Fernandez-Espejo, D., Owen, A.M., and Soddu, A. (2015). Diffusion tensor imaging and white matter abnormalities in patients with disorders of consciousness. Front Hum. Neurosci. 8: 1028, https://doi.org/10.3389/fnhum.2014.01028.Search in Google Scholar PubMed PubMed Central

Chi, Y., Zhang, X., Zhang, Z., Mitsui, T., Kamiyama, M., Takeda, M., and Yao, J. (2016). Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol. 9: 198–209, https://doi.org/10.1016/j.redox.2016.08.008.Search in Google Scholar PubMed PubMed Central

Chai, H., Diaz-Castro, B., Shigetomi, E., Monte, E., Octeau, J.C., Yu, X., Cohn, W., Rajendran, P.S., Vondriska, T.M., Whitelegge, J.P., et al. (2017). Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95: 531.e9–549.e9, https://doi.org/10.1016/j.neuron.2017.06.029.Search in Google Scholar PubMed PubMed Central

Charles, A.C., Kodali, S.K., and Tyndale, R.F. (1996). Intercellular calcium waves in neurons. Mol. Cell. Neurosci. 7; 337–353, https://doi.org/10.1006/mcne.1996.0025.Search in Google Scholar

Christie, J.M. and Westbrook, G.L. (2006). Lateral excitation within the olfactory bulb. J. Neurosci. 26: 2269–2277, https://doi.org/10.1523/jneurosci.4791-05.2006.Search in Google Scholar

Churchwell, J.C. and Kesner, R.P. (2011). Hippocampal-prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behav. Brain Res. 225: 389–395, https://doi.org/10.1016/j.bbr.2011.07.045.Search in Google Scholar

Condamine, L., Verdier, D., and Kolta, A. (2018). Analyzing the size, shape, and directionality of networks of coupled astrocytes. J. Vis. Exp. 140: 58116 https://doi.org/10.3791/58116.Search in Google Scholar

Claus, L., Philippot, C., Griemsmann, S., Timmermann, A., Jabs, R., Henneberger, C., Kettenmann, H., and Steinhäuser, C. (2018). Barreloid borders and neuronal activity shape panglial gap junction-coupled networks in the mouse thalamus. Cerebr. Cortex 28: 213–222.10.1093/cercor/bhw368Search in Google Scholar

Condorelli, D.F., Belluardo, N., Trovato-Salinaro, A., Mudo, G. (2000). Expression of Cx36 in the mammlian neurons. Brain Res. Rev. 32: 72–85, https://doi.org/10.1016/s0165-0173(99)00068-5.Search in Google Scholar

Cornell-Bell, A.H., and Finkbeiner, S.M. (1991). Ca2+ waves in astrocytes. Cell Calcium 12: 185–04, https://doi.org/10.1016/0143-4160(91)90020-f.Search in Google Scholar

Connors, B.W. and Long, M.A. (2004). Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27: 393–418, https://doi.org/10.1146/annurev.neuro.26.041002.131128.Search in Google Scholar PubMed

Corthell, J.T., Fadool, D.A., and Trombley, P.Q. (2012). Connexin and AMPA receptor expression changes over time in the rat olfactory bulb. Neuroscience 222: 38–48, https://doi.org/10.1016/j.neuroscience.2012.06.070.Search in Google Scholar PubMed PubMed Central

Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature 423: 283–288, https://doi.org/10.1038/nature01614.Search in Google Scholar PubMed

Constable, R.T. (2006). Challenges in fMRI and its limitations. In: Faro, S.H., Mohamed, F.B. (Eds.), Functional MRI. Springer, New York, NY.10.1007/0-387-34665-1_4Search in Google Scholar

Csicsvari, J., Jamieson, B., Wise, K.D., and Buzsaki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37: 311–322, https://doi.org/10.1016/s0896-6273(02)01169-8.Search in Google Scholar

Damasio, A., Damasio, H., and Tranel, D. (2013). Persistence of feelings and sentience after bilateral damage of the insula. Cerebr. Cortex 23: 833–846, https://doi.org/10.1093/cercor/bhs077.Search in Google Scholar

D’Argembeau, A. and Salmon, E. (2012). The neural basis of semantic and episodic forms of self-knowledge: insights from functional neuroimaging. In: López-Larrea, C. (Eds.), Sensing in nature. Advances in experimental medicine and biology, Vol. 739. Springer, New York, NY, USA.10.1007/978-1-4614-1704-0_18Search in Google Scholar

Davidson, J.S. and Baumgarten, I.M. (1988). Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J. Pharmacol. Exp. Therapeut. 246: 1104–1107. PMID: 3418512.Search in Google Scholar

De Graaf, T.A., Hsieh, P.J., and Sack, A.T. (2012). The “correlates” in neural correlates of consciousness. Neurosci. Bio. Behav. Rev. 36: 191–197, https://doi.org/10.1016/j.neubiorev.2011.05.012.Search in Google Scholar

De Vuyst, E., Wang, N., Decrock, E., De Bock, M., Vinken, M., Van Moorhem, M., Lai, C., Culot, M., Rogiers, V., Cecchelli, R., et al. (2009). Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46: 176–187, https://doi.org/10.1016/j.ceca.2009.07.002.Search in Google Scholar

Deans, M.R., Gibson, J.R., Sellitto, C., Connors, B.W., and Paul, D.L. (2001). Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin-36. Neuron 31: 477–485, https://doi.org/10.1016/s0896-6273(01)00373-7.Search in Google Scholar

Dehaene, S., Lau, H., and Kouider, S. (2017). What is consciousness, and could machines have it? Science 358: 486–492, https://doi.org/10.1126/science.aan8871.Search in Google Scholar PubMed

Dehaene, S., Naccache, L., Cohen, L., Bihan, D.L., Mangin, J.F., Poline, J.B., and Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nat. Neurosci. 4: 752–758, https://doi.org/10.1038/89551.Search in Google Scholar PubMed

Deng, Y., Wang, C.C., Choy, K.W., Du, Q., Chen, J., Wang, Q., Li, L., Chung, T.K., and Tang, T. (2014). Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538: 217–227, https://doi.org/10.1016/j.gene.2013.12.019.Search in Google Scholar PubMed

Dere, D., Zlomuzica, A., and Dere, E. (2019). Fellow travellers in cognitive evolution: co-evolution of working memory and mental time travel? Neurosci. Biobehav. Rev. 105: 94–105, https://doi.org/10.1016/j.neubiorev.2019.07.016.Search in Google Scholar

Dere, E. (Ed.), (2013). Gap junctions in the brain: physiological and pathological roles. Academic Press, San Diego, CA.Search in Google Scholar

Dere, E., Dahm, L., Lu, D., Hammerschmidt, K., Ju, A., Tantra, M., Kästner, A., Chowdhury, K., and Ehrenreich, H. (2014). Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front. Behav. Neurosci. 8: 181, https://doi.org/10.3389/fnbeh.2014.00181.Search in Google Scholar

Dere, E., De Souza Silva, M.A., Frisch, C., Teubner, B., Söhl, G., Willecke, K., and Huston, J.P. (2003). Connexin-30 deficient mice show increased emotionality and decreased rearing activity in the open field along with neurochemical changes. Eur. J. Neurosci. 18: 629–638, https://doi.org/10.1046/j.1460-9568.2003.02784.x.Search in Google Scholar

Dere, E., Ronnenberg, A., Tampe, B., Arinrad, S., Schmidt, M., Zeisberg, E., and Ehrenreich, H. (2018a). Cognitive, emotional and social phenotyping of mice in an observer-independent setting. Neurobiol. Learn. Mem. 150: 136–150, https://doi.org/10.1016/j.nlm.2018.02.023.Search in Google Scholar

Dere, E., Dere, D., De Souza Silva, M.A., Huston, J.P., and Zlomuzica, A. (2018b). Fellow travellers: working memory and mental time travel in rodents. Behav. Brain Res. 352: 2–7, https://doi.org/10.1016/j.bbr.2017.03.026.Search in Google Scholar

Dere, E., Frisch, C., De Souza Silva, M.A., Gödecke, A., Schrader, J., and Huston, J.P. (2001). Unaltered radial maze performance and brain acetylcholine of the endothelial nitric oxide synthase knockout mouse. Neuroscience 107: 561–570, https://doi.org/10.1016/s0306-4522(01)00382-7.Search in Google Scholar

Dere, E., Zheng-Fischhöfer, Q., Viaggiano, D., Gironi Carnevale, U.A., Rocco, L.A., Zlomuzica, A., Schnichels, M., Willecke, K., Huston, J.P., and Sadile, A. (2008). Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, AChE levels in the striatum, and CREB levels in the striatum and piriform cortex. Neuroscience 153: 396–405, https://doi.org/10.1016/j.neuroscience.2008.01.077.Search in Google Scholar

