Genetic underpinnings in Alzheimer’s disease – a review
-
Ahmed A. Moustafa
, Mubashir Hassan
, Doaa H. Hewedi , Iman Hewedi , Julia K. Garami , Hany Al Ashwal , Nazar Zaki , Sung-Yum Seo , Vassilis Cutsuridis , Sergio L. Angulo , Joman Y. Natesh , Mohammad M. Herzallah , Dorota Frydecka , Błażej Misiak , Mohamed Salama , Wael Mohamed , Mohamad El Haj und Michael Hornberger
Abstract
In this review, we discuss the genetic etiologies of Alzheimer’s disease (AD). Furthermore, we review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. Moreover, we also discuss the clumps of AD-m ediated genes according to their single nucleotide polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in the amyloid precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated early-onset (presenilin 1/2, PSEN1/2 and APP) and late-onset (apolipoprotein E, ApoE) genes. Genome-wide association and linkage analysis studies with identified multiple genomic areas have implications for the treatment of AD. We conclude this review with future directions and clinical implications of genetic research in AD.
Acknowledgments
HAA and NZ are funded by the United Arab Emirates University (CIT 31T085 Fund). MH is funded by Alzheimer’s Research UK and Wellcome Trust.
Conflict of interest statement: The authors have no conflict of interest to declare.
References
Allen, M., Zou, F., Chai, H.S., Younkin, C.S., Crook, J., Pankratz, V.S., Carrasquillo, M.M., Rowley, C.N., Nair, A.A., Middha, S., et al. (2012). Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79, 221–228.10.1212/WNL.0b013e3182605801Suche in Google Scholar PubMed
Alonso, A.D.C., Mederlyova, A., Novak, M., Grundke-Iqbal, I., and Iqbal, K. (2004). Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 34873–34881.10.1074/jbc.M405131200Suche in Google Scholar PubMed
Alzheimer’s Association (2014). Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10, e47–e92.10.1016/j.jalz.2014.02.001Suche in Google Scholar
Andrews-Zwilling, Y., Bien-Ly, N., Xu, Q., Li, G., Bernardo, A., Yoon, S.Y., Zwilling, D., Yan, T.X., Chen, L., and Huang, Y. (2010). Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707–13717.10.1523/JNEUROSCI.4040-10.2010Suche in Google Scholar PubMed
Ashe, K.H. and Zahs, K.R. (2010). Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645.10.1016/j.neuron.2010.04.031Suche in Google Scholar PubMed
Atack, J.R., Perry, E.K., Bonham, J.R., Candy, J.M., and Perry, R.H. (1986). Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J. Neurochem. 47, 263–277.10.1111/j.1471-4159.1986.tb02858.xSuche in Google Scholar PubMed
Bali, J., Gheinani, A.H., Zurbriggen, S., and Rajendran, L. (2012). Role of genes linked to sporadic Alzheimer’s disease risk in the production of amyloid peptides. Proc. Natl. Acad. Sci. USA 109, 15307–15311.10.1073/pnas.1201632109Suche in Google Scholar
Barber, K., Mala, R.R., Lambert, M.P., Qiu, R., MacDonald, R.C., and Klein, W.L. (1996). Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci. Lett. 207, 17–20.10.1016/0304-3940(96)12497-6Suche in Google Scholar PubMed
Bartus, R.T., Dean, R.L., Beer, B., and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414.10.1126/science.7046051Suche in Google Scholar PubMed
Bastin, C. and Salmon, E. (2014). Early neuropsychological detection of Alzheimer’s disease. Eur. J. Clin. Nutr. 68, 1192–1199.10.1038/ejcn.2014.176Suche in Google Scholar PubMed
Bertram, L., Lange, C., Mullin, K., Parkinson, M., Hsiao, M., Hogan, M.F., Schjeide, B.M., Hooli, B., Divito, J., Ionita, I., et al. (2008). Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am. J. Hum. Genet. 83, 623–632.10.1016/j.ajhg.2008.10.008Suche in Google Scholar PubMed
Bird, T.D. (2008). Genetic aspects of Alzheimer disease. Genet. Med. 10, 231–239.10.1097/GIM.0b013e31816b64dcSuche in Google Scholar PubMed
Braak, H. and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.10.1007/BF00308809Suche in Google Scholar PubMed
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H.M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 3, 186–191.10.1016/j.jalz.2007.04.381Suche in Google Scholar
Calero, M., Rostagno, A., Matsubara, E., Zlokovic, B., Frangione, B., and Ghiso, J. (2000). Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc. Res. Tech. 50, 305–315.10.1002/1097-0029(20000815)50:4<305::AID-JEMT10>3.0.CO;2-LSuche in Google Scholar PubMed
Carrasquillo, M.M., Belbin, O., Hunter, T.A., Ma, L., Bisceglio, G.D., Zou, F., Crook, J.E., Pankratz, V.S., Dickson, D.W., Graff-Radford, N.R., et al. (2010). Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch. Neurol. 67, 961–964.10.1001/archneurol.2010.147Suche in Google Scholar PubMed
Carrasquillo, M.M., Belbin, O., Hunter, T.A., Ma, L., Bisceglio, G.D., Zou, F., Crook, J.E., Pankratz, V.S., Sando, S.B., Aasly, J.O., et al. (2011). Replication of BIN1 association with Alzheimer’s disease and evaluation of genetic interactions. J. Alzheimer’s Dis. 24, 751–758.10.3233/JAD-2011-101932Suche in Google Scholar
Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57.10.1126/scitranslmed.3002156Suche in Google Scholar PubMed
Castillo-Carranza, D.L., Sengupta, U., Guerrero-Muñoz, M.J., Lasagna-Reeves, C.A., Gerson, J.E., Singh, G., Estes, D.M., Barrett, A.D., Dineley, K.T., Jackson, G.R., et al. (2014). Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272.10.1523/JNEUROSCI.3192-13.2014Suche in Google Scholar PubMed
Cerpa, W., Dinamarca, M.C., and Inestrosa, N.C. (2008). Structure-function implications in Alzheimer’s disease: effect of Abeta oligomers at central synapses. Curr. Alzheimer Res. 5, 233–243.10.2174/156720508784533321Suche in Google Scholar PubMed
Chan, S.L., Kim, W.S., Kwok, J.B., Hill, A.F., Cappai, R., Rye, K.A., and Garner, B. (2008). ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J. Neurochem. 106, 793–804.10.1111/j.1471-4159.2008.05433.xSuche in Google Scholar PubMed
Chapuis, J., Hansmannel, F., Gistelinck, M., Mounier, A., Van Cauwenberghe, C., Kolen, K.V., Geller, F., Sottejeau, Y., Harold, D., Dourlen, P., et al. (2013). Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry 18, 1225–1234.10.1038/mp.2013.1Suche in Google Scholar PubMed PubMed Central
Choo, I.H., Lee, D.Y., Oh, J.S., Lee, J.S., Lee, D.S., Song, I.C., Youn, J.C., Kim, S.G., Kim, K.W., Jhoo, J.H., et al. (2010). Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 31, 772–779.10.1016/j.neurobiolaging.2008.06.015Suche in Google Scholar PubMed
Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J., and Ashe, K.H. (2005). Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84.10.1038/nn1372Suche in Google Scholar PubMed
Cochran, J.N., Rush, T., Buckingham, S.C., and Roberson, E.D. (2015). The Alzheimer’s disease risk factor CD2AP maintains blood-brain barrier integrity. Hum. Mol. Genet. 24, 6667–6674.10.1093/hmg/ddv371Suche in Google Scholar PubMed PubMed Central
Corneveaux, J.J., Myers, A.J., Allen, A.N., Pruzin, J.J., Ramirez, M., Engel, A., Nalls, M.A., Chen, K., Lee, W., Chewning, K., et al. (2010). Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum. Mol. Genet. 19, 3295–3301.10.1093/hmg/ddq221Suche in Google Scholar PubMed PubMed Central
Craig, L.A., Hong, N.S., and McDonald, R.J. (2011). Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev. 35, 1397–1409.10.1016/j.neubiorev.2011.03.001Suche in Google Scholar PubMed
Crocker, P.R., Hartnell, A., Munday, J., and Nath, D. (1997). The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconj. J. 14, 601–609.10.1023/A:1018588526788Suche in Google Scholar PubMed
Cruts, M., Jessie Theuns, J., and Van Broeckhoven, C. (2012). Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat. 33, 1340–1344.10.1002/humu.22117Suche in Google Scholar PubMed PubMed Central
De Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D.H., Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., et al. (2012). Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697.10.1016/j.neuron.2011.11.033Suche in Google Scholar PubMed PubMed Central
DeMattos, R.B., Cirrito, J.R., Parsadanian, M., May, P.C., O’Dell, M.A., Taylor, J.W., Harmony, J.A., Aronow, B.J., Bales, K.R., Paul, S.M., et al. (2004). ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41, 193–202.10.1016/S0896-6273(03)00850-XSuche in Google Scholar PubMed
Dietzsch, E., Murphy, B.F., Kirszbaum, L., Walker, I.D., and Garson, O.M. (1992). Regional localization of the gene for clusterin (SP-40,40; gene symbol CLI) to human chromosome 8p12→p21. Cytogenet. Cell Genet. 61, 178–179.10.1159/000133402Suche in Google Scholar PubMed
Dingwall, C. (2001). Spotlight on BACE: the secretases as targets for treatment in Alzheimer disease. J. Clin. Invest. 108, 1243–1246.10.1172/JCI14402Suche in Google Scholar PubMed
Drebing, C.E., Moore, L.H., Cummings, J.L., Van Gorp, W.G., Hinkin, C., Perlman, S.L., Mahler, M.E., and Cedarbaum, S.D. (1994). Patterns of neuropsychological performance among forms of subcortical dementia: a case study approach. Neuropsychiatry Neuropsychol. Behav. Neurol. 7, 57–66.Suche in Google Scholar
Duce, J.A., Tsatsanis, A., Cater, M.A., James, S.A., Robb, E., Wikhe, K., Leong, S.L., Perez, K., Johanssen, T., Greenough, M.A., et al. (2010). Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142, 857–867.10.1016/j.cell.2010.08.014Suche in Google Scholar PubMed
Dustin, M.L., Olszowy, M.W., Holdorf, A.D., Li, J., Bromley, S., Desai, N., Widder P., Rosenberger F., der Merwe, P.A., MAllen, P., et al. (1998). A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677.10.1016/S0092-8674(00)81608-6Suche in Google Scholar PubMed
Eriksen, J.L. and Janus, C.G. (2007). Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behavior Genet. 37, 79–100.10.1007/s10519-006-9118-zSuche in Google Scholar PubMed
Fonseca, M.I., Chu, S., Pierce, A.L., Brubaker, W.D., Hauhart, R.E., Mastroeni, D., Clarke, E.V., Rogers, J., Atkinson, J.P., and Tenner, A.J. (2016). Analysis of the putative role of CR1 in Alzheimer’s disease: genetic association, expression and function. PLoS One 11, e0149792.10.1371/journal.pone.0149792Suche in Google Scholar PubMed PubMed Central
Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., Bullido, M.J., Engelborghs, S., De Deyn, P., Berr, C., et al. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907.10.1038/mp.2011.52Suche in Google Scholar PubMed PubMed Central
Geroldi, C., Pihlajamäki, M., Laakso, M.P., Decarli, C., Beltramello, A., Bianchetti, A., Soininen, H., Trabucchi, M., and Frisoni, G.B. (1999). APOE-epsilon4 is associated with less frontal and more medial temporal lobe atrophy in AD. Neurology 53, 1825–1832.10.1212/WNL.53.8.1825Suche in Google Scholar PubMed
Gillespie, A.K., Jones, E.A., Lin, Y.H., Karlsson, M.P., Kay, K., Yoon, S.Y., Tong, L.M., Nova, P., Carr, J.S., Frank, L.M., et al. (2016). Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751.10.1016/j.neuron.2016.04.009Suche in Google Scholar PubMed PubMed Central
Goedert, M. and Spillantini, M.G. (2001). Tau gene mutations and neurodegeneration. Biochem. Soc. Symp. 1, 59–71.10.1042/bss0670059Suche in Google Scholar PubMed
Götz, J., Chen, F., van Dorpe, J., and Nitsch, R.M. (2001). Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495.10.1126/science.1062097Suche in Google Scholar PubMed
Greig, N.H., De Micheli, E., Holloway, H.W., Yu, Q.S., Utsuki, T., Perry, T.A., Brossi, A., Ingram, D.K., Deutsch, J., Lahiri, D.K., et al. (2000). The experimental Alzheimer drug phenserine: preclinical pharmacokinetics and pharmacodynamics. Acta Neurol. Scand. (Suppl.) 176, 74–84.10.1034/j.1600-0404.2000.00311.xSuche in Google Scholar PubMed
Griciuc, A., Serrano-Pozo, A., Parrado, A.R., Lesinski, A.N., Asselin, C.N., Mullin, K., Hooli, B., Choi, S.H., Hyman, B.T., and Tanzi, R.E. (2013). Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron 78, 631–643.10.1016/j.neuron.2013.04.014Suche in Google Scholar PubMed PubMed Central
Guerrero, R., Navarro, P., Gallego, E., Garcia-Cabrero, A.M., Avila, J., and Sanchez, M.P. (2009). Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 tau and lacking the PARK2 gene. Acta Neuropathol. 117, 159–168.10.1007/s00401-008-0470-3Suche in Google Scholar PubMed
Haass, C. and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev. Mol. Cell Biol. 8, 101–112.10.1038/nrm2101Suche in Google Scholar PubMed
Haass, C., Kaether, C., Thinakaran, G., and Sisodia, S. (2012). Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2, a006270.10.1101/cshperspect.a006270Suche in Google Scholar PubMed PubMed Central
Hansell, N.K., Halford, G.S., Andrews, G., Shum, D.H.K., Harris, S.E., Davies, G., Franic, S., Christoforou, A., Zietsch, B., Painter, J., et al. (2015). Genetic basis of a cognitive complexity metric. PLoS One 10, e0123886.10.1371/journal.pone.0123886Suche in Google Scholar PubMed PubMed Central
Harel, A., Wu, F., Mattson, M.P., Morris, C.M., and Yao, P.J. (2008). Evidence for CALM in directing VAMP2 trafficking. Traffic 9, 417–429.10.1111/j.1600-0854.2007.00694.xSuche in Google Scholar PubMed
Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M.L., Pahwa, J.S., Moskvina, V., Dowzell, K., and Williams, A. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093.10.1038/ng.440Suche in Google Scholar PubMed PubMed Central
Harris, J.A., Devidze, N., Verret, L., Ho, K., Halabisky, B., Thwin, M.T., Kim, D., Hamto, P., Lo, I., Yu, G.Q., et al. (2010). Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68, 428–441.10.1016/j.neuron.2010.10.020Suche in Google Scholar PubMed
Harris, J.A., Koyama, A., Maeda, S., Ho, K., Devidze, N., Dubal, D.B., Yu, G.Q., Masliah, E., and Mucke, L. (2012). Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS One 7, e45881.10.1371/journal.pone.0045881Suche in Google Scholar PubMed
Hernández, F. and Avila, J. (2010). Intra and extracellular protein interactions with tau. Curr. Alzheimer Res. 7, 670–676.10.2174/156720510793611583Suche in Google Scholar PubMed
Herzog, H., Nicholl, J., Hort, Y.J., Sutherland, G.R., and Shine, J. (1996). Molecular cloning and assignment of FAK2, a novel human focal adhesion kinase, to 8p11.2-p22 by nonisotopic in situ hybridization. Genomics 32, 484–486.10.1006/geno.1996.0149Suche in Google Scholar PubMed
Hickman, S.E. and El Khoury, J. (2014). TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem. Pharmacol. 88, 495–498.10.1016/j.bcp.2013.11.021Suche in Google Scholar PubMed
Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, C., Carrasquillo, M.M., Abraham, R., Hamshere, M.L., Pahwa, J.S., Moskvina, V., et al. (2011). Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature 43, 429–435.10.1038/ng.803Suche in Google Scholar
Howie, D., Nolan, K.F., Daley, S., Butterfield, E., Adams, E., Garcia-Rueda, H., Thompson, C., Saunders, N.J., Cobbold, S.P., Tone, Y., et al. (2009). MS4A4B is a GITR-associated membrane adapter, expressed by regulatory T cells, which modulates T cell activation. J. Immunol. 183, 4197–4204.10.4049/jimmunol.0901070Suche in Google Scholar PubMed
Hu, X., Pickering, E., Liu, Y.C., Hall, S., Fournier, H., Katz, E., Dechairo, B., John, S., Van Eerdewegh, P., and Soares, H. (2011). Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One 6, e16616–e16616.10.1371/journal.pone.0016616Suche in Google Scholar
Huang, Y.Q., Lu, W.Y., Ali, D.W., Pelkey, K.A., Pitcher, G.M., Lu, Y.M., Aoto, H., Roder, J.C., Sasaki, T., Salter, M.W., et al. (2001). CAKβ/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496.10.1016/S0896-6273(01)00220-3Suche in Google Scholar PubMed
Hulett, M.D., Pagler, E., Hornby, J.R., Hogarth, P.M., Eyre, H.J., Baker, E., Crawford, J., Sutherland, G.R., Ohms, S.J., and Parish, C.R. (2001). Isolation, tissue distribution, and chromosomal localization of a novel testis-specific human four-transmembrane gene related to CD20 and FcεRI-β. Biochem. Biophys. Res. Commun. 280, 374–379.10.1006/bbrc.2000.4088Suche in Google Scholar PubMed
Ikeda, Y., Abe-Dohmae, S., Munehira, Y., Aoki, R., Kawamoto, S., Furuya, A., Shitara, K., Amachi, T., Kioka, N., Matsuo, M., et al. (2003). Posttranscriptional regulation of human ABCA7 and its function for the apoA-I-dependent lipid release. Biochem. Biophys. Res. Commun. 311, 313–318.10.1016/j.bbrc.2003.10.002Suche in Google Scholar PubMed
Imtiaz, B., Tolppanen, A.M., Kivipelto, M., and Soininen, H. (2014). Future directions in Alzheimer’s disease from risk factors to prevention. Biochem. Pharmacol. 88, 661–670.10.1016/j.bcp.2014.01.003Suche in Google Scholar PubMed
Iqbal, K., Liu, F., Gong, C.X., and Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7, 656–664.10.2174/156720510793611592Suche in Google Scholar PubMed PubMed Central
Iqbal, K., Liu, F., and Gong, C.X. (2016). Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27.10.1038/nrneurol.2015.225Suche in Google Scholar PubMed
Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wölfing, H., Chieng, B.C., Christie, M.J., Napier, I.A., et al. (2010). Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397.10.1016/j.cell.2010.06.036Suche in Google Scholar PubMed
Jacobsen, L., Madsen, P., Moestrup, S.K., Lund, A.H., Tommerup, N., Nykjaer, A., Sottrup-Jensen, L., Gliemann, J., and Petersen, C.M. (1996). Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J. Biol. Chem. 271, 31379–31383.10.1074/jbc.271.49.31379Suche in Google Scholar PubMed
Jacobsen, L., Madsen, P., Jacobsen, C., Nielsen, M.S., Gliemann, J., and Petersen, C.M. (2001). Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276, 22788–22796.10.1074/jbc.M100857200Suche in Google Scholar PubMed
Janes, P.W., Saha, N., Barton, W.A., Kolev, M.V., Wimmer-Kleikamp, S.H., Nievergall, E., Blobel, C.P., Himanen, J.P., Lackmann, M., and Nikolov, D.B. (2005). Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291–304.10.1016/j.cell.2005.08.014Suche in Google Scholar PubMed
Jayadev, S., Leverenz, J.B., Steinbart, E., Stahl, J., Klunk, W., Yu, C.E., and Bird, T.D. (2010). Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133, 1143–1154.10.1093/brain/awq033Suche in Google Scholar PubMed PubMed Central
Jehle, A.W., Gardai, S.J., Li, S., Linsel-Nitschke, P., Morimoto, K., Janssen, W.J., Vandivier, R.W., Wang, N., Greenberg, S., Dale, B.M., et al. (2006). ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J. Cell Biol. 174, 547–556.10.1083/jcb.200601030Suche in Google Scholar PubMed PubMed Central
Jones, S.E. and Jomary, C. (2002). Clusterin. Int. J. Biochem. Cell Biol. 34, 427–431.10.1016/S1357-2725(01)00155-8Suche in Google Scholar PubMed
Kaminski, W.E., Piehler, A., and Schmitz, G. (2000). Genomic organization of the human cholesterol-responsive ABC transporter ABCA7: tandem linkage with the minor histocompatibility antigen HA-1 gene. Biochem. Biophys. Res. Commun. 278, 782–789.10.1006/bbrc.2000.3880Suche in Google Scholar PubMed
Karch, C.M. and Goate, A.M. (2015). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43–51.10.1016/j.biopsych.2014.05.006Suche in Google Scholar PubMed PubMed Central
Karch, C.M., Jeng, A.T., Nowotny, P., Cady, J., Cruchaga, C., and Goate, A.M. (2012). Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7, e50976.10.1371/journal.pone.0050976Suche in Google Scholar PubMed PubMed Central
Karch, C.M., Cruchaga, C., and Goate, A.M. (2014). Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83, 11–26.10.1016/j.neuron.2014.05.041Suche in Google Scholar PubMed PubMed Central
Kerchner, G.A., Berdnik, D., Shen, J.C., Bernstein, J.D., Fenesy, M.C., Deutsch, G.K., Wyss-Coray, T., and Rutt, B.K. (2014). APOE e4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory. Neurology 82, 691–697.10.1212/WNL.0000000000000154Suche in Google Scholar PubMed PubMed Central
Khan, U.A., Liu, L., Provenzano, F.A., Berman, D.E., Profaci, C.P., Sloan, R., Mayeux, R., Duff, K.E., and Small, S.A. (2014). Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 17, 304–311.10.1038/nn.3606Suche in Google Scholar PubMed PubMed Central
Kim, W.S., Weickert, C.S., and Garner, B. (2008). Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 104, 1145–1166.10.1111/j.1471-4159.2007.05099.xSuche in Google Scholar PubMed
Kim, J., Castellano, J.M., Jiang, H., Basak, J.M., Parsadanian, M., Pham, V., Mason, S.M., Paul, S.M., and Holtzman, D.M. (2009). Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 64, 632–644.10.1016/j.neuron.2009.11.013Suche in Google Scholar PubMed PubMed Central
King, M.E., Kan, H.M., Baas, P.W., Erisir, A., Glabe, C.G., and Bloom, G.S. (2006). Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J. Cell Biol. 175, 541–546.10.1083/jcb.200605187Suche in Google Scholar PubMed PubMed Central
Kumar, A., Singh, A., and Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep. 67, 195–203.10.1016/j.pharep.2014.09.004Suche in Google Scholar PubMed
Kunz, L., Schroder, T.N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., Reuter, M., Stirnberg, R., Stöcker, T., Messing-Floeter, P.C., et al. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science 350, 430–433.10.1126/science.aac8128Suche in Google Scholar PubMed
Lai, K.O. and Ip, N.Y. (2009). Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr. Opin. Neurobiol. 19, 275–283.10.1016/j.conb.2009.04.009Suche in Google Scholar PubMed
Lambert, J.C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O., Zelenika, D., Bullido, M.J., Tavernier, B., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099.10.1038/ng.439Suche in Google Scholar PubMed
Lambert, J., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458.10.1038/ng.2802Suche in Google Scholar PubMed PubMed Central
Lee, J.H., Barral, S., and Reitz, C. (2008). The neuronal sortilin-related receptor gene SORL1 and late-onset Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 8, 384–391.10.1007/s11910-008-0060-8Suche in Google Scholar PubMed PubMed Central
Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., and Ashe, K.H. (2006). A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357.10.1038/nature04533Suche in Google Scholar PubMed
Lewis, J., Dickson, D.W., Lin, W.L., Chisholm, L., Corral, A., Jones, G., Yen, S.H., Sahara, N., Skipper, L., Yager, D., et al. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.10.1126/science.1058189Suche in Google Scholar PubMed
Lippa, C.F., Schmidt, M.L., Nee, L.E., Bird, T., Nochlin, D., Hulette, C., Mori, H., Lee, V.M., and Trojanowski, J.Q. (2000). AMY plaques in familial AD – comparison with sporadic Alzheimer’s disease. Neurology 54, 100–104.10.1212/WNL.54.1.100Suche in Google Scholar PubMed
Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S.A., Clelland, C., and Duff, K. (2012). Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302.10.1371/journal.pone.0031302Suche in Google Scholar PubMed PubMed Central
Lowik, M.M., Groenen, P.J., Pronk, I., Lilien, M.R., Goldschmeding, R., Dijkman, H.B., Levtchenko, E.N., Monnens, L.A., and van den Heuvel, L.P. (2007). Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 72, 1198–1203.10.1038/sj.ki.5002469Suche in Google Scholar
Lue, L.F., Schmitz, C., and Walker, D.G. (2015). What happens to microglial TREM2 in Alzheimer’s disease: immunoregulatory turned into immunopathogenic? Neuroscience 302, 138–150.10.1016/j.neuroscience.2014.09.050Suche in Google Scholar PubMed
Lynch, D.K., Winata, S.C., Lyons, R.J., Hughes, W.E., Lehrbach, G.M., Wasinger, V., Corthals, G., Cordwell, S., and Daly, R.J. (2003). A cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem. 278, 21805–21813.10.1074/jbc.M211407200Suche in Google Scholar PubMed
Malik, M., Simpson, J.F., Parikh, I., Wilfred, B.R., Fardo, D.W., Nelson, P.T., and Estus. S. (2013). CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J. Neurosci. 33, 13320–13325.10.1523/JNEUROSCI.1224-13.2013Suche in Google Scholar PubMed
Marcello, E., Saraceno, C., Musardo, S., Vara, H., De La Fuente, A.G., Pelucchi, S., Di Marino, D., Borroni, B., Tramontano, A., Pérez-Otaño, I., et al. (2013). Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J. Clin. Invest. 123, 2523–2538.10.1172/JCI65401Suche in Google Scholar PubMed
Martinez, A., Otal, R., Sieber, B.A., Ibanez, C., and Soriano, E. (2005). Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 135, 451–461.10.1016/j.neuroscience.2005.06.052Suche in Google Scholar PubMed
Maru, Y., Hirai, H., Yoshida, M.C., and Takaku, F. (1988). Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol. Cell. Biol. 8, 3770–3776.10.1128/MCB.8.9.3770Suche in Google Scholar PubMed
May, P.C., Lampert-Etchells, M., Johnson, S.A., Poirier, J., Masters, J.N., and Finch, C.E. (1990). Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5, 831e839.10.1016/0896-6273(90)90342-DSuche in Google Scholar
Moore, S., Evans, L.D.B., Andersson, T., Portelius, E., Smith, J., Dias, T.B., Saurat, N., McGlade, A., Kirwan, P., Blennow K., et al. (2015). APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 11, 689–696.10.1016/j.celrep.2015.03.068Suche in Google Scholar PubMed PubMed Central
Mormino, E.C., Kluth, J.T., Madison, C.M., Rabinovici, G.D., Baker, S.L., Miller, B.L., Koeppe, R.A., Mathis, C.A., Weiner, M.W., and Jagust, W.J. (2008). Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain 132, 1310–1323.10.1093/brain/awn320Suche in Google Scholar PubMed PubMed Central
Muller, A.J., Baker, J.F., DuHadaway, J.B., Ge, K., Farmer, G., Donover, P.S., Meade, R., Reid, C., Grzanna, R., Roach, A.H., et al. (2003). Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol. Cell. Biol. 23, 4295–4306.10.1128/MCB.23.12.4295-4306.2003Suche in Google Scholar PubMed PubMed Central
Mustroph, M.L., King, M.A., Klein, R.L., and Ramirez, J.J. (2012). Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats. Behav. Brain Res. 233, 141–148.10.1016/j.bbr.2012.04.034Suche in Google Scholar PubMed PubMed Central
Naj, A.C., Jun, G., Beecham, G.W., Wang, L.S., Vardarajan, B.N., and Buros, J. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 43, 436–441.10.1038/ng.801Suche in Google Scholar PubMed PubMed Central
Naj, A.C., Jun, G., Reitz, C., Kunkle, B.W., Perry, W., Park, Y.S., Beecham, G.W., Rajbhandary, R.A., Hamilton-Nelson, K.L., Wang, L.S., et al. (2014). Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol. 71, 1394–1404.10.1001/jamaneurol.2014.1491Suche in Google Scholar PubMed PubMed Central
Negorev, D., Riethman, H., Wechsler-Reya, R., Sakamuro, D., Prendergast, G.C., and Simon, D. (1996). The Bin1 gene localizes to human chromosome 2q14 by PCR analysis of somatic cell hybrids and fluorescence in situ hybridization. Genomics 33, 329–331.10.1006/geno.1996.0205Suche in Google Scholar PubMed
Nestor, P.J., Fryer, T.D., and Hodges, J.R. (2006). Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30, 1010–1020.10.1016/j.neuroimage.2005.10.008Suche in Google Scholar PubMed
Nicot, A.S., Toussaint, A., Tosch, V., Kretz, C., Wallgren-Pettersson, C., Iwarsson, E., Kingston, H., Garnier, J.M., Biancalana, V., Oldfors, A., et al. (2007). Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39, 1134–1139.10.1038/ng2086Suche in Google Scholar PubMed
Ostojic, J., Elfgren, C., Passant, U., Nilsson, K., Gustafson, L., Lannfelt, L., and Fabre, S.F. (2004). The tau R406W mutation causes progressive presenile dementia with bitemporal atrophy. Dement. Geriatr. Cogn. Disord. 17, 298–301.10.1159/000077158Suche in Google Scholar PubMed
Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., Bianchin, M., Bird, T., Miranda, R., Salmaggi, A., et al. (2002). Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662.10.1086/342259Suche in Google Scholar PubMed PubMed Central
Palop, J.J. and Mucke, L. (2010). Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818.10.1038/nn.2583Suche in Google Scholar PubMed PubMed Central
Pandey, P., Avraham, S., Kumar, S., Nakazawa, A., Place, A., Ghanem, L., Rana, A., Kumar, V., Majumder, P.K., Avraham, H., et al. (1999). Activation of p38 mitogen-activated protein kinase by PYK2/related adhesion focal tyrosine kinase-dependent mechanism. J. Biol. Chem. 274, 10140–10144.10.1074/jbc.274.15.10140Suche in Google Scholar PubMed
Piedrahita, D., Hernández, I., López-Tobón, A., Fedorov, D., Obara, B., Manjunath, B.S., Boudreau, R.L., Davidson, B., Laferla, F., Gallego-Gómez, J.C., et al. (2010). Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J. Neurosci. 30, 13966–13976.10.1523/JNEUROSCI.3637-10.2010Suche in Google Scholar PubMed PubMed Central
Pievani, M., Rasser, P.E., Galluzzi, S., Benussi, L., Ghidoni, R., Sabattoli, F., Bonetti, M., Binetti, G., Thompson, P.M., and Frisoni, G.B. (2009). Mapping the effect of APOE ε4 on gray matter loss in Alzheimer’s disease in vivo. Neuroimage 45, 1090–1098.10.1016/j.neuroimage.2009.01.009Suche in Google Scholar PubMed PubMed Central
Prinzen, C., Muller, U., Endres, K., Fahrenholz, F., and Postina, R. (2005). Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J. 19, 1522–1524.10.1096/fj.04-3619fjeSuche in Google Scholar PubMed
Proitsi, P., Lee, S.H., Lunnon, K., Keohane, A., Powell, J., Troakes, C., Al-Sarraj, S., Furney, S., Soininen, H., Kłoszewska, I., et al. (2014). Alzheimer’s disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood. Neurobiol. Aging 35, 279–290.10.1016/j.neurobiolaging.2013.08.002Suche in Google Scholar PubMed
Rademakers, R., Dermaut, B., Peeters, K., Cruts, M., Heutink, P., Goate, A., and Van Broeckhoven, C. (2003). Tau (MAPT) mutation Arg406Trp presenting clinically with Alzheimer disease does not share a common founder in Western Europe. Hum. Mutat. 22, 409–411.10.1002/humu.10269Suche in Google Scholar PubMed
Reitz, C. and Mayeux, R. (2014). Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651.10.1016/j.bcp.2013.12.024Suche in Google Scholar PubMed PubMed Central
Ridge, P.G., Mukherjee, S., Crane, P.K., and Kauwe, J.S.K. (2013). Alzheimer’s disease: analyzing the missing heritability. PLoS One 8, e79771.10.1371/journal.pone.0079771Suche in Google Scholar PubMed PubMed Central
Rogaeva, E., Meng, Y., Lee, J.H., Gu, Y., Kawarai, T., Zou, F., Katayama, T., Baldwin, C.T., Cheng, R., Hasegawa, H., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39, 168–177.10.1038/ng1943Suche in Google Scholar PubMed PubMed Central
Rosendahl, M.S., Ko, S.C., Long, D.L., Brewer, M.T., Rosenzweig, B., Hedl, E., Anderson, L., Pyle, S.M., Moreland, J., Meyers, M.A., et al. (1997). Identification and characterization of a pro-tumor necrosis factor-alpha-processing enzyme from the ADAM family of zinc metalloproteases. J. Biol. Chem. 272, 24588–24593.10.1074/jbc.272.39.24588Suche in Google Scholar PubMed
Sakamoto, A., Sugamoto, Y., Tokunaga, Y., Yoshimuta, T., Hayashi, K., Konno, T., Kawashiri, M.A., Takeda, Y., and Yamagishi, M. (2011). Expression profiling of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. J. Int. Med. Res. 39, 522–527.10.1177/147323001103900220Suche in Google Scholar PubMed
Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., et al. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481.10.1126/science.1113694Suche in Google Scholar PubMed PubMed Central
Schjeide, B.M., Schnack, C., Lambert, J.C., Lill, C.M., Kirchheiner, J., Tumani, H., Otto, M., Tanzi, R.E., Lehrach, H., Amouyel, P., et al. (2011). The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch. Gen. Psychiatry 68, 207–213.10.1001/archgenpsychiatry.2010.196Suche in Google Scholar PubMed
Sexton, C.E., Mackay, C.E., Lonie, J.A., Bastin, M.E., Terrière, E., O’Carroll, R.E., and Ebmeier, K.P. (2010). MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Res. 184, 57–62.10.1016/j.pscychresns.2010.07.005Suche in Google Scholar PubMed
Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008). Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842.10.1038/nm1782Suche in Google Scholar PubMed PubMed Central
Shen, L., Thompson, P.M., Potkin, S.G., Bertram, L., Farrer, L.A., Foroud, T.M., Green, R.C., Hu, X., Huentelman, M.J., Kim, S., et al. (2014). Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8, 183–207.10.1007/s11682-013-9262-zSuche in Google Scholar PubMed PubMed Central
Sheng, M., Sabatini, B.L., and Südhof, T.C. (2012). Synapses and Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 4, a005777.10.1101/cshperspect.a005777Suche in Google Scholar PubMed PubMed Central
Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.10.1038/375754a0Suche in Google Scholar PubMed
Sherrington, R., Froelich, S., Sorbi, S., Campion, D., Chi, H., Rogaeva, E.A., Levesque, G., Rogaev, E.I., Lin, C., Liang, Y., et al. (1996). Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum. Mol. Genet. 5, 985–988.10.1093/hmg/5.7.985Suche in Google Scholar PubMed
Shulman, J.M., Chen, K., Brendan, T., Keenan, B.T., Chibnik, L.B., Fleisher, A., and Thiyyagura, P. (2013). Genetic susceptibility for Alzheimer’s disease neuritic plaque pathology. J. Am. Med. Assoc. Neurol. 70, 1150–1157.Suche in Google Scholar
Steinberg, S., Stefansson, H., Jonsson, T., Johannsdottir, H., Ingason, A., Helgason, H., Sulem, P., Magnusson, O.T., Gudjonsson, S.A., Unnsteinsdottir, U., et al. (2015). Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat. Genet. 47, 445–447.10.1038/ng.3246Suche in Google Scholar PubMed
Stern, J.A., White, S.N., Lehmkuhl, L.B., Reina-Doreste, Y., Ferguson, J.L., Nascone-Yoder, N.M., and Meurs, K.M. (2014). A single codon insertion in PICALM is associated with development of familial subvalvular aortic stenosis in Newfoundland dogs. Hum. Genet. 133, 1139–1148.10.1007/s00439-014-1454-0Suche in Google Scholar PubMed PubMed Central
Suh, J., Choi, S.H., Romano, D.M., Gannon, M.A., Lesinski, A.N., Kim, D.Y., and Tanzi, R.E. (2013). ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 80, 385–401.10.1016/j.neuron.2013.08.035Suche in Google Scholar PubMed PubMed Central
Sydow, A., Van Der Jeugd, A., Zheng, F., Ahmed, T., Balschun, D., Petrova, O., Drexler, D., Zhou, L., Rune, G., Mandelkow, E., et al. (2011). Reversibility of tau-related cognitive defects in a regulatable FTD mouse model. J. Mol. Neurosci. 45, 432–437.10.1007/s12031-011-9604-5Suche in Google Scholar PubMed
Sykora, P., Misiak, M., Wang, Y., Ghosh, S., Leandro, G.S., Liu, D., Tian, J., Baptiste, B.A., Cong, W.N., Brenerman, B.M., et al. (2015). DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 43, 943–959.10.1093/nar/gku1356Suche in Google Scholar PubMed PubMed Central
Szymanski, M., Wang, R., Bassett, S.S., and Avramopoulos, D. (2011). Alzheimer’s risk variants in the clusterin gene are associated with alternative splicing. Transl. Psychiatr. 1, e18.10.1038/tp.2011.17Suche in Google Scholar PubMed PubMed Central
Tan, M.S., Yu, J.T., and Tan, L. (2013). Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol. Med. 19, 594–603.10.1016/j.molmed.2013.06.004Suche in Google Scholar PubMed
Tanzi, R.E. (1999). A genetic dichotomy model for the inheritance of Alzheimer’s disease and common age-related disorders. J. Clin. Invest. 104, 1175–1179.10.1172/JCI8593Suche in Google Scholar PubMed PubMed Central
Trask, B., Fertitta, A., Christensen, M., Youngblom, J., Bergmann, A., Copeland, A., de Jong, P., Mohrenweiser, H., Olsen, A., Carrano, A., et al. (1993). Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics 15, 133–145.10.1006/geno.1993.1021Suche in Google Scholar PubMed
Tu, S., Okamoto, S.-I., Lipton, S.A., and Xu, H. (2014). Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9, 48.10.1186/1750-1326-9-48Suche in Google Scholar PubMed PubMed Central
Tulving, E. (1972). Episodic and semantic memory. Organization Memory 1, 381–403.Suche in Google Scholar
Van Cauwenberghe, C., Van Broeckhoven. C., and Sleegers. K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430.10.1038/gim.2015.117Suche in Google Scholar PubMed PubMed Central
van de Rest, O., Berendsen, A.A., Haveman-Nies, A., and de Groot, L.C. (2015). Dietary patterns, cognitive decline, and dementia: a systematic review. Adv. Nutrit. (Bethesda) 6, 154–168.10.3945/an.114.007617Suche in Google Scholar PubMed PubMed Central
Van Der Vlies, A.E., Pijnenburg, Y.A.L., Koene, T., Klein, M., Kok, A., Scheltens, P., and Van Der Flier, W.M. (2007). Cognitive impairment in Alzheimer’s disease is modified by APOE genotype. Dement. Geriatr. Cogn. Disord. 24, 98–103.10.1159/000104467Suche in Google Scholar PubMed
Van Halteren-Van Tilborg, I.A.D.A., Scherder, E.J.A., and Hulstijn, W. (2007). Motor-skill learning in Alzheimer’s disease: a review with an eye to the clinical practice. Neuropsychol. Rev. 17, 203–212.10.1007/s11065-007-9030-1Suche in Google Scholar PubMed PubMed Central
Vasquez, J.B., Fardo, D.W., and Estus, S. (2013) ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci. Lett. 556, 58–62.10.1016/j.neulet.2013.09.058Suche in Google Scholar PubMed PubMed Central
Wang, C., Tan, L., Wang, H.F., Yu, W.J., Liu, Y., Jiang, T., Tan, M.S., Hao, X.K., Zhang, D.Q., and Yu, J.T. (2015). Common variants in PLD3 and correlation to amyloid-related phenotypes in Alzheimer’s disease. J. Alzheimers Dis. 46, 491–495.10.3233/JAD-150110Suche in Google Scholar PubMed PubMed Central
Weinstein, G., Beiser, A.S., Preis, S.R., Courchesne, P., Chouraki, V., Levy, D., and Seshadri, S. (2016). Plasma clusterin levels and risk of dementia, Alzheimer’s disease, and stroke. Alzheimers Dement. (Amst.) 3, 103–109.10.1016/j.dadm.2016.06.005Suche in Google Scholar PubMed PubMed Central
Weis, J.H., Morton, C.C., Bruns, G.A., Weis, J.J., Klickstein, L.B., Wong, W.W., and Fearon, D.T. (1987). A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32. J. Immunol. 138, 312–315.10.4049/jimmunol.138.1.312Suche in Google Scholar PubMed
Wilhelmsen, K.C., Lynch, T., Pavlou, E., Higgins, M., and Nygaard, T.G. (1994). Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am. J. Hum. Genet. 55, 1159–1165.Suche in Google Scholar PubMed
Wolfsberg, T.G., Primakoff, P., Myles, D.G., and White, J.M. (1995). ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131, 275–278.10.1083/jcb.131.2.275Suche in Google Scholar PubMed PubMed Central
Wolk, D.A. and Dickerson, B.C. (2010). Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 107, 10256–10261.10.1073/pnas.1001412107Suche in Google Scholar PubMed PubMed Central
Wolk, D.A., Dunfee, K.L., Dickerson, B.C., Aizenstein, H.J., and Dekosky, S.T. (2011). A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease. Hippocampus 21, 461–466.10.1002/hipo.20779Suche in Google Scholar PubMed PubMed Central
Wong, P., Taillefer, D., Lakins, J., Pineault, J., Chader, G., and Tenniswood, M. (1994). Molecular characterization of human TRPM-2/clusterin, a gene associated with sperm maturation, apoptosis and neurodegeneration. Eur. J. Biochem. 221, 917–925.10.1111/j.1432-1033.1994.tb18807.xSuche in Google Scholar PubMed
Wu, L., Rosa-Neto, P., Hsiung, G.Y., Sadovnick, A.D., Masellis, M., Black, S.E., Jia, J., and Gauthier, S. (2012). Early-onset familial Alzheimer’s disease (EOFAD). Can. J. Neurol. Sci. 39, 436–445.10.1017/S0317167100013949Suche in Google Scholar PubMed
Xiao, Q., Gil, S.C., Yan, P., Wang, Y., Han, S., Gonzales, E., Perez, R., Cirrito, J.R., and Lee, J.M. (2012). Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J. Biol. Chem. 287, 21279–21289.10.1074/jbc.M111.338376Suche in Google Scholar PubMed PubMed Central
Xing, Y.Y., Yu, J.T., Cui, W.Z., Zhong, X.L., Wu, Z.C., Zhang, Q., and Tan, L. (2012). Blood clusterin levels, rs9331888 polymorphism, and the risk of Alzheimer’s disease. J. Alzheimers Dis. 29, 515–519.10.3233/JAD-2011-111844Suche in Google Scholar PubMed
Yamazaki, K., Mizui, Y., and Tanaka, I. (1997). Radiation hybrid mapping of human ADAM10 gene to chromosome 15. Genomics 45, 457–459.10.1006/geno.1997.4910Suche in Google Scholar PubMed
Yavari, R., Adida, C., Bray-Ward, P., Brines, M., and Xu, T. (1998). Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum. Mol. Genet. 7, 1161–1167.10.1093/hmg/7.7.1161Suche in Google Scholar PubMed
Yu, L., Chibnik, L.B., Srivastava, G.P., Pochet, N., Yang, J., Xu, J., Kozubek, J., Obholzer, N., Leurgans, S.E., and Schneider, J.A. (2015). Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. J. Am. Med. Assoc. Neurol. 72, 15–24.Suche in Google Scholar
Zemek, F., Drtinova, L., Nepovimova, E., Sepsova, V., Korabecny, J., Klimes, J., and Kuca, K. (2014). Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 13, 759–774.Suche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior
- Genetic underpinnings in Alzheimer’s disease – a review
- Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes
- Computerized neurocognitive interventions in the context of the brain training controversy
- Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas
- Artemin promotes oncogenicity, metastasis and drug resistance in cancer cells
- The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis
Artikel in diesem Heft
- Frontmatter
- Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior
- Genetic underpinnings in Alzheimer’s disease – a review
- Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes
- Computerized neurocognitive interventions in the context of the brain training controversy
- Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas
- Artemin promotes oncogenicity, metastasis and drug resistance in cancer cells
- The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis