Abstract
Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.
References
Ali, A., Waly, M., Al-Farsi, Y.M., Essa, M.M., Al-Sharbati, M.M., and Deth, R.C. (2011). Hyperhomocysteinemia among Omani autistic children: a case-control study. Acta Biochim. Pol. 58, 547–551.10.18388/abp.2011_2223Suche in Google Scholar
Altaany, Z., Yang, G., and Wang, R. (2013). Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell. Mol. Med. 17, 879–888.10.1111/jcmm.12077Suche in Google Scholar PubMed PubMed Central
Anderson, S.A., Nizzi, C.P., Chang, Y.I., Deck, K.M., Schmidt, P.J., Galy, B., Damnernsawad, A., Broman, A.T., Kendziorski, C., Hentze, M.W., et al. (2013). The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17, 282–290.10.1016/j.cmet.2013.01.007Suche in Google Scholar PubMed PubMed Central
Baker, D.H. (2006). Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S–1675S.10.1093/jn/136.6.1670SSuche in Google Scholar PubMed
Ben-Shachar, D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr. Res. 187, 3–10.10.1016/j.schres.2016.10.022Suche in Google Scholar PubMed
Bergman, O. and Ben-Shachar, D. (2016). Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can. J. Psychiatry 61, 457–469.10.1177/0706743716648290Suche in Google Scholar PubMed PubMed Central
Bochtler, M., Kolano, A., and Xu, G.L. (2017). DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13.10.1002/bies.201600178Suche in Google Scholar PubMed
Bouaziz, N., Ayedi, I., Sidhom, O., Kallel, A., Rafrafi, R., Jomaa, R., Melki, W., Feki, M., Kaabechi, N., and El Hechmi, Z. (2010). Plasma homocysteine in schizophrenia: determinants and clinical correlations in Tunisian patients free from antipsychotics. Psychiatry Res. 179, 24–29.10.1016/j.psychres.2010.04.008Suche in Google Scholar PubMed
Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc− cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20–34.10.1111/j.1476-5381.2011.01480.xSuche in Google Scholar PubMed PubMed Central
Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.10.1016/j.bbagen.2012.11.020Suche in Google Scholar PubMed
Bubber, P., Hartounian, V., Gibson, G.E., and Blass, J.P. (2011). Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur. Neuropsychopharmacol. 21, 254–260.10.1016/j.euroneuro.2010.10.007Suche in Google Scholar PubMed PubMed Central
Buckley, P.F. and Stahl, S.M. (2007). Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand. 115, 93–100.10.1111/j.1600-0447.2007.00992.xSuche in Google Scholar PubMed
Burk, R.F. and Hill, K.E. (2015). Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 35, 109–134.10.1146/annurev-nutr-071714-034250Suche in Google Scholar PubMed
Cai, L., Chen, T., Yang, J., Zhou, K., Yan, X., Chen, W., Sun, L., Li, L., Qin, S., and Wang, P. (2015). Serum trace element differences between schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 5, 15013.10.1038/srep15013Suche in Google Scholar PubMed PubMed Central
Cao, B., Yan, L., Ma, J., Jin, M., Park, C., Nozari, Y., Kazmierczak, O.P., Zuckerman, H., Lee, Y., Pan, Z., et al. (2019). Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J. Trace Elem. Med. Biol. 51, 79–85.10.1016/j.jtemb.2018.10.009Suche in Google Scholar PubMed
Cardoso, B.R., Roberts, B.R., Bush, A.I., and Hare, D.J. (2015). Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7, 1213–1228.10.1039/C5MT00075KSuche in Google Scholar
Cavelier, L., Jazin, E.E., Eriksson, I., Prince, J., Båve, U., Oreland, L., and Gyllensten, U. (1995). Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29, 217–224.10.1006/geno.1995.1234Suche in Google Scholar PubMed
Chen, O.S., Schalinske, K.L., and Eisenstein, R.S. (1997). Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr. 127, 238–248.10.1093/jn/127.2.238Suche in Google Scholar PubMed