Dere, E. and Zlomuzica, A. (2012). The role of gap junctions in the brain in health and disease. Neurosci. BioBehav. Rev. 36: 206–217, https://doi.org/10.1016/j.neubiorev.2011.05.015.Search in Google Scholar

Dermietzel, R. (1998). Gap junction wiring: a “new” principle in cell-to-cell communication in the nervous system? Brain Res. Rev. 26: 176–183, https://doi.org/10.1016/s0165-0173(97)00031-3.Search in Google Scholar

Dewan, E.M. (1957). "Other Minds": an application of recent epistemological ideas to the definition of consciousness. Phil. Sci. 24: 70–76, https://doi.org/10.1086/287515.Search in Google Scholar

Di Perri, C., Bahri, M.A., Amico, E., Thibaut, A., Heine, L., Antonopoulos, G., Charland-Verville, V., Wannez, S., Gomez, F., Hustinx, R., et al. (2016). Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol. 15: 830–842, https://doi.org/10.1016/s1474-4422(16)00111-3.Search in Google Scholar

Ding, S. (2013). In vivo astrocytic Ca2+ signaling in health and brain disorders. Future Neurol. 8: 529–554, https://doi.org/10.2217/fnl.13.38.Search in Google Scholar PubMed PubMed Central

Donchin, E. and Coles, M. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11: 357–374, https://doi.org/10.1017/s0140525x00058027.Search in Google Scholar

Dobrowolski, R., and Willecke, K. (2009). Connexin-caused genetic diseases and corresponding mouse models. Redox Signal. 11: 283–295, https://doi.org/10.1089/ars.2008.2128.Search in Google Scholar PubMed

Dong, A., Liu, S., and Li, Y. (2018). Gap Junctions in the nervous system: probing functional connections using new imaging approaches. Front. Cell. Neurosci. 12: 320, https://doi.org/10.3389/fncel.2018.00320.Search in Google Scholar PubMed PubMed Central

Draguhn, A., Traub, R.D., Schmitz, D., and Jefferys, J.G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394: 189–192, https://doi.org/10.1038/28184.Search in Google Scholar PubMed

Draguhn, A., Traub, R.D., Bibbig, A., and Schmitz, D. (2000). Ripple (approximately 200 Hz) oscillations in temporal structures. J. Clin. Neurophysiol. 17: 361–376, https://doi.org/10.1097/00004691-200007000-00003.Search in Google Scholar PubMed

Evans, W.H. and Boitano, S. (2001). Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem. Soc. Trans. 29: 606–612, https://doi.org/10.1042/bst0290606.Search in Google Scholar PubMed

Feil, S., Valtcheva, N., and Feil, R. (2009). Inducible cre mice. Methods Mol. Biol. 530: 343–363, https://doi.org/10.1007/978-1-59745-471-1_18.Search in Google Scholar PubMed

Fields, R.D. and Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science 298: 556–562, https://doi.org/10.1126/science.298.5593.556.Search in Google Scholar PubMed PubMed Central

Firestone, G.L. and Kapadia, B.J. (2012). Minireview: regulation of gap junction dynamics by nuclear hormone receptors and their ligands. Mol. Endocrinol. 26: 1798–1807, https://doi.org/10.1210/me.2012-1065.Search in Google Scholar

Fizet, J., Cassel, J.C., Kelche, C., and Meunier, H. (2016). A review of the 5-choice serial reaction time (5-CSRT) task in different vertebrate models. Neurosci. BioBehav. Rev. 71: 135–153, https://doi.org/10.1016/j.neubiorev.2016.08.027.Search in Google Scholar

Frisch, C., Theis, M., De Souza Silva, M.A., Dere, E., Söhl, G., Teubner, B., Namestkova, K., Willecke, K., and Huston, J.P. (2003). Mice with astrocyte-directed inactivation of connexin-43 exhibit increased exploratory behavior, impaired motor capacities, and changes in brain acetylcholine levels. Eur. J. Neurosci. 18: 2313–2318, https://doi.org/10.1046/j.1460-9568.2003.02971.x.Search in Google Scholar

Frisch, C., De Souza Silva, M.A., Söhl, G., Güldenagel, M., Willecke, K., Huston, J.P., and Dere, E. (2005). Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin-36 in mice. Behav. Brain Res. 157: 117–185, https://doi.org/10.1016/j.bbr.2004.06.023.Search in Google Scholar

Fukuda, T. (2007). Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13: 199–207, https://doi.org/10.1177/1073858406296760.Search in Google Scholar

Furshpan, E.J. and Potter, D.D. (1957). Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180: 342–343, https://doi.org/10.1038/180342a0.Search in Google Scholar

Galambos, R. (1961). A glia-neural theory of brain function. Proc. Natl. Acad. Sci. USA 47: 129–136, https://doi.org/10.1073/pnas.47.1.129.Search in Google Scholar

Galambos, R. (1965). Introductory discussion on glial function. Prog. Brain Res. 15: 267–283, https://doi.org/10.1016/s0079-6123(08)60952-8.Search in Google Scholar

Gee, C.E., Benquet, P., Demont-Guignard, S., Wendling, F., and Gerber, U. (2010). Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro. Neuroscience 168: 605–612, https://doi.org/10.1016/j.neuroscience.2010.04.021.Search in Google Scholar PubMed

Ghézali, C.F., Calvo, C.F., Pillet, L.E., Llense, F., Ezan, P., Pannasch, U., Bemelmans, A.P., Etienne Manneville, S., and Rouach, N. (2018). Connexin 30 controls astroglial polarization during postnatal brain development. Development 145: dev155275, https://doi.org/10.1242/dev.155275.Search in Google Scholar PubMed PubMed Central

Giaume, C.B., Naus, C.C., Saez, J.C., and Leybaert, L. (2020). Glial connexins and pannexins in the healthy and diseased brain. Physiol. Rev., in press, https://doi.org/10.1152/physrev.00043.2018.Search in Google Scholar

Giaume, C. and Theis, M. (2010). Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res. Rev. 63: 160–176, https://doi.org/10.1016/j.brainresrev.2009.11.005.Search in Google Scholar

Giaume, C. and Venance, L. (1998). Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24: 50–64, https://doi.org/10.1002/(sici)1098-1136(199809)24:1<50::aid-glia6>3.0.co;2-4.10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4Search in Google Scholar

Gigout, S., Louvel, J., Kawasaki, H., D’Antuono, M., Armand, V., Kurcewicz, I., Olivier, A., Laschet, J., Turak, B., Devaux, B., et al. (2006). Effects of gap junction blockers on human neocortical synchronization. Neurobiol. Dis. 22: 496–508, https://doi.org/10.1016/j.nbd.2005.12.011.Search in Google Scholar

Gilbert, S.J. and Burgess, P.W. (2008). Executive function. Curr. Biol. 18: PR110–R114, https://doi.org/10.1016/j.cub.2007.12.014.Search in Google Scholar

Gladys, J.P.K. (2020). Circadian regulation in the retina: from molecules to network. Eur. J. Neurosci., https://doi.org/10.1111/ejn.14185.Search in Google Scholar

Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M.H., and Nave, K.A. (2006). Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44: 611–621, https://doi.org/10.1002/dvg.20256.Search in Google Scholar

Goebbels, S. and Nave, K.A. (2019). Conditional mutagenesis in oligodendrocyte lineage cells. Methods Mol. Biol. 1936: 249–274, https://doi.org/10.1007/978-1-4939-9072-6_15.Search in Google Scholar

Goodenough, D.A. and Paul, D.L. (2009). Gap junctions. Cold spring harb. Perspect. Biol. 1: a002576, https://doi.org/10.1101/cshperspect.a002576.Search in Google Scholar

Gołebiewski, H., Eckersdorf, B., and Konopacki, J. (2006). Electrical coupling underlies theta rhythm in freely moving cats. Eur. J. Neurosci. 24: 1759–1770.10.1111/j.1460-9568.2006.04993.xSearch in Google Scholar

González-Nieto, D., Gómez-Hernández, J.M., Larrosa, B., Gutiérrez, C., Muñoz, M.D., Fasciani, I., O’Brien, J., Zappalà, A., Cicirata, F., and Barrio, L.C. (2008). Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. USA 105: 17169–17174, https://doi.org/10.1073/pnas.0804189105.Search in Google Scholar PubMed PubMed Central

Gosejacob, D., Dublin, P., Bedner, P., Hüttmann, K., Zhang, J., Tress, O., Willecke, K., Pfrieger, F., Steinhäuser, C., and Theis, M. (2011). Role of astroglial connexin-30 in hippocampal gap junction coupling. Glia 59: 511–519, https://doi.org/10.1002/glia.21120.Search in Google Scholar PubMed

Granados-Fuentes, D., Ben-Josef, G., Perry, G., Wilson, D.A., Sullivan-Wilson, A., Herzog, E.D. (2011). Daily rhythms in olfactory discrimination depend on clock genes but not the suprachiasmatic nucleus. J. Biol. Rhythms 26: 552–560, https://doi.org/10.1177/0748730411420247.Search in Google Scholar PubMed PubMed Central

Griemsmann, S., Höft, S.P., Bedner, P., Zhang, J., von Staden, E., Beinhauer, A., Degen, J., Dublin, P., Cope, D.W., Richter, N., et al. (2015). Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cerebr. Cortex 25: 3420–3433, https://doi.org/10.1093/cercor/bhu157.Search in Google Scholar PubMed PubMed Central

Güldenagel, M., Ammermüller, M., Feigenspan, A., Teubner, B., Degen, J., Söhl, G., Willecke, K., and Weiler, R. (2001). Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin-36. J. Neurosci. 21: 6036–6044, https://doi.org/10.1523/jneurosci.21-16-06036.2001.Search in Google Scholar

Hamzei-Sichani, F., Kamasawa, N., Janssen, W.G., Yasumura, T., Davidson, K.G., Hof, P.R., Wearne, S.L., Stewart, M.G., Young, S.R., Whittington, M.A., et al. (2007). Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc. Natl. Acad. Sci. USA 104: 12548–12553, https://doi.org/10.1073/pnas.0705281104.Search in Google Scholar PubMed PubMed Central

Hassouna, I., Ott, C., Wüstefeld, L., Offen, N., Neher, R.A., Mitkovski, M., Winkler, D., Sperling, S., Fries, L., Goebbels, S., et al. (2016) Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol. Psychiatr. 21: 1752–1767, https://doi.org/10.1038/mp.2015.212.Search in Google Scholar PubMed PubMed Central

Haydon, P.G. (2001). GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2: 185–193, https://doi.org/10.1038/35058528.Search in Google Scholar PubMed

Hayes, B. (2013). Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol. Biol. 1019: 149–169, https://doi.org/10.1007/978-1-62703-447-0_6.Search in Google Scholar PubMed

He, J.T., Li, X.Y., Yang, L., and Zhao, X. (2020). Astroglial connexins and cognition: memory formation or deterioration? Biosci. Rep. 40: BSR20193510, https://doi.org/10.1042/bsr20193510.Search in Google Scholar PubMed PubMed Central

Hervé, J.C. and Dhein, S. (2010). Peptides targeting gap junctional structures. Curr. Pharmaceut. Des. 16: 3056–3070.10.2174/138161210793292528Search in Google Scholar

Hilgard, E.R. (1980). Consciousness in contemporary psychology. Annu. Rev. Psychol. 31: 1–26, https://doi.org/10.1146/annurev.ps.31.020180.000245.Search in Google Scholar

Hitchcott, P.K., Menicucci, D., Frumento, S., Zaccaro, A., and Gemignani, A. (2019). The neurophysiological basis of excessive daytime sleepiness: suggestions of an altered state of consciousness. Sleep Breath., in press, https://doi.org/10.1007/s11325-019-01865-9.Search in Google Scholar

Hobson, J.A. and Pace-Schott, E.F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3: 679–693, https://doi.org/10.1038/nrn915.Search in Google Scholar

Hormuzdi, S.G., Pais, I., LeBeau, F.E., Towers, S.K., Rozov, A., Buhl, E.H., Whittington, M.A., and Monyer, H. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31: 487–495, https://doi.org/10.1016/s0896-6273(01)00387-7.Search in Google Scholar

Hormuzdi, S.G., Filippov, M.A., Mitropoulou, G., Monyer, H., and Bruzzone, R. (2004). Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta 1662: 113–137, https://doi.org/10.1016/j.bbamem.2003.10.023.Search in Google Scholar

Houades, V., Koulakoff, A., Ezan, P., Seif, I., and Giaume, C. (2008). Gap junction-mediated astrocytic networks in the mouse barrel cortex. J. Neurosci. 28: 5207–5217, https://doi.org/10.1523/JNEUROSCI.5100-07.2008.Search in Google Scholar

Jacoby, L. (1991). A process dissociation framework: separating automatic from intentional uses of memory. J. Mem. Lang. 30: 513–541, https://doi.org/10.1016/0749-596x(91)90025-f.Search in Google Scholar

Jacoby, J., Nath, A., Jessen, Z.F., and Schwartz, G.W. (2018). A self-regulating gap junction network of amacrine cells controls nitric oxide release in the retina. Neuron 100: 1149–1162.e5, https://doi.org/10.1016/j.neuron.2018.09.047.Search in Google Scholar PubMed PubMed Central

Jordan, K., Chodock, R., Hand, A.R., and Laird, D.W. (2001). The origin of annular junctions: a mechanism of gap junction internalization. J. Cell. Sci. 114: 763–773. PMID: 11171382.10.1242/jcs.114.4.763Search in Google Scholar PubMed

Joyal, J.S., Gantner, M.L., and Smith, L.E.H. (2018). Retinal energy demands control vascular supply of the retina in development and disease: the role of neuronal lipid and glucose metabolism. Prog. Retin. Eye Res. 64: 131–156, https://doi.org/10.1016/j.preteyeres.2017.11.002.Search in Google Scholar PubMed PubMed Central

Jurado, M.B. and Rosselli, M. (2007). The elusive nature of executive functions: a review of our current understanding. Neuropsychol. Rev. 17: 213–233, https://doi.org/10.1007/s11065-007-9040-z.Search in Google Scholar PubMed

Juszczak, G.R. and Swiergiel, A.H. (2009). Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33: 181–198, https://doi.org/10.1016/j.pnpbp.2008.12.014.Search in Google Scholar PubMed

Kamermans, M., Fahrenfort, I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T., and Weiler, R. (2001). Hemichannel-mediated inhibition in the outer retina. Science 292: 1178–1180, https://doi.org/10.1126/science.1060101.Search in Google Scholar PubMed

Kandler, K., Clause, A., and Noh, J. (2009). Tonotopic reorganization of developing auditory brainstem circuits. Nat. Neurosci. 12: 711–717, https://doi.org/10.1038/nn.2332.Search in Google Scholar PubMed PubMed Central

Katz, B. and Miledi, R. (1965). The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B. Biol. Sci. 161: 483–495.10.1098/rspb.1965.0016Search in Google Scholar PubMed

Kesner, R.P. and Churchwell, J.C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiol. Learn. Mem. 96: 417–431, https://doi.org/10.1016/j.nlm.2011.07.002.Search in Google Scholar PubMed

Klaassen, L.J., Sun, Z., Steijaert, M.N., Bolte, P., Fahrenfort, I., Sjoerdsma, T., Klooster, J., Claassen, Y., Shields, C.R., Eikelder, H.M., et al. (2011). Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol. 9: e1001107, https://doi.org/10.1371/journal.pbio.1001107.Search in Google Scholar PubMed PubMed Central

Kleopa, K.A., Orthmann, J.L., Enriquez, A., Paul, D.L., and Scherer, S.S. (2004). Unique distributions of the gap junction proteins connexin-29, connexin-32, and connexin-47 in oligodendrocytes. Glia 47: 346–357, https://doi.org/10.1002/glia.20043.Search in Google Scholar PubMed

Koch, C. (2018). What is consciousness? Nature 557: S9, https://doi.org/10.1038/d41586-018-05097-x.Search in Google Scholar PubMed

Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17: 307–321, https://doi.org/10.1038/nrn.2016.22.Search in Google Scholar PubMed

Koivisto, M., Revonsuo, A., and Lehtonen, M. (2006). Independence of visual awareness from the scope of attention: an electrophysiological study. Cerebr. Cortex 16: 415–424, https://doi.org/10.1093/cercor/bhi121.Search in Google Scholar PubMed

Koizumi, S. (2010). Synchronization of Ca2+ oscillations: involvement of ATP release in astrocytes. FEBS J. 277: 286–292, https://doi.org/10.1111/j.1742-4658.2009.07438.x.Search in Google Scholar PubMed

Konopacki, J., Kowalczyk, T., and Gołebiewski, H. (2004). Electrical coupling underlies theta oscillations recorded in hippocampal formation slices. Brain Res. 1019: 270–274, https://doi.org/10.1016/j.brainres.2004.05.083.Search in Google Scholar PubMed

Kotchoubey, B. (2006). Event-related potentials, cognition, and behavior: a biological approach. Neurosci. BioBehav. Rev. 30: 42–65, https://doi.org/10.1016/j.neubiorev.2005.04.002.Search in Google Scholar PubMed

Kothmann, W.W., Massey, S.C., and O’Brien, J. (2009). Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J. Neurosci. 29: 14903–14911, https://doi.org/10.1523/jneurosci.3436-09.2009.Search in Google Scholar

Kreuzberg, M.M., Deuchars, J., Weiss, E., Schober, A., Sonntag, S., Wellershaus, K., Draguhn, A., and Willecke, K. (2008). Expression of connexin30.2 in interneurons of the central nervous system in the mouse. Mol. Cell. Neurosci. 37: 119–134, https://doi.org/10.1016/j.mcn.2007.09.003.Search in Google Scholar PubMed

Krüger, O., Plum, A., Kim, J.S., Winterhager, E., Maxeiner, S., Hallas, G., Kirchhoff, S., Traub, O., Lamers, W.H., and Willecke, K. (2000). Defective vascular development in connexin 45-deficient mice. Development 127: 4179–4193. PMID: 10976050.10.1242/dev.127.19.4179Search in Google Scholar PubMed

Krüger-Burg, D., Winkler, D., Mitkovski, M., Daher, F., Ronnenberg, A., Schlüter, O.M., Dere, E., and Ehrenreich, H. (2016). The SocioBox: a novel paradigm to assess complex social recognition in male mice. Front. Behav. Neurosci. 10: 151.10.3389/fnbeh.2016.00151Search in Google Scholar PubMed PubMed Central

Labra, V.C., Santibáñez, C.A., Gajardo-Gómez, R., Díaz, E.F., Gómez, G.I., and Orellana, J.A. (2018). The neuroglial dialog between cannabinoids and hemichannels. Front. Mol. Neurosci. 11: 79, https://doi.org/10.3389/fnmol.2018.00079.Search in Google Scholar PubMed PubMed Central

Laird, D.W. (2006). Life cycle of connexins in health and disease. Biochem. J. 394: 527–543, https://doi.org/10.1042/bj20051922.Search in Google Scholar PubMed PubMed Central

Laird, D.W. and Lampe, P.D. (2018). Therapeutic strategies targeting connexins. Nat. Rev. Drug Discov. 17: 905–921, https://doi.org/10.1038/nrd.2018.138.Search in Google Scholar PubMed PubMed Central

Laird, D.W., Lampe, P.D., and Johnson, R.G. (2015). Cellular small talk. Sci. Am. 312: 70–77, https://doi.org/10.1038/scientificamerican0515-70.Search in Google Scholar PubMed

Lam, J.K., Chow, M.Y., Zhang, Y., and Leung, S.W. (2015). siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucl. Acids 4: e252, https://doi.org/10.1038/mtna.2015.23.Search in Google Scholar PubMed PubMed Central

Lampe, P.D. (1994). Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J. Cell Biol. 127: 1895–1905, https://doi.org/10.1083/jcb.127.6.1895.Search in Google Scholar PubMed PubMed Central

Landisman, C.E., Long, M.A., Beierlein, M., Deans, M.R., Paul, D.L., and Connors, B.W. (2002). Electrical synapses in the thalamic reticular nucleus. J. Neurosci. 22: 1002–1009, https://doi.org/10.1523/jneurosci.22-03-01002.2002.Search in Google Scholar

Lashley, K. (1950). In search of the engram. Symp. Soc. Exp. Biol. 4: 454–482.10.1525/9780520318267-001Search in Google Scholar

Laureys, S. (2005). The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cognit. Sci. 9: 556–559, https://doi.org/10.1016/j.tics.2005.10.010.Search in Google Scholar PubMed

Liebmann, M., Stahr, A., Guenther, M., Witte, O.W., and Frahm, C. (2013). Astrocytic Cx43 and Cx30 differentially modulate adult neurogenesis in mice. Neurosci. Lett. 545: 40–45, https://doi.org/10.1016/j.neulet.2013.04.013.Search in Google Scholar PubMed

Locovei, S., Wang, J., and Dahl, G. (2006). Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580: 239–244, https://doi.org/10.1016/j.febslet.2005.12.004.Search in Google Scholar PubMed

Long, M.A., Deans, M.R., Paul, D.L., and Connors, B.W. (2002). Rhythmicity without synchrony in the electrically uncoupled inferior olive. J. Neurosci. 22: 10898–10905, https://doi.org/10.1523/jneurosci.22-24-10898.2002.Search in Google Scholar

Longuemare, M.C., Rose, C.R., Farrell, K., Ransom, B.R., Waxman, S.G., and Swanson, R.A. (1999). K(+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93: 285–292, https://doi.org/10.1016/s0306-4522(99)00152-9.Search in Google Scholar

Loo, L.W., Berestecky, J.M., Kanemitsu, M.Y., and Lau, A.F. (1995). pp60src-mediated phosphorylation of connexin 43, a gap junction protein. J. Biol. Chem. 270: 12751–12761, https://doi.org/10.1074/jbc.270.21.12751.Search in Google Scholar

Lucas, K.M., Warrington, J., Lewis, T.J., and Lewis, J.E. (2019). Neuronal dynamics underlying communication signals in a weakly electric fish: implications for connectivity in a pacemaker network. Neuroscience 401: 21–34, https://doi.org/10.1016/j.neuroscience.2019.01.004.Search in Google Scholar

Mäkinen, M.E., Ylä-Outinen, L., and Narkilahti, S. (2018). GABA and gap junctions in the development of synchronized activity in human pluripotent stem cell-derived neural networks. Front. Cell. Neurosci. 12: 56, https://doi.org/10.3389/fncel.2018.00056.Search in Google Scholar

Manjarrez-Marmolejo, J. and Franco-Pérez, J. (2016). Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr. Neuropharmacol. 14: 759–771, https://doi.org/10.2174/1570159x14666160603115942.Search in Google Scholar

Maquet, P. (2001). The role of sleep in learning and memory. Science 294: 1048–1052, https://doi.org/10.1126/science.1062856.Search in Google Scholar

Marcel, A.J. and Bisiach, E. (Eds.), (1988). Consciousness in contemporary science. Clarendon Press/Oxford University Press, Oxford.Search in Google Scholar

Martin, A.O., Mathieu, M.N., Chevillard, C., and Guerineau, N.C. (2001). Gap junctions mediate electrical signalling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release. J. Neurosci. 21: 5397–5405, https://doi.org/10.1523/jneurosci.21-15-05397.2001.Search in Google Scholar

Martinez-Banaclocha, M. (2020). Astroglial isopotentiality and calcium-associated biomagnetic field effects on cortical neuronal coupling. Cells 9: 439, https://doi.org/10.3390/cells9020439.Search in Google Scholar

Maxeiner, S., Krüger, O., Schilling, K., Traub, O., Urschel, S., and Willecke, K. (2003). Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience 119: 689–700, https://doi.org/10.1016/s0306-4522(03)00077-0.Search in Google Scholar

Mayorquin, L.C., Rodriguez, A.V., Sutachan, J.J., and Albarracín, S.L. (2018). Connexin-mediated functional and metabolic coupling between astrocytes and neurons. Front. Mol. Neurosci. 11: 118, https://doi.org/10.3389/fnmol.2018.00118.Search in Google Scholar PubMed PubMed Central

Medina-Ceja, L., Salazar-Sánchez, J.C., Ortega-Ibarra, J., and Morales-Villagrán, A. (2019). Connexins-based hemichannels/channels and their relationship with inflammation, seizures and epilepsy. Int. J. Mol. Sci. 20: 5976, https://doi.org/10.3390/ijms20235976.Search in Google Scholar PubMed PubMed Central

Medina-Ceja, L. and Ventura-Mejía, C. (2010). Differential effects of trimethylamine and quinine on seizures induced by 4-aminopyridine administration in the entorhinal cortex of vigilant rats. Seizure 19: 507–513, https://doi.org/10.1016/j.seizure.2010.07.009.Search in Google Scholar PubMed

Meier, C., Petrasch-Parwez, E., Habbes, H.W., Teubner, B., Guldenagel, M., Degen, J., Söhl, G., Willecke, K., and Dermietzel, R. (2002). Immunohistochemical detection of the neuronal connexin36 in the mouse central nervous system in comparison to connexin36-deficient tissues. Histochem. Cell Biol. 117: 461–471, https://doi.org/10.1007/s00418-002-0417-z.Search in Google Scholar PubMed

Meme, W., Vandecasteele, M., Giaume, C., and Venance, L. (2009). Electrical coupling between hippocampal astrocytes in rat brain slices. Neurosci. Res. 63: 236–243, https://doi.org/10.1016/j.neures.2008.12.008.Search in Google Scholar PubMed

Menichella, D.M., Goodenough, D.A., Sirkowski, E., Scherer, S.S., and Paul, D.L. (2003). Connexins are critical for normal myelination in the CNS. J. Neurosci. 23: 5963–5973, https://doi.org/10.1523/jneurosci.23-13-05963.2003.Search in Google Scholar

Mencarelli, L., Biagi, M.C., Salvador, R., Romanella, S., Ruffini, G., Rossi, S., and Santarnecchi, E. (2020). Network mapping of connectivity alterations in disorder of consciousness: towards targeted neuromodulation. J. Clin. Med. 9: E828, https://doi.org/10.3390/jcm9030828.Search in Google Scholar PubMed PubMed Central

Mercer, A., Bannister, A.P., and Thomson, A.M. (2006). Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol. 35: 13–27. PMID: 17940910.10.1007/s11068-006-9005-9Search in Google Scholar PubMed

Meunier, C., Wang, N., Yi, C., Dallerac, G., Ezan, P., Koulakoff, A., Leybaert, L., and Giaume, C. (2017). Contribution of astroglial Cx43 hemichannels to the modulation of glutamatergic currents by D-serine in the mouse prefrontal cortex. J. Neurosci. 37: 9064–9075, https://doi.org/10.1523/jneurosci.2204-16.2017.Search in Google Scholar PubMed PubMed Central

Meyer, R.A., Laird, D.W., Revel, J.P., and Johnson, R.G. (1992). Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119: 179–189, https://doi.org/10.1083/jcb.119.1.179.Search in Google Scholar PubMed PubMed Central

Michel, S. and Meijer, J.H. (2020). From clock to functional pacemaker. Eur. J. Neurosci. 51: 482–493, https://doi.org/10.1111/ejn.14388.Search in Google Scholar

Molchanova, S.M., Huupponen, J., Lauri, S.E., and Taira, T. (2016). Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus. Neuropharmacology 107: 9–17, https://doi.org/10.1016/j.neuropharm.2016.02.033.Search in Google Scholar

Nagy, J.I., Li, X., Rempel, J., Stelmack, G., Patel, D., Staines, W.A., Yasumura, T., and Rash, J.E. (2001). Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J. Comp. Neurol. 441: 302–323, https://doi.org/10.1002/cne.1414.Search in Google Scholar

Nakase, T. and Naus, C.C.G. (2004). Gap junctions and neurological disorders of the central nervous system. Biochim. Biophys. Acta 1662: 149–158, https://doi.org/10.1016/j.bbamem.2004.01.009.Search in Google Scholar

Nani, A., Manuello, J., Mancuso, L., Liloia, D., Costa, T., and Cauda, F. (2019). The neural correlates of consciousness and attention: two sister processes of the brain. Front. Neurosci. 13: 1169, https://doi.org/10.3389/fnins.2019.01169.Search in Google Scholar

Naus, C.C., Bechberger, J.F., Zhang, Y., Venance, L., Yamasaki, H., Juneja, S.C., Kidder, G.M., and Giaume, C. (1997). Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. J. Neurosci. Res. 49: 528–540, https://doi.org/10.1002/(sici)1097-4547(19970901)49:5<528::aid-jnr3>3.0.co;2-d.10.1002/(SICI)1097-4547(19970901)49:5<528::AID-JNR3>3.0.CO;2-DSearch in Google Scholar

Nedergaard, M., Ransom, B., and Goldman, S.A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26: 523–530, https://doi.org/10.1016/j.tins.2003.08.008.Search in Google Scholar

Nicholson, B.J., Weber, P.A., Cao, F., Chang, H., Lampe, P., and Goldberg, G. (2000). The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz. J. Med. Biol. Res. 33: 369–378, https://doi.org/10.1590/s0100-879x2000000400002.Search in Google Scholar

Niculescu, D. and Lohmann, C. (2014). Gap junctions in developing thalamic and neocortical neuronal networks. Cerebr. Cortex 24: 3097–3106, https://doi.org/10.1093/cercor/bht175.Search in Google Scholar

Nyberg, L., Kim, A.S., Habib, R., Levine, B., and Tulving, E. (2010). Consciousness of subjective time in the brain. Proc. Natl. Acad. Sci. USA 107: 22356–22359, https://doi.org/10.1073/pnas.1016823108.Search in Google Scholar

Orellana, J.A. and Stehberg, J. (2014). Hemichannels: new roles in astroglial function. Front. Physiol. 193. PMID: 24987373.10.3389/fphys.2014.00193Search in Google Scholar PubMed PubMed Central

Overgaard, M. (2017). The status and future of consciousness research. Front. Psychol. 8: 1719, https://doi.org/10.3389/fpsyg.2017.01719.Search in Google Scholar PubMed PubMed Central

Owen, A.M., Cleman, M.R., Boly, M., Davis, M.H., Laureys, S., and Pickard, J.D. (2006). Detecting awareness in the vegetative state. Science 313: 1402, https://doi.org/10.1126/science.1130197.Search in Google Scholar PubMed

Owen, M. and Guta, M.P. (2019). Physically sufficient neural mechanisms of consciousness. Front. Syst. Neurosci. 13: 24, https://doi.org/10.3389/fnsys.2019.00024.Search in Google Scholar PubMed PubMed Central

Pal, D., Dean, J.G., Liu, T., Li, D., Watson, C.J., Hudetz, A.G., and Mashour, G.A. (2018). Differential role of prefrontal and parietal cortices in controlling level of consciousness. Curr. Biol. 28: 2145–2152, https://doi.org/10.1016/j.cub.2018.05.025.Search in Google Scholar PubMed PubMed Central

Palacios-Prado, N., Huetteroth, W., and Pereda, A.E. (2014a). Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front. Cell. Neurosci. 8: 324, https://doi.org/10.3389/fncel.2014.00324.Search in Google Scholar PubMed PubMed Central

Palacios-Prado, N., Chapuis, S., Panjkovich, A., Fregeac, J., Nagy, J.I., and Bukauskas, F.F. (2014b). Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin-36. Nat. Commun. 5: 4667, https://doi.org/10.1038/ncomms5667.Search in Google Scholar PubMed PubMed Central

Pannasch, U., Freche, D., Dallérac, G., Ghézali, G., Escartin, C., Ezan, P., Cohen-Salmon, M., Benchenane, K., Abudara, V., Dufour, A., et al. (2014). Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17: 549–558, https://doi.org/10.1038/nn.3662.Search in Google Scholar PubMed

Parpura, V., Scemes, E., and Spray, D.C. (2004). Mechanisms of glutamate release from astrocytes: gap junction “hemichannels” , purinergic receptors and exocytotic release. Neurochem. Int. 45: 259–264. https://doi.org/10.1016/j.neuint.2003.12.011.Search in Google Scholar PubMed

Pelegrin, P. and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25: 5071–5082, https://doi.org/10.1038/sj.emboj.7601378.Search in Google Scholar PubMed PubMed Central

Penn, Y., Segal, M. and Mosesa, E. (2016). Network synchronization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 113: 3341–3346, https://doi.org/10.1073/pnas.1515105113.Search in Google Scholar

Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32: 421–431, https://doi.org/10.1016/j.tins.2009.05.001.Search in Google Scholar

Persaud, N., McLeod, P., and Cowey, A. (2007). Post-decision wagering objectively measures awareness. Nat. Neurosci. 10: 257–261, https://doi.org/10.1038/nn1840.Search in Google Scholar

Peters, M.A., Teramoto, T., White, J.Q., Iwasaki, K., and Jorgensen, E.M. (2007). A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans. Curr. Biol. 17: 1601–1608, https://doi.org/10.1016/j.cub.2007.08.031.Search in Google Scholar

Pfenniger, A., Wohlwend, A., and Kwak, B.R. (2011). Mutations in connexin genes and disease. Eur. J. Clin. Invest. 41: 103–16, https://doi.org/10.1111/j.1365-2362.2010.02378.x.Search in Google Scholar

Phelan, P., Goulding, L.A., Tam, J.L., Allen, M.J., Dawber, R.J., Davies, J.A., and Bacon, J.P. (2008). Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system. Curr. Biol. 18: 1955–1960, https://doi.org/10.1016/j.cub.2008.10.067.Search in Google Scholar

Picoli, C., Nouvel, V., Aubry, F., Reboul, M., Duchêne, A., Jeanson, T., Thomasson, J., Mouthon, F., and Charvériat, M. (2012). Human connexin channel specificity of classical and new gap junction inhibitors. J. Biomol. Screen 17: 1339–1347, https://doi.org/10.1177/1087057112452594.Search in Google Scholar

Porkka-Heiskanen, T. and Kalinchuk, A.V. (2011). Adenosine, energy metabolism and sleep homeostasis. Sleep Med. Rev. 15: 123–135, https://doi.org/10.1016/j.smrv.2010.06.005.Search in Google Scholar

Porter, J.T. and McCarthy, K.D. (1997). Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51: 439–455, https://doi.org/10.1016/s0301-0082(96)00068-8.Search in Google Scholar

Posner, M.I., Petersen, S.E., Fox, P.T., and Raichle, M.E. (1988). Localization of cognitive operations in the human brain. Science 240: 1627–1631, https://doi.org/10.1126/science.3289116.Search in Google Scholar PubMed

Prochnow, N. (2014). Relevance of gap junctions and large pore channels in traumatic brain injury. Front. Physiol. 5: 31, https://doi.org/10.3389/fphys.2014.00031.Search in Google Scholar

Riquelme, M.A., Kar, R., Gu, S., and Jiang, J.X. (2013). Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology 75: 525–532, https://doi.org/10.1016/j.neuropharm.2013.02.021.Search in Google Scholar

Ripps, H., Qian, H., and Zakevicius, J. (2002). Pharmacological enhancement of hemi-gap-junctional currents in Xenopus oocytes. J. Neurosci. Methods 121: 81–92, https://doi.org/10.1016/s0165-0270(02)00243-1.Search in Google Scholar

Robertson, J.M. (2002). The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory formation. J. Physiol. Paris 96: 251–255, https://doi.org/10.1016/S0928-4257(02)00013-X.Search in Google Scholar

Robertson, J.M. (2013). Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Med. Hypotheses 81: 1017–1024, https://doi.org/10.1016/j.mehy.2013.09.021.Search in Google Scholar PubMed

Ross, W.N. (2012). Understanding calcium waves and sparks in central neurons. Nat. Rev. Neurosci. 13: 157–168, https://doi.org/10.1038/nrn3168.Search in Google Scholar PubMed PubMed Central

Røttingen, J. and Iversen, J.G. (2000). Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol. Scand. 169: 203–219, https://doi.org/10.1046/j.1365-201x.2000.00732.x.Search in Google Scholar PubMed

Rouach, N., Segal, M., Koulakoff, A., Giaume, C., and Avignone, E. (2003). Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions. J. Physiol. 553: 729–745, https://doi.org/10.1113/jphysiol.2003.053439.Search in Google Scholar PubMed PubMed Central

Roux, L., Benchenane, K., Rothstein, J.D., Bonvento, G., and Giaume, C. (2011). Plasticity of astroglial networks in olfactory glomeruli. Proc. Natl. Acad. Sci. U S A 108: 18442–18446, https://doi.org/10.1073/pnas.1107386108.Search in Google Scholar PubMed PubMed Central

Salameh, A. and Dhein, S. (2005). Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim. Biophys. Acta 1719: 36–58, https://doi.org/10.1016/j.bbamem.2005.09.007.Search in Google Scholar PubMed

Sánchez, O.F., Rodríguez, A.V., Velasco-España, J.M., Murillo, L.C., Sutachan, J.J., and Albarracin, S.L. (2020). Role of connexins 30, 36, and 43 in brain tumors, neurodegenerative diseases, and neuroprotection. Cells 9: E846, https://doi.org/10.3390/cells9040846.Search in Google Scholar

Sanchez-Vives, M.V. and McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3: 1027–1034, https://doi.org/10.1038/79848.Search in Google Scholar

Scemes, E. and Giaume, C. (2006). Astrocyte calcium waves: what they are and what they do. Glia 54: 716–725, https://doi.org/10.1002/glia.20374.Search in Google Scholar

Scemes, E., Dermietzel, R., and Spray, D.C. (1998). Calcium waves between astrocytes from Cx43 knockout mice. Glia 24: 65–73, https://doi.org/10.1002/(sici)1098-1136(199809)24:1<65::aid-glia7>3.0.co;2-#.10.1002/(SICI)1098-1136(199809)24:1<65::AID-GLIA7>3.0.CO;2-#Search in Google Scholar

Scharf, M.T., Naidoo, N., Zimmerman, J.E., and Pack, A.I. (2008). The energy hypothesis of sleep revisited. Prog. Neurobiol. 86: 264–280, https://doi.org/10.1016/j.pneurobio.2008.08.003.Search in Google Scholar

Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E.H., Petrasch-Parwez, E., Dermietzel, R., Heinemann, U., and Traub, R.D. (2001). Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31: 831–840, https://doi.org/10.1016/s0896-6273(01)00410-x.Search in Google Scholar

Schoenfeld, T.J., Kloth, A.D., Hsueh, B., Runkle, M.B., Kane, G.A., Wang, S.S., and Gould, E.J. (2014). Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J. Neurosci 34: 15679–15688, https://doi.org/10.1523/JNEUROSCI.3234-13.2014.Search in Google Scholar

Sengpiel, F. (2001). Cortical plasticity: learning while you sleep? Curr. Biol. 11: R647–R650, https://doi.org/10.1016/s0960-9822(01)00383-9.Search in Google Scholar

Seth, A.K., Dienes, Z., Cleeremans, A., Overgaard, M., and Pessoa, L. (2008). Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cognit. Sci. 12: 314–321, https://doi.org/10.1016/j.tics.2008.04.008.Search in Google Scholar

Simonyan, K. (2019). Recent advances in understanding the role of the basal ganglia. F1000 Res. 8: pii: F1000 Faculty Rev–122, https://doi.org/10.3410/f.721526768.793555303.Search in Google Scholar

Sinfield, J.L. and Collins, D.R. (2006). Induction of synchronous oscillatory activity in the rat lateral amygdala in vitro is dependent on gap junction activity. Eur. J. Neurosci. 24: 3091–3095, https://doi.org/10.1111/j.1460-9568.2006.05202.x.Search in Google Scholar PubMed

Singer, W. and Gray, C.M. (1995). Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18: 555–586, https://doi.org/10.1146/annurev.ne.18.030195.003011.Search in Google Scholar PubMed

Smyth, A. and Shanks, D.R. (2008). Awareness in contextual cueing with extended and concurrent explicit tests. Mem. Cognit. 36: 403–415, https://doi.org/10.3758/mc.36.2.403.Search in Google Scholar PubMed

Söhl, G. and Willecke, K. (2004). Gap junctions and the connexin protein family. Cardiovasc. Res. 62: 228–232, https://doi.org/10.1016/j.cardiores.2003.11.013.Search in Google Scholar PubMed

Söhl, G. and Willecke, K. (2003). An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes 10: 173–180, https://doi.org/10.1080/714040423.Search in Google Scholar

Söhl, G., Maxeiner, S., and Willecke, K. (2005). Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6: 191–200, https://doi.org/10.1038/nrn1627.Search in Google Scholar PubMed

Sofroniew, M. and Vinters, H. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119: 7–35, https://doi.org/10.1007/s00401-009-0619-8.Search in Google Scholar PubMed PubMed Central

Souness, G.W. and Morris, D.J. (1991). The “mineralocorticoid-like” actions conferred on corticosterone by carbenoxolone are inhibited by the mineralocorticoid receptor (type I) antagonist RU28318. Endocrinology 129: 2451–2456, https://doi.org/10.1210/endo-129-5-2451.Search in Google Scholar PubMed

Squire, L.R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82: 171–177, https://doi.org/10.1016/j.nlm.2004.06.005.Search in Google Scholar PubMed

Srinivas, M., Rozental, R., Kojima, T., Dermietzel, R., Mehler, M., Condorelli, D.F., Kessler, J.A., and Spray, D.C. (1999). Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci. 19: 9848–9855, https://doi.org/10.1523/jneurosci.19-22-09848.1999.Search in Google Scholar

Srinivas, M., Hopperstad, M.G., and Spray, D.C. (2001). Quinine blocks specific gap junction channel subtypes. Proc. Natl. Acad. Sci. USA 98: 10942–10947, https://doi.org/10.1073/pnas.191206198.Search in Google Scholar

Srinivas, M., Verselis, V.K., and White, T.W. (2018). Human diseases associated with connexin mutations. Biochim. Biophys. Acta 1860: 192–201, https://doi.org/10.1016/j.bbamem.2017.04.024.Search in Google Scholar

Stickgold, R. (1998). Sleep: off-line memory reprocessing. Trends Cognit. Sci. 2: 484–492, https://doi.org/10.1016/s1364-6613(98)01258-3.Search in Google Scholar

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature 437: 1272–1278, https://doi.org/10.1038/nature04286.Search in Google Scholar PubMed

Stofkova, A., Kamimura, D., Ohki, T., Ota, M., Arima, Y., and Murakami, M. (2019). Photopic light-mediated down-regulation of local α1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Sci. Rep. 9: 2353, https://doi.org/10.1038/s41598-019-38895-y.Search in Google Scholar PubMed PubMed Central

Su, V. and Lau, A.F. (2014). Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett. 588: 1212–1220, https://doi.org/10.1016/j.febslet.2014.01.013.Search in Google Scholar PubMed PubMed Central

Sutton, S., Braren, M., Zubin, J., and John, E.R. (1965). Evoked-potential correlates of stimulus uncertainty. Science 150: 1187–1188, https://doi.org/10.1126/science.150.3700.1187.Search in Google Scholar PubMed

Talbot, J., Brion, R., Lamora, A., Mullard, M., Morice, S., Heymann, D., and Verrecchia, F. (2018). Connexin-43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts. J. Cell. Physiol. 233: 946–957, https://doi.org/10.1002/jcp.25938.Search in Google Scholar PubMed

Tallon-Baudry, C., Mandon, S., Freiwald, W.A., and Kreiter, A.K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cerebr. Cortex 14: 713–720, https://doi.org/10.1093/cercor/bhh031.Search in Google Scholar PubMed

Theis, M., Jauch, R., Zhuo, L., Speidel, D., Wallraff, A., Döring, B., Frisch, C., Söhl, G., Teubner, B., Euwens, C., et al. (2003). Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin-43. J. Neurosci. 23: 766–776, https://doi.org/10.1523/jneurosci.23-03-00766.2003.Search in Google Scholar

Totland, M.Z., Rasmussen, N.L., Knudsen, L.M., and Leithe, E. (2020). Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell. Mol. Life Sci. 77: 573–591, https://doi.org/10.1007/s00018-019-03285-0.Search in Google Scholar PubMed PubMed Central

Tononi, G. and Edelman, G.M. (1998). Consciousness and complexity. Science 282: 1846–1851, https://doi.org/10.1126/science.282.5395.1846.Search in Google Scholar PubMed

Tovar, K.R., Maher, B.J., and Westbrook, G.L. (2009). Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. J. Neurophysiol 102: 974–978, https://doi.org/10.1152/jn.00060.2009.Search in Google Scholar PubMed PubMed Central

Traub, R.D., Bibbig, A., Fisahn, A., LeBeau, F.E., Whittington, M.A., and Buhl, E.H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12: 4093–4106, https://doi.org/10.1046/j.1460-9568.2000.00300.x.Search in Google Scholar PubMed

Traub, R.D., Draguhn, A., Whittington, M.A., Baldeweg, T., Bibbig, A., Buhl, E.H., and Schmitz, D. (2002). Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev. Neurosci. 13: 1–30, https://doi.org/10.1515/revneuro.2002.13.1.1.Search in Google Scholar PubMed

Traub, R.D., Kopell, N., Bibbig, A., Buhl, E.H., LeBeau, F.E., and Whittington, M.A. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21: 9478–9486, https://doi.org/10.1523/jneurosci.21-23-09478.2001.Search in Google Scholar

Traub, R.D., Pais, I., Bibbig, A., LeBeau, F.E., Buhl, E.H., Hormuzdi, S.G., Monyer, H., and Whittington, M.A. (2003). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc. Natl. Acad. Sci. USA 100: 1370–1374, https://doi.org/10.1073/pnas.0337529100.Search in Google Scholar PubMed PubMed Central

Traub, R.D., Whittington, M.A., Maier, N., Schmitz, D., and Nagy, J. (2020). Could electrical coupling contribute to the formation of cell assemblies? Rev. Neurosci. 31: 121–141, https://doi.org/10.1515/revneuro-2019-0059.Search in Google Scholar PubMed

Tress, O., Maglione, M., Zlomuzica, A., May, D., Dicke, N., Degen, J., Dere, E., Kettenmann, H., Hartmann, D., and Willecke, K. (2011). Pathologic and phenotypic alterations in a mouse expressing a Connexin-47 missense mutation associated with Pelizaeus–Merzbacher like disease in humans. PLoS Genet. 7: e1002146 https://doi.org/10.1371/journal.pgen.1002146.Search in Google Scholar PubMed PubMed Central

Tress, O., Maglione, M., May, D., Pivneva, T., Richter, N., Seyfarth, J., Binder, S., Zlomuzica, A., Seifert, G., Theis, M., et al. (2012). Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J. Neurosci. 32: 7499–7518, https://doi.org/10.1523/jneurosci.0392-12.2012.Search in Google Scholar PubMed PubMed Central

Tochitsky, I., Kienzler, M.A., Isacoff, E., and Kramer, R.H. (2018). Restoring vision to the blind with chemical photoswitches. Chem. Rev. 118: 10748–10773, https://doi.org/10.1021/acs.chemrev.7b00723.Search in Google Scholar PubMed PubMed Central

Tsacopoulos, M. and Magistretti, P.J. (1996). Metabolic coupling between glia and neurons. J. Neurosci. 16: 877–885, https://doi.org/10.1523/jneurosci.16-03-00877.1996.Search in Google Scholar

Tulving, E. (2001). Episodic memory and common sense: how far apart? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356: 1505–1515 https://doi.org/10.1098/rstb.2001.0937.Search in Google Scholar PubMed PubMed Central

Tulving, E. (2002). Episodic memory: from mind to brain. Annu. Rev. Psychol. 53: 1–25, https://doi.org/10.1146/annurev.psych.53.100901.135114.Search in Google Scholar PubMed

Ullsperger, M., Harsay, H.A., Wessel, J.R., and Ridderinkhof, K.R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214: 629–643, https://doi.org/10.1007/s00429-010-0261-1.Search in Google Scholar PubMed PubMed Central

Van Der Giessen, R.S., Maxeiner, S., French, P.J., Willecke, K., and De Zeeuw, C. (2006). Spatiotemporal distribution of Connexin-45 in the olivocerebellar system. J. Comp. Neurol. 495: 173–184, https://doi.org/10.1002/cne.20873.Search in Google Scholar PubMed

Vandecasteele, M., Glowinski, J., and Venance, L. (2006). Connexin mRNA expression in single dopaminergic neurons of substantia nigra pars compacta. Neurosci. Res. 56: 419–426, https://doi.org/10.1016/j.neures.2006.08.013.Search in Google Scholar PubMed

Varela, F., Lachaux, J.P., Rodriguez, E., and Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2: 229–239, https://doi.org/10.1038/35067550.Search in Google Scholar PubMed

Venance, L., Glowinski, J., and Giaume, C. (2004). Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J. Physiol. 559: 215–230, https://doi.org/10.1113/jphysiol.2004.065672.Search in Google Scholar PubMed PubMed Central

Verselis, V.K., and Srinivas, M. (2013). Connexin channel modulators and their mechanisms of action. Neuropharmacology 75: 517–24, https://doi.org/10.1016/j.neuropharm.2013.03.020.Search in Google Scholar PubMed PubMed Central

Visscher, P.M., Brown, M.A., McCarthy, M.I., and Yang, J. (2012). Five years of GWAS discovery. Am. J. Hum. Genet. 90: 7–24, https://doi.org/10.1016/j.ajhg.2011.11.029.Search in Google Scholar PubMed PubMed Central

Voss, L.J., Jacobson, G., Sleigh, J.W., Steyn-Ross, A., and Steyn-Ross, M. (2009). Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50: 1971–1978, https://doi.org/10.1111/j.1528-1167.2009.02087.x.Search in Google Scholar PubMed

Wadle, S.L., Augustin, V., Langer, J., Jabs, R., Philippot, C., Weingarten, D.J., Rose, C.R., Steinhäuser, C., and Stephan, J. (2018). Anisotropic panglial coupling reflects tonotopic organization in the inferior colliculus. Front. Cell. Neurosci. 12: 431, https://doi.org/10.3389/fncel.2018.00431.Search in Google Scholar PubMed PubMed Central

Wallraff, A., Köhling, R., Heinemann, U., Theis, M., Willecke, K., and Steinhäuser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J. Neurosci. 26: 5438–5447, https://doi.org/10.1523/jneurosci.0037-06.2006.Search in Google Scholar

Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., and Winter, A.L. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203: 380–384, https://doi.org/10.1038/203380a0.Search in Google Scholar PubMed

Wang, Y. and Belousov, A.B. (2011). Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neurosci. Lett. 502, 30–32, https://doi.org/10.1016/j.neulet.2011.07.018.Search in Google Scholar PubMed PubMed Central

Wang, H.Z., Brink, P.R., and Christ, G.J. (2006). Gap junction channel activity in short-term cultured human detrusor myocyte cell pairs: gating and unitary conductances. Am. J. Physiol. Cell Physiol. 291: C1366–1376, https://doi.org/10.1152/ajpcell.00027.2006.Search in Google Scholar PubMed

Wang, N., De Vuyst, E., Ponsaerts, R., Boengler, K., Palacios-Prado, N., Wauman, J., Lai, C.P., DeBock, M., Decrock, E., Bol, M., et al. (2013). Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res. Cardiol. 108: 309, https://doi.org/10.1007/s00395-012-0309-x.Search in Google Scholar PubMed PubMed Central

Wang, Y., Barakat, A., and Zhou, H. (2010). Electrotonic coupling between pyramidal neurons in the neocortex. PloS One 5: e10253, https://doi.org/10.1371/journal.pone.0010253.Search in Google Scholar PubMed PubMed Central

Warn-Cramer, B.J., Cottrell, G.T., Burt, J.M., and Lau, A.F. (1998). Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J. Biol. Chem. 273: 9188–9196, https://doi.org/10.1074/jbc.273.15.9188.Search in Google Scholar PubMed

Wei, Y., Krishnan, G.P., and Bazhenov, M. (2016). Synaptic mechanisms of memory consolidation during sleep slow oscillations. J. Neurosci. 36: 4231–4247, https://doi.org/10.1523/jneurosci.3648-15.2016.Search in Google Scholar PubMed PubMed Central

Weickert, S., Ray, A., Zoidl, G., and Dermietzel, R. (2005). Expression of neural connexins and pannexin1 in the hippocampus and inferior olive: a quantitative approach. Brain Res. Mol. Brain Res. 133: 102–109, https://doi.org/10.1016/j.molbrainres.2004.09.026.Search in Google Scholar PubMed

Weilinger, N.L., Tang, P.L., and Thompson, R.J. (2012). Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32: 12579–12588, https://doi.org/10.1523/jneurosci.1267-12.2012.Search in Google Scholar PubMed PubMed Central

Weiskrantz, L. (1998). Blindsight: a case study and implications. Oxford University Press, Oxford.Search in Google Scholar

Wendt, S., Wogram, E., Korvers, L., and Kettenmann, H. (2016). Experimental cortical spreading depression induces NMDA receptor dependent potassium currents in microglia. J. Neurosci. 36: 6165–6174, https://doi.org/10.1523/jneurosci.4498-15.2016.Search in Google Scholar

Wiese, W. (2018). Toward a mature science of consciousness. Front. Psychol. 9: 693, https://doi.org/10.3389/fpsyg.2018.00693.Search in Google Scholar PubMed PubMed Central

Willebrords, J., Maes, M., Crespo Yanguas, S., and Vinken, M. (2017). Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol. Ther. 180: 144–160, https://doi.org/10.1016/j.pharmthera.2017.07.001.Search in Google Scholar PubMed PubMed Central

Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Güldenagel, M., Deutsch, U., and Söhl, G. (2002). Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383: 275–237, https://doi.org/10.1515/bc.2002.076.Search in Google Scholar PubMed

Winkler, D., Daher, F., Wüstefeld, L., Hammerschmidt, K., Poggi, G., Seelbach, A., Krueger-Burg, D., Vafadari, B., Ronnenberg, A., Liu, Y., et al. (2018). Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav. Brain. Res. 352: 35–45, https://doi.org/10.1016/j.bbr.2017.02.011.Search in Google Scholar PubMed

Witkovsky, P., Veisenberger, E., Haycock, J.W., Akopian, A., Garcia-Espana, A., and Meller, E. (2004) Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J. Neurosci. 24: 4242–4249, https://doi.org/10.1523/jneurosci.5436-03.2004.Search in Google Scholar PubMed PubMed Central

Xin, W. and Bonci, A. (2018). Functional astrocyte heterogeneity and implications for their role in shaping neurotransmission. Front. Cell. Neurosci. 12: 141, https://doi.org/10.3389/fncel.2018.00141.Search in Google Scholar PubMed PubMed Central

Xing, L.Y., Yang, T., Cui, S.S., and Chen, G. (2019). Connexin hemichannels in astrocytes: role in CNS disorders. Front. Mol. Neurosci. 12: 23 https://doi.org/10.3389/fnmol.2019.00023.Search in Google Scholar

Yang, X-D., Korn, H., and Faber, D.S. (1990). Long-term potentiation of electrotonic coupling at mixed synapses. Nature 348: 542–545, https://doi.org/10.1038/348542a0.Search in Google Scholar

Ylinen, A., Bragin, A., Nadasdy, Z., Jando, G., Szabo, I., Sik, A., and Buzsaki, G. (1995). Sharp wave-associated high-frequency oszillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15: 30–46, https://doi.org/10.1523/jneurosci.15-01-00030.1995.Search in Google Scholar

Yoshida, S., Fujimura, K., and Matsuda, Y. (1986). Effects of quinidine and quinine on the excitability of pyramidal neurons in Guinea-pig hippocampal slices. Pflüger’s Arch. 406: 544–546, https://doi.org/10.1007/bf00583380.Search in Google Scholar

Yu, F., Yan, H., Nie, W., and Zhu, J. (2016). Connexin-43 knockdown in bone marrow-derived dendritic cells by small interfering RNA leads to a diminished T-cell stimulation. Mol. Med. Rep. 13: 895–900, https://doi.org/10.3892/mmr.2015.4593.Search in Google Scholar

Zeman, A. (2001). Consciousness. Brain 124: 1263–1289, https://doi.org/10.1093/brain/124.7.1263.Search in Google Scholar

Zhang, C. and Restrepo, D. (2002). Expression of connexin 45 in the olfactory system. Brain Res. 929: 37–47, https://doi.org/10.1016/s0006-8993(01)03372-8.Search in Google Scholar

Zheng-Fischhöfer, Q., Schnichels, M., Dere, E., Strotmann, J., McCulloch, F., Kretz, M., Reucher, H., Peti-Peterdi, J., Huston, J.P., Breer, H., et al. (2007). Characterization of connexin-30.3-deficient mice suggests a possible role of connexin-30.3 in olfaction. Eur. J. Cell Biol. 86: 683–700, https://doi.org/10.1016/j.ejcb.2007.01.005.Search in Google Scholar PubMed

Zlomuzica, A., Ruocco, L.A., Sadile, A.G., Huston, J.P., and Dere, E. (2009). Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br. J. Pharmacol. 157: 86–91, https://doi.org/10.1111/j.1476-5381.2009.00225.x.Search in Google Scholar PubMed PubMed Central

Zlomuzica, A., Reichinnek, S., Maxeiner, S., Both, M., May, E., Wörsdörfer, P., Draguhn, A., Willecke, K., and Dere, E. (2010). Deletion of connexin-45 in mouse neurons disrupts one-trial object recognition and alters kainate-induced g-oscillations in the hippocampus. Physiol. Behav. 101: 245–253, https://doi.org/10.1016/j.physbeh.2010.05.007.Search in Google Scholar PubMed

Zlomuzica, A., Binder, S., and Dere, E. (2012a). Chapter 1: gap junctions in the brain. In: Dere, E. (Ed.), Gap junctions in the brain: physiological and pathological roles, pp. 227–283. Academic Press, San Diego, CA.10.1016/B978-0-12-415901-3.00001-3Search in Google Scholar

Zlomuzica, A., Avci, H.X. and Dere, E. (2012b). Chapter 17: the behavioral genetics of gap junctions. In: Dere, E. (Ed.), Gap junctions in the brain: physiological and pathological roles, pp. 3–17. Academic Press, San Diego, CA.10.1016/B978-0-12-415901-3.00001-3Search in Google Scholar

Zlomuzica, A., Tress, O., Binder, S., Rovira, C., Willecke, K., and Dere, E. (2012c). Changes in object recognition and anxiety-like behaviour in mice expressing a Cx47 mutation that causes Pelizaeus-Merzbacher-like disease. Dev. Neurosci. 34: 277–287, https://doi.org/10.1159/000339305.Search in Google Scholar PubMed

Zlomuzica, A., Viggiano, D., Degen, J., Binder, S., Ruocco, L.A., Sadile, A.G., Willecke, K., Huston, J.P., and Dere, E. (2012d). Behavioral alterations and changes in Ca/Calmodulin kinase II levels in the striatum of connexin36 deficient mice. Behav. Brain Res. 226: 293–300, https://doi.org/10.1016/j.bbr.2011.08.028.Search in Google Scholar PubMed

Zupanc, G.K.H. (2017). Dynamic neuron-glia interactions in an oscillatory network controlling behavioral plasticity in the weakly electric fish, apteronotus leptorhynchus. Front. Physiol. 8: 1087, https://doi.org/10.3389/fphys.2017.01087.Search in Google Scholar PubMed PubMed Central

Received: 2020-02-17
Accepted: 2020-06-26
Published Online: 2020-08-27
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0012/pdf
Scroll to top button