Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Funding source: National Science Foundation of China
Award Identifier / Grant number: 81271476
Funding source: Guangzhou Science and Technology Plan Research Project
Award Identifier / Grant number: 201300000154
Funding source: Guangdong Natural Science Foundation
Award Identifier / Grant number: 2014A030310104
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors deeply appreciate the financial support provided from the following grants: the National Science Foundation of China Grant (81271476), Guangzhou Science and Technology Plan Research Project Grant (201300000154), and the Guangdong Natural Science Foundation Grant (2014A030310104).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Alber, J., Goldfarb, D., Thompson, L.I., Arthur, E., Hernandez, K., Cheng, D., Debuc, D.C., Cordeiro, F., Provetti-Cunha, L., Den Haan, J., et al. (2020). Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimers Dement. 16: 229–243, https://doi.org/10.1002/alz.12006.Suche in Google Scholar PubMed
Albert, M.S., Dekosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national Institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7: 270–279, https://doi.org/10.1016/j.jalz.2011.03.008.Suche in Google Scholar PubMed PubMed Central
Alexandrov, P.N., Pogue, A., Bhattacharjee, S., and Lukiw, W.J. (2011). Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport 22: 623–627, https://doi.org/10.1097/wnr.0b013e3283497334.Suche in Google Scholar
Alzheimer’s Association (2015). 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 11: 332–384.10.1016/j.jalz.2015.02.003Suche in Google Scholar PubMed
Amieva, H., Le Goff, M., Millet, X., Orgogozo, J.M., Pérès, K., Barberger-Gateau, P., Jacqmin-Gadda, H., and Dartigues, J.F. (2008). Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann. Neurol. 64: 492–498, https://doi.org/10.1002/ana.21509.Suche in Google Scholar PubMed
Anand-Apte, B., and Hollyfield, J. (2010). Developmental anatomy of the retinal and choroidal vasculature. In: DA, I.D. (Ed.), Encyclopedia of the eye. Oxford Academic Press, Oxford.10.1016/B978-0-12-374203-2.00169-XSuche in Google Scholar
Armstrong, R.A. (1996). Visual field defects in Alzheimer’s disease patients may reflect differential pathology in the primary visual cortex. Optom. Vis. Sci. 73: 677–682, https://doi.org/10.1097/00006324-199611000-00001.Suche in Google Scholar PubMed
Asanad, S., Ross-Cisneros, F.N., Nassisi, M., Barron, E., Karanjia, R., and Sadun, A.A. (2019). The retina in Alzheimer’s Disease: histomorphometric analysis of an ophthalmologic biomarker. Invest. Ophthalmol. Vis. Sci. 60: 1491–1500, https://doi.org/10.1167/iovs.18-25966.Suche in Google Scholar PubMed PubMed Central
Attems, J., and Jellinger, K.A. (2014). The overlap between vascular disease and Alzheimer’s disease–lessons from pathology. BMC Med. 12: 206, https://doi.org/10.1186/s12916-014-0206-2.Suche in Google Scholar PubMed PubMed Central
Beach, T.G., Monsell, S.E., Phillips, L.E., and Kukull, W. (2012). Accuracy of the clinical diagnosis of alzheimer disease at national Institute on aging alzheimer disease centers, 2005-2010. J. Neuropathol. Exp. Neurol. 71: 266–273, https://doi.org/10.1097/nen.0b013e31824b211b.Suche in Google Scholar PubMed PubMed Central
Berisha, F., Feke, G.T., Trempe, C.L., Mcmeel, J.W., and Schepens, C.L (2007). Retinal abnormalities in early Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 48: 2285–2289, https://doi.org/10.1167/iovs.06-1029.Suche in Google Scholar
Blanks, J.C., Torigoe, Y., Hinton, D.R., and Blanks, R.H. (1996). Retinal pathology in Alzheimer’s disease. I. Ganglion Cell loss in foveal/parafoveal retina. Neurobiol. Aging 17: 377–384, https://doi.org/10.1016/0197-4580(96)00010-3.Suche in Google Scholar
Breteler, M.M. (2000). Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam study and the Rotterdam scan study. Ann. N. Y. Acad. Sci. 903: 457–465, https://doi.org/10.1111/j.1749-6632.2000.tb06399.x.Suche in Google Scholar PubMed
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H.M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 3: 186–191, https://doi.org/10.1016/j.jalz.2007.04.381.Suche in Google Scholar PubMed
Bruban, J., Glotin, A.L., Dinet, V., Chalour, N., Sennlaub, F., Jonet, L., An, N., Faussat, A.M., and Mascarelli, F. (2009). Amyloid-β(1-42) alters structure and function of retinal pigmented epithelial cells. Aging Cell 8: 162–177, https://doi.org/10.1111/j.1474-9726.2009.00456.x.Suche in Google Scholar PubMed
Bull, N.D., Guidi, A., Goedert, M., Martin, K.R., and Spillantini, M.G. (2012). Reduced axonal transport and increased excitotoxic retinal ganglion cell degeneration in mice transgenic for human mutant P301S tau. PloS One 7: E34724, https://doi.org/10.1371/journal.pone.0034724.Suche in Google Scholar PubMed PubMed Central
Bulut, M., Kurtuluş, F., Gözkaya, O., Erol, M.K., Cengiz, A., Akıdan, M., and Yaman, A. (2018). Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 102: 233–237, https://doi.org/10.1136/bjophthalmol-2017-310476.Suche in Google Scholar PubMed
Cabrera Debuc, D., Gaca-Wysocka, M., Grzybowsk, I.A., and Kanclerz, P. (2019). Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: recent insights, challenges, and opportunities. J. Clin. Med. 8: 996, https://doi.org/10.3390/jcm8070996.Suche in Google Scholar PubMed PubMed Central
Campbell, M.C.W., De Vries, D., Emptage, L., Cookson, C., Kisilak, M., Bueno, J.M., and Avila, F.J. (2015). Polarization properties of amyloid beta in the retina of the eye as a biomarker of Alzheimer’s disease. In: Optics in the life sciences. Optical Society of America, Vancouver.10.1364/BODA.2015.BM3A.4Suche in Google Scholar