Claerhout, H., Witters, P., Régal, L., Jansen, K., Van Hoestenberghe, M.R., Breckpot, J., and Vermeersch, P. (2018). Isolated sulfite oxidase deficiency. J. Inherit. Metab. Dis. 41, 101–108.10.1007/s10545-017-0089-4Suche in Google Scholar PubMed
Clay, H.B., Sillivan, S., and Konradi, C. (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 29, 311–324.10.1016/j.ijdevneu.2010.08.007Suche in Google Scholar PubMed PubMed Central
Cousins, R.J. (1983). Metallothionein – aspects related to copper and zinc metabolism. J. Inherit. Metab. Dis. 6, 15–21.10.1007/BF01811318Suche in Google Scholar
Cunningham, O., Gore, M.G., and Mantle, T.J. (2000). Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXβ reductase (BVR-B). Biochem. J. 345, 393–399.10.1042/bj3450393Suche in Google Scholar
Dietrich-Muszalska, A. and Kwiatkowska, A. (2014). Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr. Dis. Treat. 10, 703–709.10.2147/NDT.S60034Suche in Google Scholar
Do, K.Q., Trabesinger, A.H., Kirsten-Krüger, M., Lauer, C.J., Dydak, U., Hell, D., Holsboer, F., Boesiger, P., and Cuénod, M. (2000). Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 12, 3721–3728.10.1046/j.1460-9568.2000.00229.xSuche in Google Scholar
Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.M., and Fontecilla-Camps, J.C. (2006). Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14, 129–139.10.1016/j.str.2005.09.009Suche in Google Scholar
Elovson, J. and Vagelos, P.R. (1968). Acyl carrier protein. X. Acyl carrier protein synthetase. J. Biol. Chem. 243, 3603–3611.10.1016/S0021-9258(19)34183-3Suche in Google Scholar
Eren, E., Yeğin, A., Yilmaz, N., and Herken, H. (2010). Serum total homocysteine, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia. Clin. Lab. 56, 513–518.Suche in Google Scholar
Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406.10.1074/mcp.M113.035600Suche in Google Scholar PubMed PubMed Central
Farina, N., Jernerén, F., Turner, C., Hart, K., and Tabet, N. (2017). Homocysteine concentrations in the cognitive progression of Alzheimer’s disease. Exp. Gerontol. 99, 146–150.10.1016/j.exger.2017.10.008Suche in Google Scholar PubMed
Frazer, D.M. and Anderson, G.J. (2014). The regulation of iron transport. Biofactors 40, 206–214.10.1002/biof.1148Suche in Google Scholar PubMed
Gnandt, E., Dörner, K., Strampraad, M.F.J., de Vries, S., and Friedrich, T. (2016). The multitude of iron-sulfur clusters in respiratory complex I. Biochim. Biophys. Acta 1857, 1068–1072.10.1016/j.bbabio.2016.02.018Suche in Google Scholar PubMed
González, S., Huerta, J.M., Alvarez-Uría, J., Fernández, S., Patterson, A.M., and Lasheras, C. (2004). Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J. Nutr. 134, 1736–1740.10.1093/jn/134.7.1736Suche in Google Scholar
Grey, V., Mohammed, S.R., Smountas, A.A., Bahlool, R., and Lands, L.C. (2003). Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein. J. Cyst. Fibros. 2, 195–198.10.1016/S1569-1993(03)00097-3Suche in Google Scholar
Gubert, C., Stertz, L., Pfaffenseller, B., Panizzutti, B.S., Rezin, G.T., Massuda, R., Streck, E.L., Gama, C.S., Kapczinski, F., and Kunz, M. (2013). Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J. Psychiatr Res. 47, 1396–1402.10.1016/j.jpsychires.2013.06.018Suche in Google Scholar PubMed
Haidemenos, A., Kontis, D., Gazi, A., Kallai, E., Allin, M., and Lucia, B. (2007). Plasma homocysteine, folate and B12 in chronic schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1289–1296.10.1016/j.pnpbp.2007.05.011Suche in Google Scholar PubMed
Haile, D.J., Rouault, T.A., Tang, C.K., Chin, J., Harford, J.B., and Klausner, R.D. (1992). Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. U. S. A. 89, 7536–7540.10.1073/pnas.89.16.7536Suche in Google Scholar PubMed PubMed Central
Han, D., Handelman, G., Marcocci, L., Sen, C.K., Roy, S., Kobuchi, H., Tritschler, H.J., Flohé, L., and Packer, L. (1997). Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6, 321–338.10.1002/biof.5520060303Suche in Google Scholar PubMed
Hoppel, C.L. (1982). Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed. Proc. 41, 2853–2857.Suche in Google Scholar
Huntington Study Group Pre2CARE Investigators, Hyson, H.C., Kieburtz, K., Shoulson, I., McDermott, M., Ravina, B., de Blieck, E.A., Cudkowicz, M.E., Ferrante, R.J., and Como, P. (2010). Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov. Disord. 25, 1924–8.10.1002/mds.22408Suche in Google Scholar PubMed
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (Washington, DC: National Academies Press (US)).Suche in Google Scholar
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (Washington, DC: National Academies Press (US)).Suche in Google Scholar
Institute of Medicine (US) Panel on Micronutrients. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (Washington, DC: National Academies Press (US)).Suche in Google Scholar
Jabłońska, E. and Reszka, E. (2017). Selenium and epigenetics in cancer: focus on DNA methylation. Adv. Cancer Res. 136, 193–234.10.1016/bs.acr.2017.07.002Suche in Google Scholar PubMed
Jayakumar, P.N., Gangadhar, B.N., Venkatasubramanian, G., Desai, S., Velayudhan, L., Subbakrishna, D., and Keshavan, M.S. (2010). High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res. 181, 237–240.10.1016/j.pscychresns.2009.10.010Suche in Google Scholar PubMed
Jiang, R., Hua, C., Wan, Y., Jiang, B., Hu, H., Zheng, J., Fuqua, B.K., Dunaief, J.L., Anderson, G.J., and David, S. (2015). Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J. Nutr. 145, 1003–1009.10.3945/jn.114.207316Suche in Google Scholar PubMed
Jiang, B., Liu, G., Zheng, J., Chen, M., Maimaitiming, Z., Chen, M., Liu, S., Jiang, R., Fuqua, B.K., and Dunaief, J.L. (2016). Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 6, 39470.10.1038/srep39470Suche in Google Scholar
Johnson, M.K., Morningstar, J.E., Bennett, D.E., Ackrell, B.A., and Kearney, E.B. (1985). Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J. Biol. Chem. 260, 7368–7378.10.1016/S0021-9258(17)39618-7Suche in Google Scholar
Kale, A., Naphade, N., Sapkale, S., Kamaraju, M., Pillai, A., Joshi, S., and Mahadik, S. (2010). Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res. 30, 47–53.10.1016/j.psychres.2009.01.013Suche in Google Scholar PubMed
Kennedy, J.L., Altar, C.A., Taylor, D.L., Degtiar, I., and Hornberger, J.C. (2014). The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int. Clin. Psychopharmacol. 29, 63–76.10.1097/YIC.0b013e32836508e6Suche in Google Scholar PubMed
Kimura, H. (2011). Hydrogen sulfide: its production and functions. Exp. Physiol. 96, 833–835.10.1113/expphysiol.2011.057455Suche in Google Scholar PubMed
Klausner, R.D. and Rouault, T.A. (1993). A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol. Biol. Cell 4, 1–5.10.1091/mbc.4.1.1Suche in Google Scholar PubMed PubMed Central
Koegel, P., Burnam, M.A., and Farr, R.K. (1988). The prevalence of specific psychiatric disorders among homeless individuals in the inner city of Los Angeles. Arch. Gen. Psychiatry 45, 1085–1092.10.1001/archpsyc.1988.01800360033005Suche in Google Scholar PubMed
Lall, M.M., Ferrell, J., Nagar, S., Fleisher, L.N., and McGahan, M.C. (2008). Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase. Invest. Ophthalmol. Vis. Sci. 249, 310–319.10.1167/iovs.07-1041Suche in Google Scholar PubMed
Laukka, T., Mariani, C.J., Ihantola, T., Cao, J.Z., Hokkanen, J., Kaelin, W.G. Jr., Godley, L.A., and Koivunen, P. (2016). Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 256–265.10.1074/jbc.M115.688762Suche in Google Scholar PubMed PubMed Central
Leonardi, R. and Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus 2. doi: 10.1128/ecosalplus.3.6.3.4.Suche in Google Scholar PubMed PubMed Central
Levine, J., Stahl, Z., Sela, B.A., Gavendo, S., Ruderman, V., and Belmaker, R.H. (2002). Elevated homocysteine levels in young male patients with schizophrenia. Am. J. Psychiatry 159, 1790–1792.10.1176/appi.ajp.159.10.1790Suche in Google Scholar
Li, K., Tong, W.H., Hughes, R.M., and Rouault, T.A. (2006). Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281, 12344–12351.10.1074/jbc.M600582200Suche in Google Scholar
Li, J.J., Li, Q., Du, H.P., Wang, Y.L., You, S.J., Wang, F., Xu, X.S., Cheng, J., Cao, Y.J., Liu, C.F., et al. (2015). Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int. J. Mol. Sci. 16, 12560–12577.10.3390/ijms160612560Suche in Google Scholar
Licking, N., Murchison, C., Cholerton, B., Zabetian, C.P., Hu, S.C., Montine, T.J., Peterson-Hiller, A.L., Chung, K.A., Edwards, K., Leverenz, J.B., et al. (2017). Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat. Disord. 44, 1–5.10.1016/j.parkreldis.2017.08.005Suche in Google Scholar
Lin, C.H., Lin, P.P., Lin, C.Y., Lin, C.H., Huang, C.H., Huang, Y.J., and Lane, H.Y. (2016). Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J. Psychiatr. Res. 72, 58–63.10.1016/j.jpsychires.2015.10.007Suche in Google Scholar
Lindstedt, G. and Lindstedt, S. (1970). Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J. Biol. Chem. 245, 4178–4186.10.1016/S0021-9258(18)62901-1Suche in Google Scholar
Liu, Y., Tao, H., Yang, X., Huang, K., Zhang, X., and Li, C. (2019). Decreased serum oxytocin and increased homocysteine in first-episode schizophrenia patients. Front. Psychiatry 10, 217.10.3389/fpsyt.2019.00217Suche in Google Scholar
Lu, S.C. (2013). Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153.10.1016/j.bbagen.2012.09.008Suche in Google Scholar
Malla, A.K., Norman, R.M., Williamson, P., Cortese, L., and Diaz, F. (1993). Three syndrome concept of schizophrenia. A factor analytic study. Schizophr. Res. 10, 143–150.10.1016/0920-9964(93)90049-OSuche in Google Scholar
Marelja, Z., Stöcklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 25178–25185.10.1074/jbc.M804064200Suche in Google Scholar PubMed
Marelja, Z., Mullick Chowdhury, M., Dosche, C., Hille, C., Baumann, O., Löhmannsröben, H.G., and Leimkühler, S. (2013). The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 8, e60869.10.1371/journal.pone.0060869Suche in Google Scholar
Marshall, J.R., Burk, R.F., Payne Ondracek, R., Hill, K.E., Perloff, M., and Davis, W., Pili, R., George, S., and Bergan, R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men. Oncotarget 8, 26312–26322.10.18632/oncotarget.15460Suche in Google Scholar
Massie, A., Boillée, S., Hewett, S., Knackstedt, L., and Lewerenz, J. (2015). Main path and byways: non-vesicular glutamate release by system xc− as an important modifier of glutamatergic neurotransmission. Neurochemistry 135, 1062–1079.10.1111/jnc.13348Suche in Google Scholar
Matsuzawa, D., Obata, T., Shirayama, Y., Nonaka, H., Kanazawa, Y., Yoshitome, E., Takanashi, J., Matsuda, T., Shimizu, E., Ikehira, H., et al. (2008). Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One 3, e1944.10.1371/journal.pone.0001944Suche in Google Scholar
Maurer, I., Zierz, S., and Möller, H. (2001). Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48, 125–136.10.1016/S0920-9964(00)00075-XSuche in Google Scholar
McGahan, M.C., Harned, J., Mukunnemkeril, M., Goralska, M., Fleisher, L., and Ferrell, J.B. (2005). Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am. J. Physiol. Cell. Physiol. 288, C1117–C1124.10.1152/ajpcell.00444.2004Suche in Google Scholar PubMed
McKinley, M.C. (2000). Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia: an independent risk factor for vascular disease. Proc. Nutr. Soc. 59, 221–237.10.1017/S0029665100000252Suche in Google Scholar PubMed
Medina, D., Thompson, H., Ganther, H., and Ip, C. (2001).Se-methylselenocysteine: a new compound for chemoprevention of breast cancer. Nutr. Cancer 40, 12–17.10.4324/9781410608000-4Suche in Google Scholar
Meltzer, H.Y. (1997). Treatment-resistant schizophrenia – the role of clozapine. Curr. Med. Res. Opin. 14, 1–20.10.1159/000319812Suche in Google Scholar
Mendel, R.R. (2013). The molybdenum cofactor. J. Biol. Chem. 288, 3165–3172.10.1074/jbc.R113.455311Suche in Google Scholar PubMed PubMed Central
Michel, T.M., Sheldrick, A.J., Camara, S., Grünblatt, E., Schneider, F., and Riederer, P. (2011). Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J. Biol. Psychiatry. 12, 588–597.10.3109/15622975.2010.526146Suche in Google Scholar PubMed
Misiak, B., Frydecka, D., Slezak, R., Piotrowski, P., and Kiejna, A. (2014). Elevated homocysteine level in first-episode schizophrenia patients – the relevance of family history of schizophrenia and lifetime diagnosis of cannabis abuse. Metab. Brain Dis. 29, 661–670.10.1007/s11011-014-9534-3Suche in Google Scholar PubMed PubMed Central
Möller, H.J. and Czobor, P. (2015). Pharmacological treatment of negative symptoms in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 265, 567–578.10.1007/s00406-015-0596-ySuche in Google Scholar PubMed
Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2014). Homocysteine levels in schizophrenia and affective disorders – focus on cognition. Front. Behav. Neurosci. 8, 343.10.3389/fnbeh.2015.00081Suche in Google Scholar PubMed PubMed Central
Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2015). Homocysteine levels in neurological disorders. Diet and Exercise in Cognitive Function and Neurological Diseases. T. Farooqui and A. Farooqui, eds. (Hoboken, NJ, USA: Wiley-Blackwell).10.1002/9781118840634.ch7Suche in Google Scholar
Muntjewerff, J.W., Kahn, R.S., Blom, H.J., and den Heijer, M. (2006). Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol. Psychiatry 11, 143–149.10.1038/sj.mp.4001746Suche in Google Scholar PubMed
Narayan, S.K., Verman, A., Kattimani, S., Ananthanarayanan, P.H., and Adithan, C. (2014). Plasma homocysteine levels in depression and schizophrenia in South Indian Tamilian population. Ind. J. Psychiatry 56, 46–53.10.4103/0019-5545.124746Suche in Google Scholar PubMed PubMed Central
Niu, Y., DesMarais, T.L., Tong, Z., Yao, Y., and Costa, M. (2015). Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 82, 22–28.10.1016/j.freeradbiomed.2015.01.028Suche in Google Scholar PubMed PubMed Central
Nucifora, L.G., Tanaka, T., Hayes, L.N., Kim, M., Lee, B.J., Matsuda, T., Nucifora, F.C. Jr., Sedlak, T., Mojtabai, R., Eaton, W., et al. (2017). Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl. Psychiatry 7, e1215.10.1038/tp.2017.178Suche in Google Scholar PubMed PubMed Central
Numata, S., Kinoshita, M., Tajima, A., Nishi, A., Imoto, I., and Ohmori, T. (2015). Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis. BMC Med. Genet. 16, 54.10.1186/s12881-015-0197-7Suche in Google Scholar PubMed PubMed Central
O’Donnell, C.P., Allott, K.A., Murphy, B.P., Yuen, H.P., Proffitt, T.M., Papas, A., Moral, J., Pham, T., O’Regan, M.K., Phassouliotis, C., et al. (2016). Adjunctive taurine in first-episode psychosis: a phase 2, double-blind, randomized, placebo-controlled study. J. Clin. Psychiatry 77, e1610–e1617.10.4088/JCP.15m10185Suche in Google Scholar PubMed
Ohnishi, T., Ohnishi, S.T., and Salerno, J.C. (2018). Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem. 399, 1249–1264.10.1515/hsz-2018-0164Suche in Google Scholar PubMed
Olfson, M., Mechanic, D., Hansell, S., Boyer, C.A., and Walkup, J. (1999). Prediction of homelessness within three months of discharge among inpatients with schizophrenia. Psychiatr. Serv. 50, 667–673.10.1176/ps.50.5.667Suche in Google Scholar PubMed
Oztürk, O.H., Küçükatay, V., Yönden, Z., Ağar, A., Bağci, H., and Delibaş, N. (2006). Expressions of N-methyl-D-aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion. Arch. Toxicol. 80, 671–679.10.1007/s00204-006-0125-xSuche in Google Scholar PubMed
Parmeggiani, B., Moura, A.P., Grings, M., Bumbel, A.P., de Moura Alvorcem, L., Tauana Pletsch, J., Fernandes, C.G., Wyse, A.T.S., Wajner, M., and Leipnitz, G. (2015). In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int. J. Dev. Neurosci. 42, 68–75.10.1016/j.ijdevneu.2015.03.005Suche in Google Scholar PubMed
Pasiakos, S.M., McLellan, T.M., and Lieberman, H.R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 45, 111–131.10.1007/s40279-014-0242-2Suche in Google Scholar PubMed
Paul, B.D. and Snyder, S.H. (2017). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 149, 101–109.10.1016/j.bcp.2017.11.019Suche in Google Scholar PubMed PubMed Central
Petronijević, N.D., Radonjić, N.V., Ivković, M.D., Marinković, D., Piperski, V.D., Duricić, B.M., and Paunović, V.R. (2008). Plasma homocysteine levels in young male patients in the exacerbation and remission phase of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1921–1926.10.1016/j.pnpbp.2008.09.009Suche in Google Scholar PubMed
Pillai, R., Uyehara-Lock, J.H., and Bellinger, F.P. (2014). Selenium and selenoprotein function in brain disorders. IUBMB Life 66, 229–239.10.1002/iub.1262Suche in Google Scholar PubMed
Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.T., Griffin, J.L., Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9, 684–697, 643.10.1038/sj.mp.4001511Suche in Google Scholar PubMed
Raffa, M., Mechri, A., Othman, L.B., Fendri, C., Gaha, L., and Kerkeni, A. (2009). Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1178–1183.10.1016/j.pnpbp.2009.06.018Suche in Google Scholar
Raffa, M., Atig, F., Mhalla, A., Kerkeni, A., and Mechri, A. (2011). Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11, 124.10.1186/1471-244X-11-124Suche in Google Scholar
Raghuvanshi, R., Chandra, M., Misra, P.C., and Misra, M.K. (2005). Effect of vitamin E on the platelet xanthine oxidase and lipid peroxidation in the patients of myocardial infarction. Ind. J. Clin. Biochem. 20, 26–29.10.1007/BF02893037Suche in Google Scholar
Rasmussen, K.D. and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750.10.1101/gad.276568.115Suche in Google Scholar
Reddy, R., Keshavan, M., and Yao, J.K. (2003). Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr. Res. 62, 205–212.10.1016/S0920-9964(02)00407-3Suche in Google Scholar
Romero, M.J., Platt, D.H., Caldwell, R.B., and Caldwell, R.W. (2006). Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 24, 275–290.10.1111/j.1527-3466.2006.00275.xSuche in Google Scholar
Rooseboom, M., Vermeulen, N.P., Groot, E.J., and Commandeur, J.N. (2002). Tissue distribution of cytosolic β-elimination reactions of selenocysteine Se-conjugates in rat and human. Chem. Biol. Interact. 140, 243–264.10.1016/S0009-2797(02)00039-XSuche in Google Scholar
Ryan, M.G., Ratnam, K., and Hille, R. (1995). The molybdenum centers of xanthine oxidase and xanthine dehydrogenase. Determination of the spectral change associated with reduction from the Mo(VI) to the Mo(IV) state. J. Biol. Chem. 270, 19209–19212.10.1074/jbc.270.33.19209Suche in Google Scholar PubMed
Salagre, E., Vizuete, A.F., Leite, M., Brownstein, D.J., McGuinness, A., Jacka, F., Dodd, S., Stubbs, B., Köhler, C.A., Vieta, E., et al. (2017). Homocysteine as a peripheral biomarker in bipolar disorder: a meta-analysis. Eur. Psychiatry 43, 81–91.10.1016/j.eurpsy.2017.02.482Suche in Google Scholar PubMed
Samara, M.T., Dold, M., Gianatsi, M., Nikolakopoulou, A., Helfer, B., Salanti, G., and Leucht, S. (2016). Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiatry 73, 199–210.10.1001/jamapsychiatry.2015.2955Suche in Google Scholar PubMed
Santiago, P. (2012). Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci. World J. 2012, 846824.10.1100/2012/846824Suche in Google Scholar PubMed PubMed Central
Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science. 283, 1488–1493.10.1126/science.283.5407.1488Suche in Google Scholar PubMed
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.10.1038/nature13595Suche in Google Scholar PubMed PubMed Central
Shao, A. and Hathcock, J.N. (2008). Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul. Toxicol. Pharmacol. 50, 376–399.10.1016/j.yrtph.2008.01.004Suche in Google Scholar PubMed
Shi, L., Du, J.B., Pu, D.F., Qi, J.G., and Tang, C.S. (2006). Regulation of endogenous cystathionine-γ-lyase gene expression in high pulmonary flow by nitric oxide precursor. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 22, 343–347.Suche in Google Scholar
Soda, K., Oikawa, T., and Esaki, N. (1999). Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10, 257–262.10.1002/biof.5520100225Suche in Google Scholar PubMed
Souza, J.S., Kayo, M., Tassell, I., Martins, C.B., and Elkis, H. (2013). Efficacy of olanzapine in comparison with clozapine for treatment-resistant schizophrenia: evidence from a systematic review and meta-analyses. CNS Spectr. 18, 82–89.10.1017/S1092852912000806Suche in Google Scholar PubMed
Speckmann, B. and Grune, T. (2015). Epigenetic effects of selenium and their implications for health. Epigenetics 10, 179–179.10.1080/15592294.2015.1013792Suche in Google Scholar PubMed PubMed Central
Steinbrenner, H. and Sies, H. (2013). Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch. Biochem. Biophys. 536, 152–157.10.1016/j.abb.2013.02.021Suche in Google Scholar PubMed
Sun, Q., Wang, B., Li, Y., Sun, F., Li, P., Xia, W., Zhou, X., Li, Q., Wang, X., Chen, J., et al. (2016). Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 67, 541–954.10.1161/HYPERTENSIONAHA.115.06624Suche in Google Scholar PubMed
Takano, N., Peng, Y.J., Kumar, G.K., Luo, W., Hu, H., Shimoda, L.A., Suematsu, M., Prabhakar, N.R., and Semenza, G.L. (2014). Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem. J. 458, 203–211.10.1042/BJ20131350Suche in Google Scholar PubMed PubMed Central
Tarhonskaya, H., Nowak, R.P., Johansson, C., Szykowska, A., Tumber, A., Hancock, R.L., Lang, P., Flashman, E., Oppermann, U., and Schofield, C.J. (2017). Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates. J. Mol. Biol. 429, 2895–2906.10.1016/j.jmb.2017.08.007Suche in Google Scholar
Thai, L., Carta, A., Clarke, W.R., Ferris, S.H., Friedland, R.P., Petersen, R.C., Pettegrew, J.W., Pfeiffer, E., Raskind, M.A., Sano, M., et al. (1996). A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer’s disease. Neurology 47, 705–711.10.1212/WNL.47.3.705Suche in Google Scholar
Tsugawa, S., Noda, Y., Tarumi, R., Mimura, Y., Yoshida, K., Iwata, Y., Elsalhy, M., Kuromiya, M., Kurose, S., Masuda, F., et al. (2019). Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: a systematic review and meta-analysis. J. Psychopharmacol. 33, 1199–1214.10.1177/0269881119845820Suche in Google Scholar
Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.10.1038/nature04433Suche in Google Scholar
Uno, Y. and Coyle, J.T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204–215.10.1111/pcn.12823Suche in Google Scholar
Van Vranken, J.G., Jeong, M.Y., Wei, P., Chen, Y.C., Gygi, S.P., Winge, D., and Rutter, J. (2016). The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5, pii e17828.10.7554/eLife.17828.019Suche in Google Scholar
Vaz, F.M., Ofman, R., Westinga, K., Back, J.W., and Wanders, R.J. (2001). Molecular and biochemical characterization of rat ε-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J. Biol. Chem. 276, 33512–33517.10.1074/jbc.M105929200Suche in Google Scholar
Volz, H.R., Riehemann, S., Maurer, I., Smesny, S., Sommer, M., Rzanny, R., Holstein, W., Czekalla, J., and Sauer, H. (2000). Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol. Psychiatry. 47, 954–961.10.1016/S0006-3223(00)00235-3Suche in Google Scholar
Wang, X., Oberleas, D., Yang, M.T., and Yang, S.P. (1992). Molybdenum requirement of female rats. J. Nutr. 122, 1036–1041.10.1093/jn/122.4.1036Suche in Google Scholar PubMed
Watmough, N.J. and Frerman, F.E. (2010). The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim. Biophys. Acta 1797, 1910–1916.10.1016/j.bbabio.2010.10.007Suche in Google Scholar PubMed
Whillier, S., Raftos, J.E., Chapman, B., and Kuchel, P.W. (2009). Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 14, 115–124.10.1179/135100009X392539Suche in Google Scholar
Whitby, F.G., Phillips, J.D., Hill, C.P., McCoubrey, W., and Maines, M.D. (2002). Crystal structure of a biliverdin IXα reductase enzyme-cofactor complex. J. Mol. Biol. 319, 199–210.10.1016/S0022-2836(02)00383-2Suche in Google Scholar
Wolff, N.A., Garrick, M.D., Zhao, L., Garrick, L.M., Ghio, A., and Thévenod, F. (2018). A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci. Rep. 8, 211.10.1038/s41598-017-18584-4Suche in Google Scholar
Xiong, J.W., Wei, B., Li, Y.K., Zhan, J.Q., Jiang, S.Z., Chen, H.B., Yan, K., Yu, B., and Yang, Y. (2018). Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation with psychopathology and cognition. Psychopharmacology (Berl.) 235, 2267–2274.10.1007/s00213-018-4923-7Suche in Google Scholar
Yamori, Y., Liu, L., Mori, M., Sagara, M., Murakami, S., Nara, Y., and Mizushima, S. (2009). Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv. Exp. Med. Biol. 643, 13–25.10.1007/978-0-387-75681-3_2Suche in Google Scholar
Yamori, Y., Taguchi, T., Mori, H., and Mori, M. (2010). Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 17, S21.10.1186/1423-0127-17-S1-S21Suche in Google Scholar
Yanfei, W., Lin, S., Junbao, D., and Chaoshu, T. (2006). Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857.10.1016/j.bbrc.2006.04.162Suche in Google Scholar
Yao, J.K., Reddy, R., and van Kammen, D.P. (1998). Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res. 80, 29–39.10.1016/S0165-1781(98)00051-1Suche in Google Scholar
Yao, J.K., Dougherty, G.G. Jr., Reddy, R.D., Keshavan, M.S., Montrose, D.M., Matson, W.R., McEvoy, J., and Kaddurah-Daouk, R. (2010). Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia. PLoS One 5, e9508.10.1371/journal.pone.0009508Suche in Google Scholar PubMed PubMed Central
Yusufi, B., Mukherjee, S., Flanagan, R., Paton, C., Dunn, G., Page, E., and Barnes, T.R. (2007). Prevalence and nature of side effects during clozapine maintenance treatment and the relationship with clozapine dose and plasma concentration. Int. Clin. Psychopharmacol. 22, 238–243.10.1097/YIC.0b013e32819f8f17Suche in Google Scholar PubMed
Zhang, X., Vincent, A.S., Halliwell, B., and Wong, K.P. (2004). A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.10.1074/jbc.M402759200Suche in Google Scholar PubMed
Zhang, C., Wang, R., Zhang, G., and Gong, D. (2016). Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 112, 405–412.10.1016/j.ijbiomac.2018.01.190Suche in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Could electrical coupling contribute to the formation of cell assemblies?
- Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis
- Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies
- Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms
- Motor stroke recovery after tDCS: a systematic review
- Treatment-resistant schizophrenia: focus on the transsulfuration pathway
Artikel in diesem Heft
- Frontmatter
- Could electrical coupling contribute to the formation of cell assemblies?
- Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis
- Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies
- Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms
- Motor stroke recovery after tDCS: a systematic review
- Treatment-resistant schizophrenia: focus on the transsulfuration pathway