Startseite Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Brain extracellular space, hyaluronan, and the prevention of epileptic seizures

  • Katherine L. Perkins EMAIL logo , Amaia M. Arranz , Yu Yamaguchi und Sabina Hrabetova
Veröffentlicht/Copyright: 5. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mutant mice deficient in hyaluronan (HA) have an epileptic phenotype. HA is one of the major constituents of the brain extracellular matrix. HA has a remarkable hydration capacity, and a lack of HA causes reduced extracellular space (ECS) volume in the brain. Reducing ECS volume can initiate or exacerbate epileptiform activity in many in vitro models of epilepsy. There is both in vitro and in vivo evidence of a positive feedback loop between reduced ECS volume and synchronous neuronal activity. Reduced ECS volume promotes epileptiform activity primarily via enhanced ephaptic interactions and increased extracellular potassium concentration; however, the epileptiform activity in many models, including the brain slices from HA synthase-3 knockout mice, may still require glutamate-mediated synaptic activity. In brain slice epilepsy models, hyperosmotic solution can effectively shrink cells and thus increase ECS volume and block epileptiform activity. However, in vivo, the intravenous administration of hyperosmotic solution shrinks both brain cells and brain ECS volume. Instead, manipulations that increase the synthesis of high-molecular-weight HA or decrease its breakdown may be used in the future to increase brain ECS volume and prevent seizures in patients with epilepsy. The prevention of epileptogenesis is also a future target of HA manipulation. Head trauma, ischemic stroke, and other brain insults that initiate epileptogenesis are known to be associated with an early decrease in high-molecular-weight HA, and preventing that decrease in HA may prevent the epileptogenesis.

Acknowledgments

This work was supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke grant R01 NS047557.

References

Almond, A. (2005). Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr. Res. 340, 907–920.10.1016/j.carres.2005.01.014Suche in Google Scholar PubMed

Almond, A. (2007). Hyaluronan. Cell. Mol. Life Sci. 64, 1591–1596.10.1007/s00018-007-7032-zSuche in Google Scholar PubMed

Almond, A., DeAngelis, P.L., and Blundell, C.D. (2006). Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix. J. Mol. Biol. 358, 1256–1269.10.1016/j.jmb.2006.02.077Suche in Google Scholar PubMed

Al’Qteishat, A., Gaffney, J., Krupinski, J., Rubio, F., West, D., Kumar, S., Kumar, P., Mitsios, N., and Slevin, M. (2006a). Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 129, 2158–2176.10.1093/brain/awl139Suche in Google Scholar

Al’Qteishat, A., Gaffney, J.J., Krupinski, J., and Slevin, M. (2006b). Hyaluronan expression following middle cerebral artery occlusion in the rat. NeuroReport 17, 1111–1114.10.1097/01.wnr.0000227986.69680.20Suche in Google Scholar

Andrew, R.D. and MacVicar B.A. (1994). Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 62, 371–383.10.1016/0306-4522(94)90372-7Suche in Google Scholar PubMed

Andrew, R.D., Fagan, M., Ballyk, B.A., and Rosen, A.S. (1989). Seizure susceptibility and the osmotic state. Brain Res. 498, 175–180.10.1016/0006-8993(89)90417-4Suche in Google Scholar PubMed

Andrew, R.D., Lobinowich, M.E., and Osehobo, E.P. (1997). Evidence against volume regulation by cortical brain cells during acute osmotic stress. Exp. Neurol. 143, 300–312.10.1006/exnr.1996.6375Suche in Google Scholar PubMed

Andrew, R.D., Labron, M.W., Boehnke, S.E., Carnduff, L., and Kirov, S.A. (2007). Physiological evidence that pyramidal neurons lack functional water channels. Cereb. Cortex 17, 787–802.10.1093/cercor/bhk032Suche in Google Scholar PubMed

Arciénega, I.I., Brunet, J.F., Bloch, J., and Badaut, J. (2010). Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience 167, 1103–1114.10.1016/j.neuroscience.2010.02.059Suche in Google Scholar PubMed

Arranz, A.M., Perkins, K.L., Irie, F., Lewis, D.P., Hrabe, J., Xiao, F., Itano, N., Kimata, K., Hrabetova, S., and Yamaguchi, Y. (2014). Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176.10.1523/JNEUROSCI.3458-13.2014Suche in Google Scholar PubMed

Avoli, M. and Olivier, A. (1989). Electrophysiological properties and synaptic responses in the deep layers of the human epileptogenic neocortex in vitro. J. Neurophysiol. 61, 589–606.10.1152/jn.1989.61.3.589Suche in Google Scholar PubMed

Avoli, M., Louvel, J., Pumain, R., and Olivier, A. (1987). Seizure-like discharges induced by lowering [Mg2+]o in the human epileptogenic neocortex maintained in vitro. Brain Res. 417, 199–203.10.1016/0006-8993(87)90201-0Suche in Google Scholar PubMed

Avoli, M., Louvel, J., Drapeau, C., Pumain, R., and Kurcewicz, I. (1995). GABAA-mediated inhibition and in vitro epileptogenesis in the human neocortex. J. Neurophysiol. 73, 468–484.10.1152/jn.1995.73.2.468Suche in Google Scholar PubMed

Badaut, J., Petit, J.M., Brunet, J.F., Magistretti, P.J., Charriaut-Marlangue, C., and Regli, L. (2004). Distribution of aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128, 27–38.10.1016/j.neuroscience.2004.05.042Suche in Google Scholar PubMed

Balazs, E.A. (1974). The physical properties of synovial fluid and the special role of hyaluronic acid. In: A. Helfet, ed. Disorders of the knee (Philadelphia: T.B. Lippincott Co.), pp. 63–75.Suche in Google Scholar

Balestrino, M., Aitken, P.G., and Somjen, G.G. (1986). The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res. 377, 229–239.10.1016/0006-8993(86)90863-2Suche in Google Scholar PubMed

Baran, H., Lassmann, H., Sperk, G., Seitelberger, F., and Hornykiewicz, O. (1987). Effect of mannitol treatment on brain neurotransmitter markers in kainic acid-induced epilepsy. Neuroscience 21, 679–684.10.1016/0306-4522(87)90029-7Suche in Google Scholar PubMed

Bates, E.J., Harper, G.S., Lowther, D.A., and Preston, B.N. (1984). Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates. Biochem. Int. 8, 629–637.Suche in Google Scholar PubMed

Bausch, S.B. (2006). Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 143, 339–350.10.1016/j.neuroscience.2006.07.037Suche in Google Scholar PubMed

Bekku, Y., Vargova, L., Goto, Y., Vorisek, I., Dmytrenko, L., Narasaki, M., Ohtsuka, A., Fassler, R., Ninomiya, Y., Syková, E., et al. (2010). Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30, 3113–3123.10.1523/JNEUROSCI.5598-09.2010Suche in Google Scholar PubMed PubMed Central

Benitez, A., Yates, T.J., Lopez, L.E., Cerwinka, W.H., Bakkar, A., and Lokeshwar, V.B. (2011). Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Biochem. J. 71, 4085–4095.10.1158/0008-5472.CAN-10-4610Suche in Google Scholar PubMed PubMed Central

Bennett, M.V. and Zukin, R.S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511.10.1016/S0896-6273(04)00043-1Suche in Google Scholar PubMed

Bihi, R.I., Jefferys, J.G., and Vreugdenhil, M. (2005). The role of extracellular potassium in the epileptogenic transformation of recurrent GABAergic inhibition. Epilepsia 46 (s5), 64–71.10.1111/j.1528-1167.2005.01011.xSuche in Google Scholar PubMed

Bikson, M., Id Bihi, R., Vreugdenhil, M., Köhling, R., Fox, J.E., and Jefferys, J.G. (2002). Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro. Neuroscience 115, 251–261.10.1016/S0306-4522(02)00320-2Suche in Google Scholar PubMed

Brecht, M., Mayer, U., Schlosser, E., and Prehm, P. (1986). Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem. J. 239, 445–450.10.1042/bj2390445Suche in Google Scholar PubMed

Brenneke, F., Bukalo, O., Dityatev, A., and Lie, A.A. (2004). Mice deficient for the extracellular matrix glycoprotein tenascin-r show physiological and structural hallmarks of increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy. Neuroscience 124, 841–855.10.1016/j.neuroscience.2003.11.037Suche in Google Scholar PubMed

Brown, T.J., Laurent, U.B., and Fraser, J.R. (1991). Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Exp. Physiol. 76, 125–134.10.1113/expphysiol.1991.sp003474Suche in Google Scholar PubMed

Buchheim, K., Schuchmann, S., Siegmund, H., Gabriel, H.J., Heinemann, U., and Meierkord, H. (1999). Intrinsic optical signal measurements reveal characteristic features during different forms of spontaneous neuronal hyperactivity associated with ECS shrinkage in vitro. Eur. J. Neurosci. 11, 1877–1882.10.1046/j.1460-9568.1999.00606.xSuche in Google Scholar PubMed

Camenisch, T.D., Spicer, A.P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M.L., Calabro, A., Kubalak, S., Klewer, S.E., and McDonald, J.A. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360.10.1172/JCI10272Suche in Google Scholar PubMed

Camenisch, T.D., Biesterfeldt, J., Brehm-Gibson, T., Bradley, J., and McDonald, J.A. (2001). Regulation of cardiac cushion development by hyaluronan. Exp. Clin. Cardiol. 6, 4–10.Suche in Google Scholar PubMed

Celio, M.R. (1993). Perineuronal nets of extracellular matrix around parvalbumin-containing neurons of the hippocampus. Hippocampus 3 (s1), 55–60.10.1002/hipo.1993.4500030709Suche in Google Scholar PubMed

Celio, M.R. and Chiquet-Ehrismann, R. (1993). ‘Perineuronal nets’ around cortical interneurons expressing parvalbumin are rich in tenascin. Neurosci. Lett. 162, 137–140.10.1016/0304-3940(93)90579-ASuche in Google Scholar

Chowdhury, B., Hemming, R., Faiyaz, S., and Triggs-Raine, B. (2016). Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism. Histochem. Cell Biol. 145, 53–66.10.1007/s00418-015-1373-8Suche in Google Scholar PubMed

Christian, E.P. and Dudek, F.E. (1988a). Characteristics of local excitatory circuits studied with glutamate microapplication in the CA3 area of rat hippocampal slices. J. Neurophysiol. 59, 90–109.10.1152/jn.1988.59.1.90Suche in Google Scholar

Christian, E.P. and Dudek, F.E. (1988b). Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. J. Neurophysiol. 59, 110–123.10.1152/jn.1988.59.1.110Suche in Google Scholar

Contreras, E.G., Gaete, M., Sánchez, N., Carrasco, H., and Larraín J. (2009). Early requirement of Hyaluronan for tail regeneration in Xenopus tadpoles. Development 136, 2987–2996.10.1242/dev.035501Suche in Google Scholar PubMed

Cowman, M.K., Lee, H.G., Schwertfeger, K.L., McCarthy, J.B., and Turley, E.A. (2015). The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 6, 261.10.3389/fimmu.2015.00261Suche in Google Scholar PubMed

Cragg, B. (1980). Preservation of extracellular space during fixation of the brain for electron microscopy. Tissue Cell 12, 63–72.10.1016/0040-8166(80)90052-XSuche in Google Scholar PubMed

Csoka, A.B., Scherer, S.W., and Stern, R. (1999). Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 60, 356–361.10.1006/geno.1999.5876Suche in Google Scholar PubMed

Csoka, A.B., Frost, G.I., and Stern, R. (2001). The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508.10.1016/S0945-053X(01)00172-XSuche in Google Scholar PubMed

Daginakatte, G.C. and Gutmann, D.H. (2007). Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum. Mol. Gen. 16, 1098–1112.10.1093/hmg/ddm059Suche in Google Scholar PubMed

DeAngelis, P.L. and Weigel, P.H. (1994). Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme. Biochemistry 33, 9033–9039.10.1021/bi00197a001Suche in Google Scholar PubMed

Deepa, S.S., Carulli, D., Galtrey, C., Rhodes, K., Fukuda, J., Mikami, T., Sugahara, K., and Fawcett, J.W. (2006). Composition of perineuronal net extracellular matrix in rat brain. J. Biol. Chem. 281, 17789–17800.10.1074/jbc.M600544200Suche in Google Scholar PubMed

DeFazio, R.A., Keros, S., Quick, M.W., and Hablitz, J.J. (2000). Potassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons. J. Neurosci. 20, 8069–8076.10.1523/JNEUROSCI.20-21-08069.2000Suche in Google Scholar PubMed

Deuchars, J. and Thomson, A.M. (1996). CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018.10.1016/0306-4522(96)00251-5Suche in Google Scholar PubMed

Dietzel, I., Heinemann, U., Hofmeier, G., and Lux, H.D. (1980). Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp. Brain Res. 40, 432–439.10.1007/BF00236151Suche in Google Scholar PubMed

Dietzel, I., Heinemann, U., Hofmeier, G., and Lux, H.D. (1982). Stimulus-induced changes in extracellular Na+ and Cl concentration in relation to changes in the size of the extracellular space. Exp. Brain Res. 46, 73–84.10.1007/BF00238100Suche in Google Scholar PubMed

Dietzel, I., Heinemann, U., and Lux, H.D. (1989). Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2, 25–44.10.1002/glia.440020104Suche in Google Scholar PubMed

Dityatev, A. (2010). Remodeling of extracellular matrix and epileptogenesis. Epilepsia 51 (s3), 61–65.10.1111/j.1528-1167.2010.02612.xSuche in Google Scholar PubMed

Dzwonek, J. and Wilczynski, G.M. (2015). CD44: molecular interactions, signaling and functions in the nervous system. Front. Cell. Neurosci. 9, 175.10.3389/fncel.2015.00175Suche in Google Scholar PubMed

Dudek, F.E., Obenaus, A., and Tasker, J.G. (1990). Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neurosci. Lett. 120, 267–270.10.1016/0304-3940(90)90056-FSuche in Google Scholar PubMed

Evanko, S.P., Angello, J.C., and Wight, T.N. (1999). Formation of hyaluronan-and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1004–1013.10.1161/01.ATV.19.4.1004Suche in Google Scholar PubMed

Faralli, A., Dagna, F., Albera, A., Bekku, Y., Oohashi, T., Albera, R., Rossi, F., and Carulli, D. (2016). Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Struct. Funct. 221, 3193–3209.10.1007/s00429-015-1095-7Suche in Google Scholar PubMed

Fertziger, A.P. and Ranck, J.B. Jr. (1970). Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26, 571–585.10.1016/0014-4886(70)90150-0Suche in Google Scholar PubMed

Fisher, R.S., Pedley, T.A., Moody, W.J. Jr., and Prince, D.A. (1976). The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76–83.10.1001/archneur.1976.00500020004002Suche in Google Scholar PubMed

Förster, E., Zhao, S., and Frotscher, M. (2001). Hyaluronan-associated adhesive cues control fiber segregation in the hippocampus. Development 128, 3029–3039.10.1242/dev.128.15.3029Suche in Google Scholar PubMed

Fox, J.E., Bikson, M., and Jefferys, J.G. (2004). Tissue resistance changes and the profile of synchronized neuronal activity during ictal events in the low-calcium model of epilepsy. J. Neurophysiol. 92, 181–188.10.1152/jn.00123.2004Suche in Google Scholar PubMed

Francis, J.T., Gluckman, B.J., and Schiff, S.J. (2003). Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261.10.1523/JNEUROSCI.23-19-07255.2003Suche in Google Scholar PubMed

Fraser, J.R., Laurent, T.C., and Laurent, U.B. (1997). Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33.10.1046/j.1365-2796.1997.00170.xSuche in Google Scholar PubMed

Frischknecht, R. and Gundelfinger, E.D. (2012). The brain’s extracellular matrix and its role in synaptic plasticity. Adv. Exp. Med. Biol. 970, 153–171.10.1007/978-3-7091-0932-8_7Suche in Google Scholar PubMed

Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C.I., Choquet, D, and Gundelfinger, E.D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904.10.1038/nn.2338Suche in Google Scholar PubMed

Fukuda, T. (2007). Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13, 199–207.10.1177/1073858406296760Suche in Google Scholar PubMed

Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A., Zeller, M., Meencke, H.J., Cavalheiro, E.A., et al. (2004). Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J. Neurosci. 24, 10416–10430.10.1523/JNEUROSCI.2074-04.2004Suche in Google Scholar PubMed

Galtrey, C.M. and Fawcett, J.W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18.10.1016/j.brainresrev.2006.09.006Suche in Google Scholar PubMed

Gilgun-Sherki, Y., Rosenbaum, Z., Melamed, E., and Offen, D. (2002). Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54, 271–284.10.1124/pr.54.2.271Suche in Google Scholar PubMed

Golomb, D., Yue, C., and Yaari, Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol. 96, 1912–1926.10.1152/jn.00205.2006Suche in Google Scholar PubMed

Gurevicius, K., Gureviciene, I., Valjakka, A., Schachner, M., and Tanila, H. (2004). Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol. Cell. Neurosci. 25, 515–523.10.1016/j.mcn.2003.12.001Suche in Google Scholar PubMed

Hablitz, J.J. and Lundervold, A. (1981). Hippocampal excitability and changes in extracellular potassium. Exp. Neurol. 71, 410–420.10.1016/0014-4886(81)90099-6Suche in Google Scholar PubMed

Haglund, M.M. and Hochman, D.W. (2005). Furosemide and mannitol suppression of epileptic activity in the human brain. J. Neurophysiol. 94, 907–918.10.1152/jn.00944.2004Suche in Google Scholar PubMed

Haj-Yasein, N.N., Jensen, V., Vindedal, G.F., Gundersen, G.A., Klungland, A., Ottersen, O.P., Hvalby, Ø., and Nagelhus, E.A. (2011). Evidence that compromised K+ spatial buffering contributes to the epileptogenic effect of mutations in the human Kir4. 1 gene (KCNJ10). Glia 59, 1635–1642.10.1002/glia.21205Suche in Google Scholar PubMed

Haj-Yasein, N.N., Jensen, V., Østby, I., Omholt, S.W., Voipio, J., Kaila, K., Ottersen, O.P., Hvalby, Ø., and Nagelhus, E.A. (2012). Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia 60, 867–874.10.1002/glia.22319Suche in Google Scholar PubMed

Hamzei-Sichani, F., Kamasawa, N., Janssen, W.G., Yasumura, T., Davidson, K.G., Hof, P.R., Wearne, S.L., Stewart, M.G., Young, S.R., Whittington, M.A., et al. (2007). Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze–fracture replica immunogold labeling. Proc. Natl. Acad. Sci. U. S. A. 104, 12548–12553.10.1073/pnas.0705281104Suche in Google Scholar PubMed PubMed Central

Heinemann, U., Lux, H.D., and Gutnick, M.J. (1977). Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27, 237–243.10.1007/BF00235500Suche in Google Scholar PubMed

Heldin, P. and Pertoft, H. (1993). Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp. Cell. Res. 208, 422–429.10.1006/excr.1993.1264Suche in Google Scholar PubMed

Herman, S.T. (2002). Epilepsy after brain insult: targeting epileptogenesis. Neurology 59 (9, s5), S21–S26.10.1212/WNL.59.9_suppl_5.S21Suche in Google Scholar

Hille, B. (2001). Ion Channels of Excitable Membranes (Sunderland, MA, USA: Sinauer Associates, Inc.), chapter 20.Suche in Google Scholar

Hoffmann, E.K. and Simonsen, L.O. (1989). Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69, 315–382.10.1152/physrev.1989.69.2.315Suche in Google Scholar PubMed

Hoffmann, K., Sivukhina, E., Potschka, H., Schachner, M., Löscher, W., and Dityatev A. (2009). Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascin-R. Epilepsia 50, 859–869.10.1111/j.1528-1167.2008.01774.xSuche in Google Scholar PubMed

Hrabe, J., Hrabetova, S., and Segeth, K. (2004). A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys. J. 87, 1606–1617.10.1529/biophysj.103.039495Suche in Google Scholar PubMed

Hsu, M.S., Seldin, M., Lee, D.J., Seifert, G., Steinhäuser, C., and Binder, D.K. (2011). Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus. Neuroscience 178, 21–32.10.1016/j.neuroscience.2011.01.020Suche in Google Scholar PubMed

Huang, R. and Somjen, G.G. (1997). Effects of hypertonia on voltage-gated ion currents in freshly isolated hippocampal neurons, and on synaptic currents in neurons in hippocampal slices. Brain Res. 748, 157–167.10.1016/S0006-8993(96)01294-2Suche in Google Scholar PubMed

Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R., and Rivera, C. (2007). Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866–9873.10.1523/JNEUROSCI.2761-07.2007Suche in Google Scholar PubMed PubMed Central

Hylin, M.J., Orsi, S.A., Moore, A.N., and Dash, P.K. (2013). Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn. Mem. 20, 267–273.10.1101/lm.030197.112Suche in Google Scholar PubMed PubMed Central

Isoyama, T., Thwaites, D., Selzer, M.G., Carey, R.I., Barbucci, R., and Lokeshwar V.B. (2006). Differential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases. Glycobiology 16, 11–21.10.1093/glycob/cwj036Suche in Google Scholar PubMed

Jadin, L., Bookbinder, L.H., and Frost, G.I. (2012). A comprehensive model of hyaluronan turnover in the mouse. Matrix Biol. 31, 81–89.10.1016/j.matbio.2011.11.002Suche in Google Scholar PubMed

Jefferys, J.G.R. and Haas, H.L. (1982). Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300, 448–450.10.1038/300448a0Suche in Google Scholar PubMed

Jensen, M.S. and Yaari, Y. (1988). The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy. Ann. Neurol. 24, 591–598.10.1002/ana.410240502Suche in Google Scholar PubMed

Jiruska, P., Csicsvari, J., Powell, A.D., Fox, J.E., Chang, W.C., Vreugdenhil, M., Li X., Palus, M., Bujan, A.F., Dearden, R.W., et al. (2010). High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J. Neurosci. 30, 5690–5701.10.1523/JNEUROSCI.0535-10.2010Suche in Google Scholar PubMed PubMed Central

Jokela, T.A., Jauhiainen, M., Auriola, S., Kauhanen, M., Tiihonen, R., Tammi, M.I., and Tammi, R.H. (2008). Mannose inhibits hyaluronan synthesis by down-regulation of the cellular pool of UDP-N-acetylhexosamines. J. Biol. Chem. 283, 7666–7673.10.1074/jbc.M706001200Suche in Google Scholar PubMed

Jung, J.S., Bhat, R.V., Preston, G.M., Guggino, W.B., Baraban, J.M., and Agre, P. (1994). Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U. S. A. 91, 13052–13056.10.1073/pnas.91.26.13052Suche in Google Scholar PubMed PubMed Central

Kablik, J., Monheit, G.D., Yu, L., Chang, G., and Gershkovich, J. (2009). Comparative physical properties of hyaluronic acid dermal fillers. Dermatol. Surg. 35, 302–312.10.1111/j.1524-4725.2008.01046.xSuche in Google Scholar PubMed

Karnup, S. and Stelzer, A. (2001). Seizure-like activity in the disinhibited CA1 minislice of adult guinea-pigs. J. Physiol. 532, 713–730.10.1111/j.1469-7793.2001.0713e.xSuche in Google Scholar PubMed PubMed Central

Kilb, W., Dierkes, P.W., Syková, E., Vargová, L., and Luhmann, H.J. (2006). Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus. J. Neurosci. Res. 84, 119–129.10.1002/jnr.20871Suche in Google Scholar PubMed

Kinoshita, H., Kokudo, T., Ide, T., Kondo, Y., Mori, T., Homma, Y., and Yakushiji, F. (2010). A patient with DiGeorge syndrome with spina bifida and sacral myelomeningocele, who developed both hypocalcemia-induced seizure and epilepsy. Seizure 19, 303–305.10.1016/j.seizure.2010.04.005Suche in Google Scholar PubMed

Kochlamazashvili, G., Henneberger, C., Bukalo, O., Dvoretskova, E., Senkov, O., Lievens, P.M., Westenbroek, R., Engel, A.K., Catterall, W.A., Rusakov, D.A., et al. (2010). The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67, 116–128.10.1016/j.neuron.2010.05.030Suche in Google Scholar PubMed PubMed Central

Köhling, R., Lücke, A., Straub, H., Speckmann, E.J., Tuxhorn, I., Wolf, P., Pannek, H., and Oppel, F. (1998). Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain 121, 1073–1087.10.1093/brain/121.6.1073Suche in Google Scholar PubMed

Korn, S.J., Giacchino, J.L., Chamberlin, N.L., and Dingledine, R. (1987). Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57, 325–340.10.1152/jn.1987.57.1.325Suche in Google Scholar PubMed

Larsen, B.R., Assentoft, M., Cotrina, M.L., Hua, S.Z., Nedergaard, M., Kaila, K., Voipio J., and MacAulay N. (2014). Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62, 608–622.10.1002/glia.22629Suche in Google Scholar PubMed PubMed Central

Laurent, T.C. and Fraser, J.R.E. (1991). Catabolism of hyaluronan. In: J.H. Henriksen, ed. Degradation of bioactive substances: physiology and pathophysiology (Boca Raton, FL, USA: CRC Press), pp. 249–265.Suche in Google Scholar

Le Duigou, C., Bouilleret, V., and Miles, R. (2008). Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid. J. Physiol. 586, 4891–4904.10.1113/jphysiol.2008.156281Suche in Google Scholar PubMed PubMed Central

Liu, J. and Cowman, M.K. (2000). Thermal analysis of semi- dilute hyaluronan solutions. J. Therm. Anal. Calorim. 59, 547–557.10.1023/A:1010114213475Suche in Google Scholar

Lux, H.D. (1974). The kinetics of extracellular potassium: relation to epileptogenesis. Epilepsia 15, 375–393.10.1111/j.1528-1157.1974.tb04015.xSuche in Google Scholar PubMed

Lynn, B.D., Li, X., Cattini, P.A., Turley, E.A., and Nagy J.I. (2001a). Identification of sequence, protein isoforms, and distribution of the hyaluronan-binding protein RHAMM in adult and developing rat brain. J. Comp. Neurol. 439, 315–330.10.1002/cne.1353Suche in Google Scholar PubMed

Lynn, B.D., Turley, E.A., and Nagy, J.I. (2001b). Subcellular distribution, calmodulin interaction, and mitochondrial association of the hyaluronan-binding protein RHAMM in rat brain. J. Neurosci. Res. 65, 6–16.10.1002/jnr.1122Suche in Google Scholar PubMed

MacAulay, N. and Zeuthen, T. (2010). Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168, 941–956.10.1016/j.neuroscience.2009.09.016Suche in Google Scholar PubMed

MacAulay, N. and Zeuthen, T. (2012). Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem. Res. 37, 2299–2309.10.1007/s11064-012-0731-3Suche in Google Scholar PubMed

Machado, R., Soltani, N., Dufour, S., Salam, M.T., Carlen, P.L., Genov, R., and Thompson, M. (2016). Biofouling-resistant impedimetric sensor for array high-resolution extracellular potassium monitoring in the brain. Biosensors 6, 53.10.3390/bios6040053Suche in Google Scholar PubMed PubMed Central

MacVicar, B.A., Feighan, D., Brown, A., and Ransom, B. (2002). Intrinsic optical signals in the rat optic nerve: role for K+ uptake via NKCC1 and swelling of astrocytes. Glia 37, 114–123.10.1002/glia.10023Suche in Google Scholar PubMed

McBain, C.J., Traynelis, S.F., and Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science 249, 674–677.10.1126/science.2382142Suche in Google Scholar PubMed

McNamara, J.O., Huang, Y.Z., and Leonard, A.S. (2006). Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE 356, 12.10.1126/stke.3562006re12Suche in Google Scholar PubMed

McRae, P.A. and Porter, B.E. (2012). The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem. Int. 61, 963–972.10.1016/j.neuint.2012.08.007Suche in Google Scholar PubMed PubMed Central

McRae, P.A., Rocco, M.M., Kelly, G., Brumberg, J.C., and Matthews, R.T. (2007). Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J. Neurosci. 27, 5405–5413.10.1523/JNEUROSCI.5425-06.2007Suche in Google Scholar PubMed PubMed Central

McRae, P.A., Baranov, E., Rogers, S.L., and Porter, B.E. (2012). Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur. J. Neurosci. 36, 3471–3482.10.1111/j.1460-9568.2012.08268.xSuche in Google Scholar PubMed PubMed Central

Miles, R. and Wong, R.K.S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J. Physiol. 373, 397–418.10.1113/jphysiol.1986.sp016055Suche in Google Scholar PubMed PubMed Central

Miles, R. and Wong, R.K.S. (1987). Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J. Physiol. 388, 611–629.10.1113/jphysiol.1987.sp016634Suche in Google Scholar PubMed

Miles, R., Wong, R.K.S., and Traub, R.D. (1984). Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions. Neuroscience 12, 1179–1189.10.1016/0306-4522(84)90012-5Suche in Google Scholar PubMed

Milman, S. and Epstein, E.J. (2010). Proton pump inhibitor-induced hypocalcemic seizure in a patient with hypoparathyroidism. Endocr. Pract. 17, 104–107.10.4158/EP10241.CRSuche in Google Scholar

Mody, I., Lambert, J.D., and Heinemann, U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 57, 869–888.10.1152/jn.1987.57.3.869Suche in Google Scholar PubMed

Monslow, J., Sato, N., Mack, J.A., and Maytin, E.V. (2009). Wounding-induced synthesis of hyaluronic acid in organotypic epidermal cultures requires the release of heparin-binding egf and activation of the EGFR. J. Invest. Dermatol. 129, 2046–2058.10.1038/jid.2009.9Suche in Google Scholar PubMed

Moody, W.J., Futamachi, K.J., and Prince, D.A. (1974). Extracellular potassium activity during epileptogenesis. Exp. Neurol. 42, 248–263.10.1016/0014-4886(74)90023-5Suche in Google Scholar PubMed

Mylonakou, M.N., Petersen, P.H., Rinvik, E., Rojek, A., Valdimarsdottir, E., Zelenin, S., Zeuthen, T., Nielsen, S., Ottersen, O.P., and Amiry-Moghaddam, M. (2009). Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons. J. Neurosci. Res. 87, 1310–1322.10.1002/jnr.21952Suche in Google Scholar PubMed

Nagelhus, E.A. and Ottersen, O.P. (2013). Physiological roles of aquaporin-4 in brain. Physiol. Rev. 93, 1543–1562.10.1152/physrev.00011.2013Suche in Google Scholar PubMed PubMed Central

Nagelhus, E.A., Mathiisen, T.M., and Ottersen, O.P. (2004). Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129, 905–913.10.1016/j.neuroscience.2004.08.053Suche in Google Scholar PubMed

Nagy, J.I., Hacking, J., Frankenstein, U.N., and Turley, E.A. (1995). Requirement of the hyaluronan receptor RHAMM in neurite extension and motility as demonstrated in primary neurons and neuronal cell lines. J. Neurosci. 15, 241–252.10.1523/JNEUROSCI.15-01-00241.1995Suche in Google Scholar PubMed

Nicholson, C. (2001). Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64, 815–884.10.1088/0034-4885/64/7/202Suche in Google Scholar

Nicholson, C. and Phillips, J.M. (1981). Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257.10.1113/jphysiol.1981.sp013981Suche in Google Scholar PubMed

Nicholson, C. and Syková, E. (1998). Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215.10.1016/S0166-2236(98)01261-2Suche in Google Scholar PubMed

Nielsen, S., Nagelhus, E.A., Amiry-Moghaddam, M., Bourque, C., Agre, P., and Ottersen, O.P. (1997). Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180.10.1523/JNEUROSCI.17-01-00171.1997Suche in Google Scholar PubMed

Nowicka, D., Soulsby, S., Skangiel-Kramska, J., and Glazewski, S. (2009). Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur. J. Neurosci. 30, 2053–2063.10.1111/j.1460-9568.2009.06996.xSuche in Google Scholar PubMed

Ogata, K. and Kosaka, T. (2002). Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221–233.10.1016/S0306-4522(02)00041-6Suche in Google Scholar PubMed

Oohashi, T., Edamatsu, M., Bekku, Y., and Carulli, D. (2015). The hyaluronan and proteoglycan link proteins: organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp. Neurol. 274, 134–144.10.1016/j.expneurol.2015.09.010Suche in Google Scholar PubMed

Østby, I., Øyehaug, L., Einevoll, G.T., Nagelhus, E.A., Plahte, E., Zeuthen, T., Lloyd, C.M., Ottersen, O.P., and Omholt, S.W. (2009). Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput. Biol. 5, e1000272.10.1371/journal.pcbi.1000272Suche in Google Scholar PubMed PubMed Central

Papadopoulos, M.C. and Verkman, A.S. (2013). Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 14, 265–277.10.1038/nrn3468Suche in Google Scholar PubMed PubMed Central

Pavicic, T., Gauglitz, G.G., Lersch, P., Schwach-Abdellaoui, K., Malle, B., Korting, H.C., and Farwick, M. (2011). Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J. Drugs Dermatol. 10, 990–1000.Suche in Google Scholar PubMed

Perreault, P. and Avoli, M. (1992). 4-Aminopyridine-induced epileptiform activity and a GABA-mediated long-lasting depolarization in the rat hippocampus. J. Neurosci. 12, 104–115.10.1523/JNEUROSCI.12-01-00104.1992Suche in Google Scholar

Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W., and Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251.10.1126/science.1072699Suche in Google Scholar PubMed

Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N., and Maffei L. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proc. Natl. Acad. Sci. U. S. A. 103, 8517–8522.10.1073/pnas.0602657103Suche in Google Scholar PubMed

Preston, M., Gong, X., Su, W., Matsumoto, S.G., Banine, F., Winkler, C., Foster, S., Xing, R., Struve, J., Dean, J., et al. (2013). Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann. Neurol. 73, 266–280.10.1002/ana.23788Suche in Google Scholar PubMed

Prusova, A., Conte, P., Kucerík, J., and Alonzo, G. (2010a). Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry. Anal. Bioanal. Chem. 397, 3023–3028.10.1007/s00216-010-3855-9Suche in Google Scholar

Prusova, A., Smejkalova, D., Chytil, M., Velebny, V., and Kucerik, J. (2010b). An alternative DSC approach to study hydration of hyaluronan. Carbohydr. Polym. 82, 498–503.10.1016/j.carbpol.2010.05.022Suche in Google Scholar

Pumain, R., Menini, C., Heinemann, U., Louvel, J., and Silva-Barrat, C. (1985). Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp. Neurol. 89, 250–258.10.1016/0014-4886(85)90280-8Suche in Google Scholar PubMed

Qiu, C., Shivacharan, R.S., Zhang, M., and Durand, D.M. (2015). Can neural activity propagate by endogenous electrical field? J. Neurosci. 35, 15800–15811.10.1523/JNEUROSCI.1045-15.2015Suche in Google Scholar PubMed PubMed Central

Qu, C., Rilla, K., Tammi, R., Tammi, M., Kröger, H., and Lammi M.J. (2014). Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3. Int. J. Biochem. Cell Biol. 48, 45–54.10.1016/j.biocel.2013.12.016Suche in Google Scholar PubMed

Rausche, G., Igelmund, P., and Heinemann, U. (1990). Effects of changes in extracellular potassium, magnesium and calcium concentration on synaptic transmission in area CA1 and the dentate gyrus of rat hippocampal slices. Pflugers Arch. 415, 588–593.10.1007/BF02583510Suche in Google Scholar PubMed

Risher, W.C., Andrew, R.D., and Kirov, S.A. (2009). Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57, 207–221.10.1002/glia.20747Suche in Google Scholar PubMed PubMed Central

Roper, S.N., Obenaus, A., and Dudek, F.E. (1992). Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann. Neurol. 31, 81–85.10.1002/ana.410310115Suche in Google Scholar PubMed

Saghyan, A., Lewis, D.P., Hrabe, J., and Hrabetova, S. (2012). Extracellular diffusion in laminar brain structures exemplified by hippocampus. J. Neurosci. Methods 205, 110–118.10.1016/j.jneumeth.2011.12.008Suche in Google Scholar PubMed

Salah, A. and Perkins, K.L. (2008). Effects of subtype-selective group I mGluR antagonists on synchronous activity induced by 4-aminopyridine/CGP 55845 in adult guinea pig hippocampal slices. Neuropharmacology 55, 47–54.10.1016/j.neuropharm.2008.04.010Suche in Google Scholar

Salah, A. and Perkins, K.L. (2011). Persistent ictal-like activity in rat entorhinal/perirhinal cortex following washout of 4-aminopyridine. Epilepsy Res. 94, 163–176.10.1016/j.eplepsyres.2011.01.017Suche in Google Scholar PubMed

Saly, V. and Andrew, R.D. (1993). CA3 neuron excitation and epileptiform discharge are sensitive to osmolality. J. Neurophysiol. 69, 2200–2208.10.1152/jn.1993.69.6.2200Suche in Google Scholar PubMed

Scemes, E. and Spray, D.C. (1998). Increased intercellular communication in mouse astrocytes exposed to hyposmotic shocks. Glia 24, 74–84.10.1002/(SICI)1098-1136(199809)24:1<74::AID-GLIA8>3.0.CO;2-0Suche in Google Scholar PubMed

Schmidt, D. and Löscher, W. (2005). Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46, 858–877.10.1111/j.1528-1167.2005.54904.xSuche in Google Scholar PubMed

Schwartzkroin, P.A. and Prince, D.A. (1978). Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res. 147, 117–130.10.1016/0006-8993(78)90776-XSuche in Google Scholar PubMed

Servaty, R., Schiller, J., Binder, H., and Arnold, K. (2001). Hydration of polymeric components of cartilage – an infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. Int. J. Biol. Macromol. 28, 121–127.10.1016/S0141-8130(00)00161-6Suche in Google Scholar PubMed

Shahar, E., Derchansky, M., and Carlen, P.L. (2009). The role of altered tissue osmolality on the characteristics and propagation of seizure activity in the intact isolated mouse hippocampus. Clin. Neurophysiol. 120, 673–678.10.1016/j.clinph.2009.01.014Suche in Google Scholar PubMed

Shawkat, H., Westwood, M.M., and Mortimer, A. (2012). Mannitol: a review of its clinical uses. Cont. Educ. Anaesth. Crit. Care Pain 12, 82–85.10.1093/bjaceaccp/mkr063Suche in Google Scholar

Sherman, L.S., Struve, J.N., Rangwala, R., Wallingford, N.M., Tuohy, T.M, and Kuntz, C. 4th (2002). Hyaluronate-based extracellular matrix: keeping glia in their place. Glia 38, 93–102.10.1002/glia.10053Suche in Google Scholar PubMed

Sherman, L.S., Matsumoto, S., Su, W., Srivastava, T., and Back, S.A. (2015). Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int. J. Cell Biol. 2015, 368584.10.1155/2015/368584Suche in Google Scholar PubMed

Shuai, J., Bikson, M., Hahn, P.J., Lian, J., and Durand, D.M. (2003). Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution. Biophys. J. 84, 2099–2111.10.1016/S0006-3495(03)75017-6Suche in Google Scholar PubMed

Siiskonen, H., Kärnä, R., Hyttinen, J.M., Tammi, R.H., Tammi, M.I., and Rilla, K. (2014). Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat. Exp. Cell. Res. 320, 153–163.10.1016/j.yexcr.2013.09.021Suche in Google Scholar PubMed

Singh, T.S., Mehta, B., and Trivedi, A. (2016). Hypocalcemia presenting with multifocal seizure in a baby with osteopetrosis. J. Paediatr. Child Health 52, 246–246.10.1111/jpc.12648Suche in Google Scholar

Sloane, J.A., Batt, C., Ma, Y., Harris, Z.M., Trapp, B., and Vartanian, T. (2010). Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. U. S. A. 107, 11555–11560.10.1073/pnas.1006496107Suche in Google Scholar PubMed

Snow, R.W. and Dudek, F.E. (1984). Synchronous epileptiform bursts without chemical transmission in CA2, CA3 and dentate areas of the hippocampus. Brain Res. 298, 382–385.10.1016/0006-8993(84)91443-4Suche in Google Scholar PubMed

Somjen, GG. (2004). Ions in the Brain: Normal Function, Seizures, and Stroke (New York, NY, USA: Oxford University Press, Inc.).Suche in Google Scholar

Somjen, G.G. and Müller, M. (2000). Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885, 102–110.10.1016/S0006-8993(00)02948-6Suche in Google Scholar PubMed

Spicer, A.P. and McDonald, J.A. (1998). Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 273, 1923–1932.10.1074/jbc.273.4.1923Suche in Google Scholar PubMed

Strange, K. (1992). Regulation of solute and water balance and cell volume in the central nervous system. J. Am. Soc. Nephrol. 3, 12–27.10.1681/ASN.V3112Suche in Google Scholar PubMed

Su, H., Alroy, G., Kirson, E.D., and Yaari, Y. (2001). Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J. Neurosci. 21, 4173–4182.10.1523/JNEUROSCI.21-12-04173.2001Suche in Google Scholar PubMed

Su, G., Kintner, D.B., Flagella, M., Shull, G.E., and Sun, D. (2002). Astrocytes from Na+-K+-Cl cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. Cell Physiol. 282, C1147–1160.10.1152/ajpcell.00538.2001Suche in Google Scholar PubMed

Syková, E. and Nicholson, C. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340.10.1152/physrev.00027.2007Suche in Google Scholar PubMed

Syková, E., Vorisek, I., Mazel, T., Antonova, T., and Schachner, M. (2005). Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur. J. Neurosci. 22, 1873–1880.10.1111/j.1460-9568.2005.04375.xSuche in Google Scholar PubMed

Sypert, G.W. and Ward, A.A. Jr. (1974). Changes in extracellular potassium activity during neocortical propagated seizures. Exp. Neurol. 45, 19–41.10.1016/0014-4886(74)90097-1Suche in Google Scholar

Tammi, R.H., Passi, A.G., Rilla, K., Karousou, E., Vigetti, D., Makkonen, K., and Tammi, M.I. (2011). Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 278, 1419–1428.10.1111/j.1742-4658.2011.08070.xSuche in Google Scholar PubMed

Taylor, C.P. and Dudek, F.E. (1982). Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218, 810–812.10.1126/science.7134978Suche in Google Scholar PubMed

Thompson, S.M. and Gähwiler, B.H. (1989). Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523.10.1152/jn.1989.61.3.512Suche in Google Scholar PubMed

Thorne, R.G. and Nicholson, C. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. U. S. A. 103, 5567–5572.10.1073/pnas.0509425103Suche in Google Scholar PubMed PubMed Central

Thorne, R.F., Legg, J.W., and Isacke, C.M. (2004). The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J. Cell Sci. 117, 373–380.10.1242/jcs.00954Suche in Google Scholar PubMed

Tien, J.Y.L. and Spicer, A.P. (2005). Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev. Dyn. 233, 130–141.10.1002/dvdy.20328Suche in Google Scholar PubMed

Toole, B.P. (2001). Hyaluronan in morphogenesis. Semin. Cell. Dev. Biol. 12, 79–87.10.1006/scdb.2000.0244Suche in Google Scholar PubMed

Toole, B.P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539.10.1038/nrc1391Suche in Google Scholar PubMed

Toole, B.P. and Trelstad, R.L. (1971). Hyaluronate production and removal during corneal development in the chick. Dev. Biol. 26, 28–35.10.1016/0012-1606(71)90104-7Suche in Google Scholar PubMed

Towler, M.C. and Hardie, D.G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341.10.1161/01.RES.0000256090.42690.05Suche in Google Scholar PubMed

Traub, R.D. and Wong, R.K.S. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science 216, 745–747.10.1126/science.7079735Suche in Google Scholar PubMed

Traub, R.D., Dudek, F.E., Taylor, C.P., and Knowles, W.D. (1985). Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience 14, 1033–1038.10.1016/0306-4522(85)90274-XSuche in Google Scholar PubMed

Traynelis, S.F. and Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276.10.1152/jn.1988.59.1.259Suche in Google Scholar PubMed

Traynelis, S.F. and Dingledine, R. (1989). Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. J. Neurophysiol. 61, 927–938.10.1152/jn.1989.61.5.927Suche in Google Scholar PubMed

Tsai, P.L., Lian, L.M., and Chen, W.H. (2009). Hypocalcemic seizure mistaken for idiopathic epilepsy in two cases of DiGeorge syndrome (chromosome 22q11 deletion syndrome). Acta Neurol. Taiwan 18, 272–275.Suche in Google Scholar PubMed

Turley, E.A., Hossain, M.Z., Sorokan, T., Jordan, L.M., and Nagy, J.I. (1994). Astrocyte and microglial motility in vitro is functionally dependent on the hyaluronan receptor RHAMM. Glia 12, 68–80.10.1002/glia.440120109Suche in Google Scholar PubMed

Underhill, C.B. and Toole, B.P. (1982). Transformation-dependent loss of the hyaluronate-containing coats of cultured cells. J. Cell. Physiol. 110, 123–128.10.1002/jcp.1041100204Suche in Google Scholar PubMed

Uyama, T., Kitagawa, H., and Sugahara, K. (2007). Biosynthesis of glycosaminoglycans and proteoglycans. In: J.P. Kamerling, ed. Comprehensive glycoscience, Vol. 3. (Oxford, England: Elsevier), pp. 79–104.10.1016/B978-044451967-2/00036-2Suche in Google Scholar

Vedunova, M., Sakharnova, T., Mitroshina, E., Perminova, M., Pimashkin, A., Zakharov, Y., Dityatev, A., and Mukhina, I. (2013). Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures. Front. Cell. Neurosci. 7, 149.10.3389/fncel.2013.00149Suche in Google Scholar PubMed PubMed Central

Verbalis, J.G. (2010). Brain volume regulation in response to changes in osmolality. Neuroscience 168, 862–870.10.1016/j.neuroscience.2010.03.042Suche in Google Scholar PubMed

Vigetti, D., Ori, M., Viola, M., Genasetti, A., Karousou, E., Rizzi, M., Pallotti, F., Nardi, I., Hascall, V.C., De Luca, G., et al. (2006). Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J. Biol. Chem. 281, 8254–8263.10.1074/jbc.M508516200Suche in Google Scholar PubMed

Vigetti, D., Genasetti, A., Karousou, E., Viola, M., Clerici, M., Bartolini, B., Moretto, P., De Luca, G., Hascall, V.C., and Passi, A. (2009). Modulation of hyaluronan synthase activity in cellular membrane fractions. J. Biol. Chem. 284, 30684–30694.10.1074/jbc.M109.040386Suche in Google Scholar PubMed PubMed Central

Vigetti, D., Deleonibus, S., Moretto, P., Karousou, E., Viola, M., Bartolini, B., Hascall, V.C., Tammi, M., De Luca, G., and Passi, A. (2012). Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J. Biol. Chem. 287, 35544–35555.10.1074/jbc.M112.402347Suche in Google Scholar PubMed PubMed Central

Vigetti, D., Viola, M., Karousou, E., De Luca, G., and Passi, A. (2014). Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13.10.1016/j.matbio.2013.10.002Suche in Google Scholar PubMed

Villa, C. and Combi, R. (2016). Potassium channels and human epileptic phenotypes: an updated overview. Front. Cell. Neurosci. 10, 81.10.3389/fncel.2016.00081Suche in Google Scholar PubMed PubMed Central

Walther, H., Lambert, J.D., Jones, R.S., Heinemann, U., and Hamon, B. (1986). Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci. Lett. 69, 156–161.10.1016/0304-3940(86)90595-1Suche in Google Scholar PubMed

Walz, W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int. 36, 291–300.10.1016/S0197-0186(99)00137-0Suche in Google Scholar PubMed

Wang, L., Dufour, S., Valiante, T.A., and Carlen, P.L. (2016). Extracellular potassium and seizures: excitation, inhibition and the role of Ih. Int. J. Neural Syst. 26, 1650044.10.1142/S0129065716500441Suche in Google Scholar PubMed

Weigel, PH. (2015). Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int. J. Cell Biol. 2015, 367579.10.1155/2015/367579Suche in Google Scholar

Weiss, S.A. and Faber, D.S. (2010). Field effects in the CNS play functional roles. Front. Neural Circuits 4, 15.10.3389/fncir.2010.00015Suche in Google Scholar PubMed

Weissmann, B. and Meyer, K. (1954). The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord. J. Am. Chem. Soc. 76, 1753–1757.10.1021/ja01636a010Suche in Google Scholar

Weissmann, B., Meyer, K., Sampson, P., and Linker, A. (1954). Isolation of oligosaccharides enzymatically produced from hyaluronic acid. J. Biol. Chem. 208, 417–429.10.1016/S0021-9258(18)65660-1Suche in Google Scholar PubMed

Xiao, F., Nicholson, C., Hrabe, J., and Hrabetova, S. (2008). Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging. Biophys. J. 95, 1382–1392.10.1529/biophysj.107.124743Suche in Google Scholar PubMed PubMed Central

Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., et al. (2013). Sleep drives metabolic clearance from the adult brain. Science 342, 373–377.10.1126/science.1241224Suche in Google Scholar PubMed PubMed Central

Yaari, Y., Konnerth, A., and Heinemann, U. (1983). Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp. Brain Res. 51, 153–156.10.1007/BF00236813Suche in Google Scholar PubMed

Yaari, Y., Konnerth, A., and Heinemann, U. (1986). Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J. Neurophysiol. 56, 424–438.10.1152/jn.1986.56.2.424Suche in Google Scholar

Yamaguchi, Y. (2000). Lecticans: organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57, 276–289.10.1007/PL00000690Suche in Google Scholar PubMed

Yamamoto, H., Tobisawa, Y., Inubushi, T., Irie, F., and Yamaguchi, Y. (2017). A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell surface hyaluronidase. J. Biol. Chem. 292, 7304–7313.10.1074/jbc.M116.770149Suche in Google Scholar PubMed

Yoshida, H., Nagaoka, A., Kusaka-Kikushima, A., Tobiishi, M., Kawabata, K., Sayo, T., Sakai, S., Sugiyama, Y., Enomoto, H., Okada, Y., et al. (2013). KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc. Natl. Acad. Sci. U. S. A. 110, 5612–5617.10.1073/pnas.1215432110Suche in Google Scholar PubMed

Young, I.J. (1963). Reversible seizures produced by neuronal hyaluronic acid depletion. Exp. Neurol. 8, 195–202.10.1016/0014-4886(63)90031-1Suche in Google Scholar

Zeuthen, T. and MacAulay, N. (2012). Cotransport of water by Na+-K+-2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J. Physiol. 590, 1139–1154.10.1113/jphysiol.2011.226316Suche in Google Scholar PubMed

Zhang, M., Ladas, T.P., Qiu, C., Shivacharan, R.S., Gonzalez-Reyes, L.E., and Durand, D.M. (2014). Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J. Neurosci. 34, 1409–1419.10.1523/JNEUROSCI.3877-13.2014Suche in Google Scholar PubMed

Zhou, B., Weigel, J.A., Saxena, A., and Weigel, P.H. (2002). Molecular cloning and functional expression of the rat 175-kDa hyaluronan receptor for endocytosis. Mol. Biol. Cell 13, 2853–2868.10.1091/mbc.02-03-0048Suche in Google Scholar PubMed

Ziburkus, J., Cressman, J.R., Barreto, E., and Schiff, F.J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. J. Neurophysiol. 95, 3948–3954.10.1152/jn.01378.2005Suche in Google Scholar PubMed

Zuckermann, E.C. and Glaser, G.H. (1968). Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20, 87–110.10.1016/0014-4886(68)90126-XSuche in Google Scholar PubMed

Received: 2017-2-27
Accepted: 2017-6-3
Published Online: 2017-8-5
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0017/html?lang=de
Button zum nach oben scrollen