Catchpole, I., Germaschewski, V., Hoh Kam, J., Lundh Von Leithner, P., Ford, S., Gough, G., Adamson, P., Overend, P., Hilpert, J., et al. (2013). Systemic administration of abeta mab reduces retinal deposition of abeta and activated complement C3 in age-related macular degeneration mouse model. PloS One 8: E65518, https://doi.org/10.1371/journal.pone.0065518.Suche in Google Scholar PubMed PubMed Central
Chan, V.T.T., Sun, Z., Tang, S., Chen, L.J., Wong, A., Tham, C.C., Wong, T.Y., Chen, C., Ikram, M.K., et al. (2019). spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology 126: 497–510, https://doi.org/10.1016/j.ophtha.2018.08.009.Suche in Google Scholar PubMed PubMed Central
Chang, L.Y., Lowe, J., Ardiles, A., Lim, J., Grey, A.C., Robertson, K., Danesh-Meyer, H., Palacios, A.G., and Acosta, M.L. (2014). Alzheimer’s disease in the human eye. clinical tests that identify ocular and visual information processing deficit as Biomarkers. Alzheimers Dement. 10: 251–61, https://doi.org/10.1016/j.jalz.2013.06.004.Suche in Google Scholar PubMed
Cheung, C.Y., Ong, Y.T., Ikram, M.K., Ong, S.Y., Li, X., Hilal, S., Catindig, J.A., Venketasubramanian, N., Yap, P., Seow, D., et al. (2014). Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement. 10: 135–142, https://doi.org/10.1016/j.jalz.2013.06.009.Suche in Google Scholar PubMed
Chiasseu, M., Alarcon-Martinez, L., Belforte, N., Quintero, H., Dotigny, F., Destroismaisons, L, Vande velde, C., Panayi, F., Louis, C, and Di Polo, A. (2017). Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12: 58, https://doi.org/10.1186/s13024-017-0199-3.Suche in Google Scholar PubMed PubMed Central
Chibhabha, F., Yang, Y., Ying, K., Jia, F., Zhang, Q., Ullah, S., Liang, Z., Xie, M., and Li, F. (2020). Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APPswe/PS1ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J. Mater. Chem. B., https://doi.org/10.1039/D0TB01101K.Suche in Google Scholar PubMed
Chiquita, S., Campos, E.J., Castelhano, J., Ribeiro, M., Sereno, J., Moreira, P.I., Castelo-Branco, M., and Ambrósio, A.F. (2019). Retinal thinning of inner sub-layers is associated with cortical atrophy in a mouse model of Alzheimer’s disease: a longitudinal multimodal in vivo study. Alzheimer’s Res. Ther. 11: 90, https://doi.org/10.1186/s13195-019-0542-8.Suche in Google Scholar PubMed PubMed Central
Coppola, G., Di Renzo, A., Ziccardi, L., Martelli, F., Fadda, A., Manni, G., Barboni, P., Pierelli, F., Sadun, A.A., and Parisi, V. (2015). Optical coherence tomography in Alzheimer’s Disease: a meta-analysis. PloS One 10: E0134750, https://doi.org/10.1371/journal.pone.0134750.Suche in Google Scholar PubMed PubMed Central
Cunha, J.P., Proença, R., Dias-Santos, A., Melancia, D., Almeida, R., Águas, H., Santos, B.O., Alves, M., Ferreira, J., Papoila, A.L., et al. (2017). Choroidal thinning: Alzheimer’s disease and aging. Alzheimers Dement (Amst). 8: 11–17, https://doi.org/10.1016/j.dadm.2017.03.004.Suche in Google Scholar PubMed PubMed Central
Danesh-Meyer, H.V., Birch, H., Ku, J.Y., Carroll, S., and Gamble, G. (2006). Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67: 1852–1854, https://doi.org/10.1212/01.wnl.0000244490.07925.8b.Suche in Google Scholar PubMed
Davies, D.C., Mccoubrie, P., Mcdonald, B., and Jobst, K.A. (1995). Myelinated axon number in the optic nerve is unaffected by Alzheimer’s disease. Br. J. Ophthalmol. 79: 596–600, https://doi.org/10.1136/bjo.79.6.596.Suche in Google Scholar PubMed PubMed Central
de Jong, F.J., Schrijvers, E.M., Ikram, M.K., Koudstaal, P.J., de Jong, P.T., Hofman, A., Vingerling, J.R., and Breteler, M.M. (2011). Retinal vascular caliber and risk of dementia: the Rotterdam Study. Neurology 76: 816–821, https://doi.org/10.1212/wnl.0b013e31820e7baa.Suche in Google Scholar PubMed PubMed Central
De La Torre, J.C. (2002). Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33: 1152–1162, https://doi.org/10.1161/01.str.0000014421.15948.67.Suche in Google Scholar PubMed
Ding, J.D., Lin, J., Mace, B.E., Herrmann, R., Sullivan, P., and Bowes Rickman, C. (2008). Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-β antibody attenuates pathologies in an age-related macular degeneration mouse model. Vis. Res. 48: 339–345, https://doi.org/10.1016/j.visres.2007.07.025.Suche in Google Scholar PubMed PubMed Central
Dutescu, R.M., Li, Q.X., Crowston, J., Masters, C.L., Baird, P.N., and Culvenor, J.G. (2009). Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch. Clin. Exp. Ophthalmol. 247: 1213–1221, https://doi.org/10.1007/s00417-009-1060-3.Suche in Google Scholar PubMed
Dysli, C., Wolf, S., Berezin, M.Y., Sauer, L., Hammer, M., and Zinkernagel, M.S. (2017). Fluorescence lifetime imaging ophthalmoscopy. Prog. Retin. Eye Res. 60: 120–143, https://doi.org/10.1016/j.preteyeres.2017.06.005.Suche in Google Scholar PubMed PubMed Central
Eliasdottir, T.S. (2018). Retinal oximetry and systemic arterial oxygen levels. Acta Ophthalmol. A113: 1–44, https://doi.org/10.1111/aos.13932.Suche in Google Scholar PubMed
Farias, S.T., Mungas, D., Reed, B.R., Harvey, D., Cahn-Weiner, D., and Decarli, C. (2006). MCI is associated with deficits in everyday functioning. Alzheimer Dis. Assoc. Disord. 20: 217–223, https://doi.org/10.1097/01.wad.0000213849.51495.d9.Suche in Google Scholar PubMed PubMed Central
Farrell, M.E., Kennedy, K.M., Rodrigue, K.M., Wig, G., Bischof, G.N., Rieck, J.R., Chen, X., Festini, S.B., Devous, M.D., and Park, D.C. (2017). Association of longitudinal cognitive decline with amyloid burden in middle-aged and older adults: evidence for a dose-response relationship. JAMA Neurol. 74: 830–838, https://doi.org/10.1001/jamaneurol.2017.0892.Suche in Google Scholar PubMed PubMed Central
Feke, G.T., Hyman, B.T., Stern, R.A., and Pasquale, L.R. (2015). Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst). 1: 144–151, https://doi.org/10.1016/j.dadm.2015.01.004.Suche in Google Scholar PubMed PubMed Central
Fletcher, W.A. and Sharpe, J.A. (1986). Saccadic eye movement dysfunction in Alzheimer’s disease. Ann. Neurol. 20: 464–471, https://doi.org/10.1002/ana.410200405.Suche in Google Scholar PubMed
Frederikse, P.H. (2000). Amyloid-like protein structure in mammalian ocular lenses. Curr. Eye Res. 20: 462–468, https://doi.org/10.1076/0271-3683(200006)2061-yft462.Suche in Google Scholar
Frost, S., Martins, R.N., and Kanagasingam, Y. (2010). Ocular biomarkers for early detection of Alzheimer’s disease. J Alzheimers Dis. 22: 1–16, https://doi.org/10.3233/jad-2010-100819.Suche in Google Scholar
Frost, S., Kanagasingam, Y., Sohrabi, H., Vignarajan, J., Bourgeat, P., Salvado, O., Villemagne, V., Rowe, C.C., Macaulay, S.L., Szoeke, C., et al. (2013). Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry 3: E233, https://doi.org/10.1038/tp.2012.150.Suche in Google Scholar
Gao, S.S., Jia, Y., Zhang, M., Su, J.P., Liu, G., Hwang, T.S., Bailey, S.T., and Huang, D. (2016). Optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57: 27–36, https://doi.org/10.1167/iovs.15-19043.Suche in Google Scholar
Gasparini, L., Crowther, R.A., Martin, K.R., Berg, N., Coleman, M., Goedert, M., and Spillantini, M.G. (2011). Tau inclusions in retinal ganglion cells of human P301S tau transgenic Mice: effects on axonal viability. Neurobiol. Aging 32: 419–433, https://doi.org/10.1016/j.neurobiolaging.2009.03.002.Suche in Google Scholar
Georgevsky, D., Retsas, S., Raoufi, N., Shimoni, O., and Golzan, S.M. (2019). A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Transl. Neurodegener. 8: 30, https://doi.org/10.1186/s40035-019-0170-z.Suche in Google Scholar
Goldstein, L.E., Muffat, J.A., Cherny, R.A., Moir, R.D., Ericsson, M.H., Huang, X., Mavros, C., Coccia, J.A., Faget, K.Y., Fitch, K.A., et al. (2003). Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361: 1258–1265, https://doi.org/10.1016/s0140-6736(03)12981-9.Suche in Google Scholar
Golzan, S.M., Goozee, K., Georgevsky, D., Avolio, A., Chatterjee, P., Shen, K., Gupta, V., Chung, R., Savage, G., Orr, C.F., et al. (2017). Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimer’s Res. Ther. 9: 13, https://doi.org/10.1186/s13195-017-0239-9.Suche in Google Scholar PubMed PubMed Central
Goudsmit, M., Van Campen, J., Schilt, T., Hinnen, C., Franzen, S., and Schmand, B. (2018). One size does not fit all: comparative diagnostic accuracy of the rowland universal dementia assessment scale And the mini mental state examination in A memory clinic population with very low education. Dement Geriatr Cogn Dis Extra. 8: 290–305, https://doi.org/10.1159/000490174.Suche in Google Scholar PubMed PubMed Central
Govindpani, K., Vinnakota, C., Waldvogel, H.J., Faull, R.L., and Kwakowsky, A. (2020). Vascular dysfunction in Alzheimer’s disease: a biomarker of disease progression and A potential therapeutic target. Neural Regen Res. 15: 1030–1032.10.4103/1673-5374.270306Suche in Google Scholar PubMed PubMed Central
Grayson, A.S., Weiler, E.M., and Sandman, D.E. (1995). Visual evoked potentials in early Alzheimer’s dementia: an exploratory study. J. Gen. Psychol. 122: 113–129, https://doi.org/10.1080/00221309.1995.9921226.Suche in Google Scholar PubMed
Grienberger, C., Rochefort, N.L., Adelsberger, H., Henning, H.A., Hill, D.N., Reichwald, J., Staufenbiel, M., and Konnerth, A. (2012). Staged decline of neuronal function in vivo in an animal model of Alzheimer’s disease. Nat. Commun. 3: 774, https://doi.org/10.1038/ncomms1783.Suche in Google Scholar PubMed PubMed Central
Guo, L., Duggan, J., and Cordeiro, M.F. (2010). Alzheimer’s disease and retinal neurodegeneration. Curr. Alzheimer Res. 7: 3–14, https://doi.org/10.2174/156720510790274491.Suche in Google Scholar PubMed
Gupta, V.K., Chitranshi, N., Gupta, V.B., Golzan, M., Dheer, Y., Wall, R.V., Georgevsky, D., King, A.E., Vickers, J.C., Chung, R., et al. (2016). Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s Disease transgenic mouse. Neurosci. Lett. 623: 52–6, https://doi.org/10.1016/j.neulet.2016.04.059.Suche in Google Scholar PubMed
Haan, J.D., Van De Kreeke, J.A., Berckel, V, Barkhof, F., Teunissen, C.E., Scheltens, P., Verbraak, F.D., and Bouwman, F.H. (2019). Is retinal vasculature a biomarker in amyloid proven Alzheimer’s disease?. Alzheimer’s Dementia 11: 383–391, https://doi.org/10.1016/j.dadm.2019.03.006.Suche in Google Scholar PubMed PubMed Central
Hadoux, X., Hui, F., Lim, J.K.H., Masters, C.L., Pébay, A., Chevalier, S., Ha, J., Loi, S., Fowler, C.J., Rowe, C., et al. (2019). Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat. Commun. 10: 4227, https://doi.org/10.1038/s41467-019-12242-1.Suche in Google Scholar PubMed PubMed Central
Hagag, A.M., Gao, S.S., Jia, Y., and Huang, D. (2017). Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 7: 115–129.10.4103/tjo.tjo_31_17Suche in Google Scholar PubMed PubMed Central
Harper, D.J., Augustin, M., Lichtenegger, A., Gesperger, J., Himmel, T., Muck, M., Merkle, C.W., Eugui, P., Kummer, S., Woehrer, A., et al. (2020). Retinal analysis of a mouse model of Alzheimer’s disease with multicontrast optical coherence tomography. Neurophotonics 7: 015006, https://doi.org/10.1117/1.nph.7.1.015006.Suche in Google Scholar PubMed PubMed Central
Hart, N.J., Koronyo, Y., Black, K.L., and Koronyo-Hamaoui, M. (2016). Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol. 132: 767–787, https://doi.org/10.1007/s00401-016-1613-6.Suche in Google Scholar PubMed PubMed Central
Hedges, T.R.3rd, Perez Galves, R., Speigelman, D., Barbas, N.R., Peli, E., and Yardley, C.J. (1996). Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol. Scand. 74: 271–275.10.1111/j.1600-0420.1996.tb00090.xSuche in Google Scholar PubMed
Hinton, D.R., Sadun, A.A., Blanks, J.C., and Miller, C.A. (1986). Optic-nerve degeneration in Alzheimer’s disease. N. Engl. J. Med. 315: 485–487, https://doi.org/10.1056/nejm198608213150804.Suche in Google Scholar
Ho, C.Y., Troncoso, J.C., Knox, D., Stark, W., and Eberhart, C.G. (2014). β-Amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol. 24: 25–32, https://doi.org/10.1111/bpa.12070.Suche in Google Scholar
Hoar, R.M. (1982). Embryology of the eye. Environ. Health Perspect. 44: 31–4, https://doi.org/10.1289/ehp.824431.Suche in Google Scholar
Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., et al. (2012). National Institute on aging-alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8: 1–13, https://doi.org/10.1016/j.jalz.2011.10.007.Suche in Google Scholar
Iseri, P.K., Altinas, O., Tokay, T., and Yuksel, N. (2006). Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J. Neuro Ophthalmol. 26: 18–24, https://doi.org/10.1097/01.wno.0000204645.56873.26.Suche in Google Scholar
Jiang, H., Wei, Y., Shi, Y., Wright, C.B., Sun, X., Gregori, G., Zheng, F., Vanner, E.A., Lam, B.L., Rundek, T., et al. (2018). Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J. Neuro Ophthalmol. 38: 292–298, https://doi.org/10.1097/wno.0000000000000580.Suche in Google Scholar
Jonas, J.B. and Dichtl, A. (1996). Evaluation of the retinal nerve fiber layer. Surv. Ophthalmol. 40: 369–378, https://doi.org/10.1016/s0039-6257(96)80065-8.Suche in Google Scholar
Karantzoulis, S. and Galvin, J.E. (2011). Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev. Neurother. 11: 1579–1591, https://doi.org/10.1586/ern.11.155.Suche in Google Scholar
Katz, B. and Rimmer, S. (1989). Ophthalmologic manifestations of Alzheimer’s disease. Surv. Ophthalmol. 34: 31–43, https://doi.org/10.1016/0039-6257(89)90127-6.Suche in Google Scholar
Kayabasi, U. (2014). Retinal Examination for the diagnosis of Alzheimer’s disease. Int J Ophthalmol Clin Res. 1: 1, https://doi.org/10.23937/2378-346x/1410002.Suche in Google Scholar
Kerbage, C., Sadowsky, C.H., Jennings, D., Cagle, G.D., and Hartung, P.D. (2013). Alzheimer’s disease diagnosis by detecting exogenous fluorescent signal of ligand bound to beta amyloid in the lens of human eye: an exploratory study. Front. Neurol. 4: 62, https://doi.org/10.3389/fneur.2013.00062.Suche in Google Scholar PubMed PubMed Central
Kerbage, C., Sadowsky, C.H., Tariot, P.N., Agronin, M., Alva, G., Turner, F.D., Nilan, D., Cameron, A., Cagle, G.D., and Hartung, P.D. (2015). Detection of amyloid beta signature in the lens and its correlation in the brain to aid in the diagnosis of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 30: 738–745, https://doi.org/10.1177/1533317513520214.Suche in Google Scholar PubMed
Kergoat, H., Kergoat, M.J., Justino, L., Chertkow, H., Robillard, A., and Bergman, H. (2001). An evaluation of the retinal nerve fiber layer thickness by scanning laser polarimetry in individuals with dementia of the Alzheimer type. Acta Ophthalmol. Scand. 79: 187–191, https://doi.org/10.1034/j.1600-0420.2001.079002187.x.Suche in Google Scholar PubMed
Kesler, A., Vakhapova, V., Korczyn, A.D., Naftaliev, E., and Neudorfer, M. (2011). Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin. Neurol. Neurosurg. 113: 523–526, https://doi.org/10.1016/j.clineuro.2011.02.014.Suche in Google Scholar PubMed
Kim, J.I. and Kang, B.H. (2019). Decreased retinal thickness in patients with Alzheimer’s disease is correlated with disease severity. PloS One 14: E0224180, https://doi.org/10.1371/journal.pone.0224180.Suche in Google Scholar PubMed PubMed Central
Koronyo, Y., Salumbides, B.C., Black, K.L., and Koronyo-Hamaoui, M. (2012). Alzheimer’s disease in the retina: imaging retinal abeta plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 10: 285–293, https://doi.org/10.1159/000335154.Suche in Google Scholar PubMed
Koronyo, Y., Biggs, D., Barron, E., Boyer, D.S., Pearlman, J.A., Au, W.J., Kile, S.J., Blanco, A., Fuchs, D.T., Ashfaq, A., et al. (2017). Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2: e93621, https://doi.org/10.1172/jci.insight.93621.Suche in Google Scholar PubMed PubMed Central
Koronyo-Hamaoui, M., Koronyo, Y., Ljubimov, A.V., Miller, C.A., Ko, M.K., Black, K.L., Schwartz, M., and Farkas, D.L. (2011). Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in A mouse model. Neuroimage 1: S204–S217, https://doi.org/10.1016/j.neuroimage.2010.06.020.Suche in Google Scholar PubMed PubMed Central
Krasodomska, K., Lubiński, W., Potemkowski, A., and Honczarenko, K. (2010). Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc. Ophthalmol. 121: 111–121, https://doi.org/10.1007/s10633-010-9238-x.Suche in Google Scholar PubMed PubMed Central
Kromer, R., Serbecic, N., Hausner, L., Froelich, L., Aboul-enein, F., and Beutelspacher, S.C. (2014). Detection of retinal nerve fiber layer defects in Alzheimer’s disease using SD-OCT. Front. Psychiatr. 5: 22, https://doi.org/10.3389/fpsyt.2014.00022.Suche in Google Scholar PubMed PubMed Central
La Morgia, C., Ross-Cisneros, F.N., Koronyo, Y., Hannibal, J., Gallassi, R., Cantalupo, G., Sambati, L., Pan, B.X., Tozer, K.R., Barboni, P., et al. (2016). Melanopsin retinal ganglion cell loss in alzheimer disease. Ann. Neurol. 79: 90–109, https://doi.org/10.1002/ana.24548.Suche in Google Scholar PubMed PubMed Central
Lahme, L., Esser, E.L., Mihailovic, N., Schubert, F., Lauermann, J., Johnen, A., Eter, N., Duning, T., and Alnawaiseh, M. (2018). Evaluation of ocular perfusion in Alzheimer’s disease using optical coherence tomography angiography. J Alzheimers Dis. 66: 1745–1752, https://doi.org/10.3233/jad-180738.Suche in Google Scholar
Larrosa, J.M., Garcia-Martin, E., Bambo, M.P., Pinilla, J., Polo, V., Otin, S., Satue, M., Herrero, R., and Pablo, L.E. (2014). Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for fourier domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 55: 3043–51, https://doi.org/10.1167/iovs.13-13629.Suche in Google Scholar PubMed
Lee, C.S. and Apte, R.S. (2020). Retinal biomarkers of Alzheimer’s disease. Am. J. Ophthalmol., https://doi.org/10.1016/j.ajo.2020.04.040.Suche in Google Scholar PubMed PubMed Central
Leger, F., Fernagut, P.O., Canron, M.H., Léoni, S., Vital, C., Tison, F., Bezard, E., and Vital, A. (2011). Protein aggregation in the aging retina. J. Neuropathol. Exp. Neurol. 70: 63–8, https://doi.org/10.1097/nen.0b013e31820376cc.Suche in Google Scholar PubMed
Leitgeb, R.A., Werkmeister, R.M., Blatter, C., and Schmetterer, L. (2014). Doppler optical coherence tomography. Prog. Retin. Eye Res. 41: 26–43, https://doi.org/10.1016/j.preteyeres.2014.03.004.Suche in Google Scholar PubMed PubMed Central
Li, L., Luo, J., Chen, D., Tong, J.B., Zeng, L.P., Cao, Y.Q., Xiang, J., Luo, X.G., Shi, J.M., Wang, H., et al. (2016). BACE1 in the retina: a sensitive biomarker for monitoring early pathological changes in Alzheimer’s disease. Neural Regen Res. 11: 447–53, https://doi.org/10.4103/1673-5374.177732.Suche in Google Scholar PubMed PubMed Central
Liao, H., Zhu, Z., and Peng, Y. (2018). Potential utility of retinal imaging for Alzheimer’s disease: a review. Front. Aging Neurosci. 10: 188, https://doi.org/10.3389/fnagi.2018.00188.Suche in Google Scholar PubMed PubMed Central
Liu, G., and Chen, Z. (2013). Advances in Doppler OCT. Chin. Optic Lett. 11: 11702.10.3788/COL201311.011702Suche in Google Scholar
Liu, B., Rasool, S., Yang, Z., Glabe, C.G., Schreiber, S.S., Ge, J., and Tan, Z. (2009). Amyloid-peptide vaccinations reduce {Beta}-Amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am. J. Pathol. 175: 2099–110, https://doi.org/10.2353/ajpath.2009.090159.Suche in Google Scholar PubMed PubMed Central
Liu, D., Zhang, L., Li, Z., Zhang, X., Wu, Y., Yang, H., Min, B., Zhang, X., Ma, D., and Lu, Y. (2015). Thinner changes of the retinal nerve fiber layer in patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol. 15: 14, https://doi.org/10.1186/s12883-015-0268-6.Suche in Google Scholar PubMed PubMed Central
Löffler, K.U., Edward, D.P., and Tso, M.O. (1995). Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest. Ophthalmol. Vis. Sci. 36: 24–31.Suche in Google Scholar
London, A., Benhar, I., and Schwartz, M. (2013). The retina as A window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9: 44–53, https://doi.org/10.1038/nrneurol.2012.227.Suche in Google Scholar PubMed
Macgillivray, T., Mcgrory, S., Pearson, T., and Cameron, J.R. (2018). Retinal imaging in early Alzheimer’s disease. In: Perneczky, R. (Ed.). Biomarkers for preclinical Alzheimer’s Disease. Neuromethods, Vol 137. Humana Press, New York, NY, pp. 199–212.10.1007/978-1-4939-7674-4_14Suche in Google Scholar
Masland, R.H. (2012). The neuronal organization of the retina. Neuron 76: 266–280, https://doi.org/10.1016/j.neuron.2012.10.002.Suche in Google Scholar PubMed PubMed Central
Mcgrory, S., Cameron, J.R., Pellegrini, E., Warren, C., Doubal, F.N., Deary, I.J., Dhillon, B., Wardlaw, J.M., Trucco, E., and Macgillivray, T.J. (2017). The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimers Dement (Amst). 6: 91–107, https://doi.org/10.1016/j.dadm.2016.11.001.Suche in Google Scholar PubMed PubMed Central
Mckhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R.JR, Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national Institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7: 263–269, https://doi.org/10.1016/j.jalz.2011.03.005.Suche in Google Scholar PubMed PubMed Central
Molitor, R.J., Ko, P.C., and Ally, B.A. (2015). Eye movements in Alzheimer’s disease. J Alzheimers Dis. 44: 1–12, https://doi.org/10.3233/jad-141173.Suche in Google Scholar PubMed PubMed Central
Moncaster, J.A., Pineda, R., Moir, R.D., Lu, S., Burton, M.A., Ghosh, J. G., Ericsson, M., Soscia, S.J., Mocofanescu, A., Folkerth, R.D., et al. (2010). Alzheimer’s disease amyloid-beta links lens and brain pathology in down syndrome. PloS One 5: E10659, https://doi.org/10.1371/journal.pone.0010659.Suche in Google Scholar PubMed PubMed Central
More, S.S. and Vince, R. (2015). Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem. Neurosci. 6: 306–315, https://doi.org/10.1021/cn500242z.Suche in Google Scholar PubMed
More, S.S., Beach, J.M., McClelland, C., Mokhtarzadeh, A., and Vince, R. (2019). Vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem. Neurosci. 10: 4492–4501, https://doi.org/10.1021/acschemneuro.9b00331.Suche in Google Scholar PubMed
Moschos, M.M., Tagaris, G., Markopoulos, I., Margetis, I., Tsapakis, S., Kanakis, M., and Koutsandrea, C. (2011). Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur. J. Ophthalmol. 21: 24–29, https://doi.org/10.5301/ejo.2010.1318.Suche in Google Scholar PubMed
Ngolab, J., Honma, P., and Rissman, R.A. (2019). Reflections on the utility of the retina as a biomarker for Alzheimer’s disease: a literature review. Neurol Ther. 8: 57–72, https://doi.org/10.1007/s40120-019-00173-4.Suche in Google Scholar PubMed PubMed Central
Ning, A., Cui, J., To, E., Ashe, K.H., and Matsubara, J. (2008). Amyloid-beta deposits lead to retinal degeneration in A mouse model of alzheimer disease. Invest. Ophthalmol. Vis. Sci. 49: 5136–5143, https://doi.org/10.1167/iovs.08-1849.Suche in Google Scholar PubMed PubMed Central
Nitrini, R. (2010). Preclinical diagnosis of Alzheimer’s disease: prevention or prediction?. Dement Neuropsychol. 4: 259–261, https://doi.org/10.1590/s1980-57642010dn40400002.Suche in Google Scholar
O’Bryhim, B.E., Apte, R.S., Kung, N., Coble, D., and Van Stavern, G.P. (2018). Association of preclinical alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol. 136: 1242–1248.10.1001/jamaophthalmol.2018.3556Suche in Google Scholar PubMed PubMed Central
Olafsdottir, O.B., Saevarsdottir, H.S., Hardarson, S.H., Hannesdottir, K.H., Traustadottir, V.D., Karlsson, R.A., Einarsdottir, A.B., Jonsdottir, K.D., Stefansson, E., and Snaedal, J. (2018). Retinal oxygen metabolism in patients with mild cognitive impairment. Alzheimers Dement (Amst). 10: 340–345, https://doi.org/10.1016/j.dadm.2018.03.002.Suche in Google Scholar PubMed PubMed Central
Oliveira-Souza, F.G., Deramus, M.L., Van Groen, T., Lambert, A.E., Bolding, M.S., and Strang, C.E. (2017). Retinal changes in the tg-swdi mouse model of Alzheimer’s disease. Neuroscience 354: 43–53, https://doi.org/10.1016/j.neuroscience.2017.04.021.Suche in Google Scholar PubMed PubMed Central
Ong, Y.T., Hilal, S., Cheung, C.Y., Venketasubramanian, N., Niessen, W.J., Vrooman, H., Anuar, A.R., Chew, M., Chen, C., Wong, T.Y., et al. (2015). Retinal neurodegeneration on optical coherence tomography and cerebral atrophy. Neurosci. Lett. 584: 12–6, https://doi.org/10.1016/j.neulet.2014.10.010.Suche in Google Scholar PubMed
Palmqvist, S., Zetterberg, H., Mattsson, N., Johansson, P., Minthon, L., Blennow, K., Olsson, M., and Hansson, O. (2015). Detailed comparison of amyloid PET and CSF biomarkers for identifying early alzheimer disease. Neurology 85: 1240–9, https://doi.org/10.1212/wnl.0000000000001991.Suche in Google Scholar
Panegyres, P.K. and Chen, H.Y. (2013). Differences between early and late onset Alzheimer’s disease. Am J Neurodegener Dis 2: 300–306.Suche in Google Scholar
Paquet, C., Boissonnot, M., Roger, F., Dighiero, P., Gil, R., and Hugon, J. (2007). Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 420: 97–99, https://doi.org/10.1016/j.neulet.2007.02.090.Suche in Google Scholar PubMed
Parisi, V., Restuccia, R., Fattapposta, F., Mina, C., Bucci, M.G., and Pierelli, F. (2001). Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin. Neurophysiol. 112: 1860–1871, https://doi.org/10.1016/s1388-2457(01)00620-4.Suche in Google Scholar
Park, S.W., Im, S., Jun, H.O., Lee, K., Park, Y.J., Kim, J.H., Park, W.J., Lee, Y.H., and Kim, J.H. (2017). Dry age-related macular degeneration like pathology in aged 5XFAD mice: ultrastructure and microarray analysis. Oncotarget. 8: 40006–40018, https://doi.org/10.18632/oncotarget.16967.Suche in Google Scholar
Patton, N., Aslam, T., Macgillivray, T., Pattie, A., Deary, I.J., and Dhillon, B. (2005). Retinal vascular image analysis as A potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206: 319–348, https://doi.org/10.1111/j.1469-7580.2005.00395.x.Suche in Google Scholar
Perez, S.E., Lumayag, S., Kovacs, B., Mufson, E.J., and Xu, S. (2009). Beta-amyloid deposition and functional impairment in the retina of the appswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 50: 793–800, https://doi.org/10.1167/iovs.08-2384.Suche in Google Scholar
Perry, R.J. and Hodges, J.R. (2000). Relationship between functional and neuropsychological performance in early alzheimer disease. Alzheimer Dis. Assoc. Disord. 14: 1–10, https://doi.org/10.1097/00002093-200001000-00001.Suche in Google Scholar
Pillai, J.A., Bermel, R., Bonner-Jackson, A., Rae-Grant, A., Fernandez, H., Bena, J., Jones, S.E., Ehlers, J.P., and Leverenz, J.B. (2016). Retinal nerve fiber layer thinning in Alzheimer’s disease: a case-control study in comparison to normal aging, Parkinson’s disease, and non-alzheimer’s dementia. Am J Alzheimers Dis Other Demen. 31: 430–436, https://doi.org/10.1177/1533317515628053.Suche in Google Scholar
Polo, V., Rodrigo, M.J., Garcia-Martin, E., Otin, S., Larrosa, J.M., Fuertes, M.I., Bambo, M.P., Pablo, L.E., and Satue, M. (2017). Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye 31: 1034–1041, https://doi.org/10.1038/eye.2017.23.Suche in Google Scholar
Provis, J.M. (2001). Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20: 799–821, https://doi.org/10.1016/s1350-9462(01)00012-x.Suche in Google Scholar
Querques, G., Borrelli, E., Sacconi, R., De Vitis, L., Leocani, L., Santangelo, R., Magnani, G., Comi, G., and Bandello, F. (2019). Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci. Rep. 9: 63, https://doi.org/10.1038/s41598-018-37271-6.Suche in Google Scholar PubMed PubMed Central
Rajmohan, R., and Reddy, P.H. (2017). Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 57: 975–999, https://doi.org/10.3233/jad-160612.Suche in Google Scholar
Ratnayaka, J.A., Serpell, L.C., and Lotery, A.J. (2015). Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye 29: 1013–1026, https://doi.org/10.1038/eye.2015.100.Suche in Google Scholar
Reed, B.T., Behar-Cohen, F., and Krantic, S. (2017). Seeing early signs of Alzheimer’s disease through the lens of the eye. Curr. Alzheimer Res. 14: 6–17.10.2174/1567205013666160819131904Suche in Google Scholar
Sadda, S.R., Borrelli, E., Fan, W., Ebraheem, A., Marion, K.M., Harrington, M., and Kwon, S. (2019). A pilot study of fluorescence lifetime imaging ophthalmoscopy in preclinical Alzheimer’s disease. Eye 33: 1271–1279, https://doi.org/10.1038/s41433-019-0406-2.Suche in Google Scholar
Sadowsky, C.H., Kerbage, C., Tariot, P.N., Agronin, M., Alva, G., Doraiswamy, P.M., Turner, F.D., Nilan, D., Cameron, A., Cagle, G.D., and Hartung, P.D. (2014). Diagnosis of Alzheimer’s disease through the eye and its correlation with cognitive tests and brain imaging. JSM Alzheimer’s Dis Related Dementia. 1: 5.Suche in Google Scholar
Sadun, A.A., and Bassi, C.J. (1990). Optic nerve damage in Alzheimer’s disease. Ophthalmology 97: 9–17, https://doi.org/10.1016/s0161-6420(90)32621-0.Suche in Google Scholar
Sadun, A. A., Borchert, M., Devita, E., Hinton, D.R., and Bassi, C.J. (1987). Assessment of visual impairment in patients with Alzheimer’s disease. Am. J. Ophthalmol. 104: 113–120, https://doi.org/10.1016/0002-9394(87)90001-8.Suche in Google Scholar
Sadun, A.A. (1989). The optic neuropathy of Alzheimer’s disease. Metab. Pediatr. Syst. Ophthalmol. 12: 64–68.Suche in Google Scholar
Saint-Geniez, M. and D’amore, P.A. (2004). Development and pathology of the hyaloid, choroidal and retinal vasculature. Int. J. Dev. Biol. 48: 1045–1058, https://doi.org/10.1387/ijdb.041895ms.Suche in Google Scholar PubMed
Sassi, C., Guerreiro, R., Gibbs, R., Ding, J., Lupton, M.K., Troakes, C., Lunnon, K., Al-Sarraj, S., Brown, K.S., Medway, C., et al. (2014). Exome sequencing identifies 2 novel presenilin 1 mutations (P.L166V and P.S230R) in British early-onset Alzheimer’s disease. Neurobiol. Aging 35: E13–E16, https://doi.org/10.1016/j.neurobiolaging.2014.06.002.Suche in Google Scholar PubMed PubMed Central
Schmitz-Valckenberg, S., Brinkmann, C. K., Heimes, B., Liakopoulos, S., Spital, G., Holz, F.G., and Fleckenstein, M. (2017). Pitfalls in retinal OCT imaging. Ophthalmology @ Point Of Care 1, https://doi.org/10.5301/oapoc.0000024.Suche in Google Scholar
Schön, C., Hoffmann, N.A., Ochs, S.M., Burgold, S., Filser, S., Steinbach, S., Seeliger, M.W., Arzberger, T., Goedert, M., Kretzschmar, H.A., et al. (2012). Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PloS One 7: E53547, https://doi.org/10.1371/journal.pone.0053547.Suche in Google Scholar PubMed PubMed Central
Shah, T.M., Gupta, S.M., Chatterjee, P., Campbell, M., and Martins, R.N. (2017). Beta-amyloid sequelae in the eye: a critical review on its diagnostic significance and clinical relevance in Alzheimer’s disease. Mol. Psychiatr. 22: 353–363, https://doi.org/10.1038/mp.2016.251.Suche in Google Scholar PubMed
Sharafi, S.M., Sylvestre, J.-P., Chevrefils, C., Soucy, J.-P., Beaulieu, S., Pascoal, T.A., Arbour, J.D., Rhéaume, M.-A., Robillard, A., Chayer, C., et al. (2019). Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images. Alzheimer’s Dementia 5: 610–617, https://doi.org/10.1016/j.trci.2019.09.006.Suche in Google Scholar PubMed PubMed Central
Snyder, P.J., Johnson, L.N., Lim, Y.Y., Santos, C.Y., Alber, J., Maruff, P., and Fernández, B. (2016). Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement (Amst). 4: 169–178, https://doi.org/10.1016/j.dadm.2016.09.001.Suche in Google Scholar PubMed PubMed Central
Sonkusare, S.K., Kaul, C.L., and Ramarao, P. (2005). Dementia of Alzheimer’s disease and other neurodegenerative disorders–memantine, A new hope. Pharmacol. Res. 51: 1–17, https://doi.org/10.1016/j.phrs.2004.05.005.Suche in Google Scholar PubMed
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, C.R., Kaye, J., Montine, T.J., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national Institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7: 280–292, https://doi.org/10.1016/j.jalz.2011.03.003.Suche in Google Scholar PubMed PubMed Central
Stefánsson, E., Olafsdottir, O.B., Einarsdottir, A.B., Eliasdottir, T.S., Eysteinsson, T., Vehmeijer, W., Vandewalle, E., Bek, T., and Hardarson, S.H. (2017). Retinal oximetry discovers novel biomarkers in retinal and brain diseases. Invest. Ophthalmol. Vis. Sci. 58: Bio227–Bio233, https://doi.org/10.1167/iovs.17-21776.Suche in Google Scholar PubMed
Stefani, A., Sancesario, G., Pierantozzi, M., Leone, G., Galati, S., Hainsworth, A.H., and Diomedi, M. (2009). CSF biomarkers, impairment of cerebral hemodynamics and degree of cognitive decline in Alzheimer’s and mixed dementia. J. Neurol. Sci. 283: 109–115, https://doi.org/10.1016/j.jns.2009.02.343.Suche in Google Scholar PubMed
Syed, A.B., Armstrong, R.A., and Smith, C.U. (2005). A quantitative analysis of optic nerve axons in elderly control subjects and patients with Alzheimer’s disease. Folia Neuropathol. 43: 1–6.Suche in Google Scholar
Szegedi, S., Dal-Bianco, P., Stögmann, E., Traub-Weidinger, T., Rainer, M., Masching, A., Schmidl, D., Werkmeister, R.M., Chua, J., Schmetterer, L., and Garhöfer, G. (2020). Anatomical and functional changes in the retina in patients with Alzheimer’s disease and mild cognitive impairment. Acta Ophthalmol., https://doi.org/10.1111/aos.14419.Suche in Google Scholar PubMed PubMed Central
Tan, A.C.S., Tan, G.S., Denniston, A.K., Keane, P.A., Ang, M., Milea, D., Chakravarthy, U., and Cheung, C.M.G. (2018). An overview of the clinical applications of optical coherence tomography angiography. Eye 32: 262–286, https://doi.org/10.1038/eye.2017.181.Suche in Google Scholar PubMed PubMed Central
Thomson, K.L., Yeo, J.M., Waddell, B., Cameron, J.R., and Pal, S. (2015). A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement (Amst). 1: 136–43, https://doi.org/10.1016/j.dadm.2015.03.001.Suche in Google Scholar PubMed PubMed Central
Trebbastoni, A., D’antonio, F., Bruscolini, A., Marcelli, M., Cecere, M., Campanelli, A., Imbriano, L., Lena, D.E., and Gharbiya, M. (2016). Retinal nerve fibre layer thickness changes in Alzheimer’s disease: results from A 12-month prospective case series. Neurosci. Lett. 629: 165–170, https://doi.org/10.1016/j.neulet.2016.07.006.Suche in Google Scholar PubMed
Trick, G.L., Barris, M.C., and Bickler-Bluth, M. (1989). Abnormal pattern electroretinograms in patients with senile dementia of the alzheimer type. Ann. Neurol. 26: 226–31, https://doi.org/10.1002/ana.410260208.Suche in Google Scholar
Tsai, C.S., Ritch, R., Schwartz, B., Lee, S.S., Miller, N.R., Chi, T., and Hsieh, F.Y. (1991). Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch. Ophthalmol. 109: 199–204, https://doi.org/10.1001/archopht.1991.01080020045040.Suche in Google Scholar
Tsai, Y., Lu, B., Ljubimov, A.V., Girman, S., Ross-Cisneros, F.N., Sadun, A. A., Svendsen, C.N., Cohen, R.M., and Wang, S. (2014). Ocular changes in tgf344-AD rat model of Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 55: 523–534, https://doi.org/10.1167/iovs.13-12888.Suche in Google Scholar
Van De Kreeke, J.A., Nguyen, H.T., Konijnenberg, E., Tomassen, J., Den Braber, A., Ten Kate, M., Yaqub, M., Van Berckel, B., Lammertsma, A.A., Boomsma, D.I., et al. (2020). Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br. J. Ophthalmol. 104: 157–161, https://doi.org/10.1136/bjophthalmol-2019-314127.Suche in Google Scholar
Vergara, M.N. and Canto-Soler, M.V. (2012). Rediscovering the chick embryo as A model to study retinal development. Neural Dev. 7: 22, https://doi.org/10.1186/1749-8104-7-22.Suche in Google Scholar
Villemagne, V.L., Fodero-Tavoletti, M.T., Masters, C.L., and Rowe, C.C. (2015). Tau imaging: early progress and future directions. Lancet Neurol. 14: 114–124, https://doi.org/10.1016/s1474-4422(14)70252-2.Suche in Google Scholar
Walsh, D.M. and Selkoe, D.J. (2007). A beta oligomers - a decade of discovery. J. Neurochem. 101: 1172–1184, https://doi.org/10.1111/j.1471-4159.2006.04426.x.Suche in Google Scholar PubMed
Wang, L.P. and Schmidt, J.F. (1997). Central nervous side effects after lumbar puncture. A review of the possible pathogenesis of the syndrome of postdural puncture headache and associated symptoms. Dan. Med. Bull. 44: 79–81.Suche in Google Scholar
Wegmann, S., Jung, Y.J., Chinnathambi, S., Mandelkow, E.M., Mandelkow, E., and Muller, D.J. (2010). Human tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem. 285: 27302–27313, https://doi.org/10.1074/jbc.m110.145318.Suche in Google Scholar
Wilcockson, T.D.W., Mardanbegi, D., Xia, B., Taylor, S., Sawyer, P., Gellersen, H.W., Leroi, I., Killick, R., and Crawford, T.J. (2019). Abnormalities of saccadic eye movements in dementia due to Alzheimer’s disease and mild cognitive impairment. Aging 11: 5389–5398, https://doi.org/10.18632/aging.102118.Suche in Google Scholar PubMed PubMed Central
Williams, M.A., Mcgowan, A.J., Cardwell, C.R., Cheung, C.Y., Craig, D., Passmore, P., Silvestri, G., Maxwell, A.P., and Mckay, G.J. (2015). Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimers Dement (Amst). 1: 229–235, https://doi.org/10.1016/j.dadm.2015.04.001.Suche in Google Scholar PubMed PubMed Central
Wilson, R.S., Leurgans, S.E., Boyle, P.A., and Bennett, D.A. (2011). Cognitive decline in prodromal alzheimer disease and mild cognitive impairment. Arch. Neurol. 68: 351–356, https://doi.org/10.1001/archneurol.2011.31.Suche in Google Scholar PubMed PubMed Central
Yang, J., Yang, J., Li, Y., Xu, Y., and Ran, C. (2019). Near-infrared fluorescence ocular imaging (NIRFOI) of Alzheimer’s disease. Mol. Imag. Biol. 21: 35–43, https://doi.org/10.1007/s11307-018-1213-z.Suche in Google Scholar PubMed PubMed Central
Zabel, P., Kałużny, J. J., Wiłkość-Dębczyńska, M., Gębska-Tołoczko, M., Suwała, K., Kucharski, R., and Araszkiewicz, A. (2019). Peripapillary retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a comparison of eyes of patients with Alzheimer’s disease, primary open-angle glaucoma, and preperimetric glaucoma and healthy controls. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 25: 1001–1008, https://doi.org/10.12659/msm.914889.Suche in Google Scholar PubMed PubMed Central
Zhang, Y.S., Zhou, N., Knoll, B.M., Samra, S., Ward, M.R., Weintraub, S., and Fawzi, A.A. (2019). Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography. PloS One 14, https://doi.org/10.1371/journal.pone.0214685.Suche in Google Scholar PubMed PubMed Central
Zhao, H., Chang, R., Che, H., Wang, J., Yang, L., Fang, W., Xia, Y., Li, N., Ma, Q., and Wang, X. (2013). Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer’s disease transgenic mouse. Neurosci. Lett. 551: 12–16, https://doi.org/10.1016/j.neulet.2013.06.026.Suche in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A bigger brain for a more complex environment
- Lifestyle intervention to prevent Alzheimer’s disease
- Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
- Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review
- Resveratrol in the treatment of neuroblastoma: a review
- Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye
- Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis
Artikel in diesem Heft
- Frontmatter
- A bigger brain for a more complex environment
- Lifestyle intervention to prevent Alzheimer’s disease
- Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
- Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review
- Resveratrol in the treatment of neuroblastoma: a review
- Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye
- Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis