Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly population. AD is associated with the buildup of β-amyloid and tau, which aggregate into extracellular plaques and neurofibrillary tangles. Although the exact mechanism of pathological process of AD is unclear, the dysfunction of protein degradation mechanisms has been proposed to play an important role in AD. The cellular degradation of abnormal or misfolded proteins consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy-lysosomal pathway (ALP), and interaction of molecular chaperones with UPS or ALP. Any disturbance to these systems causes proteins to accumulate, resulting in pathological process of AD. In this review, we summarize the knowledge of protein degradation pathways in the pathogenesis of AD in light of the current literature. In the future, the regulation UPS or ALP machineries could be the cornerstones of the treatment of AD.
Acknowledgments
This work was supported by funding from the Shandong Provincial Natural Science Foundation of China (No. ZR2016CQ23) and the National Natural Science Foundation of China (No.31601194).
References
Blair, L.J., Sabbagh, J.J., and Dickey, C.A. (2014). Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin. Ther. Targets 18, 1219–1232.10.1517/14728222.2014.943185Suche in Google Scholar PubMed PubMed Central
Caccamo, A., Magri, A., Medina, D.X., Wisely, E.V., Lopez-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.10.1111/acel.12057Suche in Google Scholar PubMed PubMed Central
Calvo-Rodriguez, M., de la Fuente, C., Garcia-Durillo, M., Garcia-Rodriguez, C., Villalobos, C., and Nunez, L. (2017). Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J. Neuroinflammation 14, 24.10.1186/s12974-017-0802-0Suche in Google Scholar PubMed PubMed Central
Cheng, B., Anand, P., Kuang, A., Akhtar, F., and Scofield, V.L. (2016). N-Acetylcysteine in combination with IGF-1 enhances neuroprotection against proteasome dysfunction-induced neurotoxicity in SH-SY5Y cells. Parkinson’s Dis. 2016, 6564212.10.1155/2016/6564212Suche in Google Scholar PubMed PubMed Central
Choi, J., Gao, J., Kim, J., Hong, C., Kim, J., and Tontonoz, P. (2015). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Abeta amyloidosis. Sci. Transl. Med. 7, 314ra184.10.1126/scitranslmed.aad1904Suche in Google Scholar PubMed PubMed Central
Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P., and Yang, A.J. (2006). Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825–10838.10.1074/jbc.M512786200Suche in Google Scholar PubMed
Friedman, L.G., Qureshi, Y.H., and Yu, W.H. (2015). Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics 12, 94–108.10.1007/s13311-014-0320-zSuche in Google Scholar PubMed PubMed Central
Gadhave, K., Bolshette, N., Ahire, A., Pardeshi, R., Thakur, K., Trandafir, C., Istrate, A., Ahmed, S., Lahkar, M., Muresanu, D.F., et al. (2016). The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med. 20, 1392–1407.10.1111/jcmm.12817Suche in Google Scholar PubMed PubMed Central
Gentier, R.J. and van Leeuwen, F.W. (2015). Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer’s disease. Front. Mol. Neurosci. 8, 47.10.3389/fnmol.2015.00047Suche in Google Scholar PubMed PubMed Central
Gentier, R.J., Verheijen, B.M., Zamboni, M., Stroeken, M.M., Hermes, D.J., Kusters, B., Steinbusch, H.W., Hopkins, D.A., and Van Leeuwen, F.W. (2015). Localization of mutant ubiquitin in the brain of a transgenic mouse line with proteasomal inhibition and its validation at specific sites in Alzheimer’s disease. Front. Neuroanat. 9, 26.10.3389/fnana.2015.00026Suche in Google Scholar PubMed PubMed Central
Gerakis, Y., Dunys, J., Bauer, C., and Checler, F. (2016). Abeta42 oligomers modulate beta-secretase through an XBP-1s-dependent pathway involving HRD1. Sci. Rep. 6, 37436.10.1038/srep37436Suche in Google Scholar PubMed PubMed Central
Guglielmotto, M., Monteleone, D., Boido, M., Piras, A., Giliberto, L., Borghi, R., Vercelli, A., Fornaro, M., Tabaton, M. and Tamagno, E. (2012). Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell 11, 834–844.10.1111/j.1474-9726.2012.00854.xSuche in Google Scholar PubMed
Guo, J.L. and Lee, V.M. (2011). Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331.10.1074/jbc.M110.209296Suche in Google Scholar PubMed PubMed Central
Hamano, T., Gendron, T.F., Causevic, E., Yen, S.H., Lin, W.L., Isidoro, C., Deture, M., and Ko, L.W. (2008). Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur. J. Neurosci. 27, 1119–1130.10.1111/j.1460-9568.2008.06084.xSuche in Google Scholar PubMed
Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.10.1038/nature04724Suche in Google Scholar PubMed
Hong, L., Huang, H.C., and Jiang, Z.F. (2014). Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer’s disease. Neurol. Res. 36, 276–282.10.1179/1743132813Y.0000000288Suche in Google Scholar PubMed
Jansen, A.H., Reits, E.A., and Hol, E.M. (2014). The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front. Mol. Neurosci. 7, 73.10.3389/fnmol.2014.00073Suche in Google Scholar PubMed PubMed Central
Jo, C., Gundemir, S., Pritchard, S., Jin, Y.N., Rahman, I., and Johnson, G.V. (2014). Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496.10.1038/ncomms4496Suche in Google Scholar PubMed PubMed Central
Kaneko, M., Koike, H., Saito, R., Kitamura, Y., Okuma, Y., and Nomura, Y. (2010). Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-β generation. J. Neurosci. 30, 3924–3932.10.1523/JNEUROSCI.2422-09.2010Suche in Google Scholar PubMed PubMed Central
Khandelwal, P.J., Herman, A.M., Hoe, H.S., Rebeck, G.W., and Moussa, C.E. (2011). Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum. Mol. Genet. 20, 2091–2102.10.1093/hmg/ddr091Suche in Google Scholar PubMed PubMed Central
Kim, S.I., Lee, W.K., Kang, S.S., Lee, S.Y., Jeong, M.J., Lee, H.J., Kim, S.S., Johnson, G.V., and Chun, W. (2011). Suppression of autophagy and activation of glycogen synthase kinase 3β facilitate the aggregate formation of tau. Korean J. Physiol. Pharmacol. 15, 107–114.10.4196/kjpp.2011.15.2.107Suche in Google Scholar PubMed PubMed Central
Kizilarslanoglu, M.C. and Ulger, Z. (2015). Role of autophagy in the pathogenesis of Alzheimer disease. Turk. J. Med. Sci. 45, 998–1003.10.3906/sag-1407-75Suche in Google Scholar PubMed
Lamoke, F., Mazzone, V., Persichini, T., Maraschi, A., Harris, M.B., Venema, R.C., Colasanti, M., Gliozzi, M., Muscoli, C., Bartoli, M., et al. (2015). Amyloid beta peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J. Neuroinflammation 12, 84.10.1186/s12974-015-0304-xSuche in Google Scholar PubMed PubMed Central
Lecker, S.H., Goldberg, A.L., and Mitch, W.E. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819.10.1681/ASN.2006010083Suche in Google Scholar PubMed
Lee, J.H., Yu, W.H., Kumar, A., Lee, S., Mohan, P.S., Peterhoff, C.M., Wolfe, D.M., Martinez-Vicente, M., Massey, A.C., Sovak, G., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158.10.1016/j.cell.2010.05.008Suche in Google Scholar PubMed PubMed Central
Li, Q., Liu, Y., and Sun, M. (2017). Autophagy and Alzheimer’s disease. Cell. Mol. Neurobiol. 37, 377–388.10.1007/s10571-016-0386-8Suche in Google Scholar PubMed
Ling, D., Magallanes, M., and Salvaterra, P.M. (2014). Accumulation of amyloid-like Abeta1-42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro 6, e00139.10.1042/AN20130044Suche in Google Scholar PubMed PubMed Central
Liu, X., Hao, W., Qin, Y., Decker, Y., Wang, X., Burkart, M., Schotz, K., Menger, M.D., Fassbender, K., and Liu, Y. (2015a). Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav. Immun. 46, 121–131.10.1016/j.bbi.2015.01.011Suche in Google Scholar PubMed
Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., and Wei, J. (2015b). The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid. Med. Cell. Longev. 2015, 352723.10.1155/2015/352723Suche in Google Scholar PubMed PubMed Central
Lonskaya, I., Shekoyan, A.R., Hebron, M.L., Desforges, N., Algarzae, N.K., and Moussa, C.E. (2013). Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer’s disease. J. Alzheimer’s Dis. JAD 33, 231–247.10.3233/JAD-2012-121141Suche in Google Scholar PubMed
Lonskaya, I., Hebron, M.L., Desforges, N.M., Schachter, J.B., and Moussa, C.E. (2014). Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. 92, 373–386.10.1007/s00109-013-1112-3Suche in Google Scholar PubMed PubMed Central
Ma, L.Y., Lv, Y.L., Huo, K., Liu, J., Shang, S.H., Fei, Y.L., Li, Y.B., Zhao, B.Y., Wei, M., Deng, Y.N., et al. (2017). Autophagy-lysosome dysfunction is involved in Aβ deposition in STZ-induced diabetic rats. Behav. Brain Res. 320, 484–493.10.1016/j.bbr.2016.10.031Suche in Google Scholar PubMed
Matej, R., Rohan, Z., Holada, K., and Olejar, T. (2015). The contribution of proteinase-activated receptors to intracellular signaling, transcellular transport and autophagy in Alzheimer’s disease. Curr. Alzheimer Res. 12, 2–12.10.2174/1567205012666141218123202Suche in Google Scholar PubMed
McKinnon, C. and Tabrizi, S.J. (2014). The ubiquitin-proteasome system in neurodegeneration. Antioxid. Redox Signal. 21, 2302–2321.10.1089/ars.2013.5802Suche in Google Scholar PubMed
Myeku, N., Clelland, C.L., Emrani, S., Kukushkin, N.V., Yu, W.H., Goldberg, A.L., and Duff, K.E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22, 46–53.10.1038/nm.4011Suche in Google Scholar PubMed PubMed Central
Necchi, D., Lomoio, S., and Scherini, E. (2011). Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice. Exp. Neurol. 232, 114–118.10.1016/j.expneurol.2011.08.009Suche in Google Scholar PubMed
Nilsson, P. and Saido, T.C. (2014). Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. BioEssays 36, 570–578.10.1002/bies.201400002Suche in Google Scholar PubMed PubMed Central
Nixon, R.A. and Yang, D.S. (2011). Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol. Dis. 43, 38–45.10.1016/j.nbd.2011.01.021Suche in Google Scholar PubMed PubMed Central
Penke, B., Bogar, F., and Fulop, L. (2016). Protein folding and misfolding, endoplasmic reticulum stress in neurodegenerative diseases: in trace of novel drug targets. Curr. Protein Peptide Sci. 17, 169–182.10.2174/1389203716666151102104653Suche in Google Scholar PubMed
Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B., et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199.10.1172/JCI33585Suche in Google Scholar PubMed
Qu, A., Huang, F., Li, A., Yang, H., Zhou, H., Long, J., and Shi, L. (2017). The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of β-amyloid fibrils and reducing consequent toxicity. Chem. Commun. 53, 1289–1292.10.1039/C6CC07803FSuche in Google Scholar
Querfurth, H.W. and LaFerla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.10.1056/NEJMra0909142Suche in Google Scholar PubMed
Renziehausen, J., Hiebel, C., Nagel, H., Kundu, A., Kins, S., Kogel, D., Behl, C., and Hajieva, P. (2015). The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity. J. Alzheimer’s Dis. 44, 879–896.10.3233/JAD-140600Suche in Google Scholar PubMed
Rosso, P., Moreno, S., Fracassi, A., Rocco, M.L., and Aloe, L. (2015). Nerve growth factor and autophagy: effect of nasal anti-NGF-antibodies administration on Ambra1 and Beclin-1 expression in rat brain. Growth Factors 33, 401–409.10.3109/08977194.2015.1122002Suche in Google Scholar PubMed
Saito, R., Kaneko, M., Okuma, Y., and Nomura, Y. (2010). Correlation between decrease in protein levels of ubiquitin ligase HRD1 and amyloid-beta production. J. Pharmacol. Sci. 113, 285–288.10.1254/jphs.10118SCSuche in Google Scholar PubMed
Sakono, M. and Zako, T. (2010). Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J. 277, 1348–1358.10.1111/j.1742-4658.2010.07568.xSuche in Google Scholar PubMed
Sala, G., Marinig, D., Arosio, A., and Ferrarese, C. (2016). Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson’s disease. Front. Mol. Neurosci. 9, 157.10.3389/fnmol.2016.00157Suche in Google Scholar PubMed PubMed Central
Shen, J. and Kelleher, R.J., 3rd. (2007). The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA 104, 403–409.10.1073/pnas.0608332104Suche in Google Scholar PubMed PubMed Central
Singh, A.K. and Pati, U. (2015). CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell 14, 595–604.10.1111/acel.12335Suche in Google Scholar PubMed PubMed Central
Son, S.M., Shin, H.J., Byun, J., Kook, S.Y., Moon, M., Chang, Y.J., and Mook-Jung, I. (2016). Metformin facilitates amyloid-beta generation by beta- and gamma-secretases via autophagy activation. J. Alzheimer’s Dis. 51, 1197–1208.10.3233/JAD-151200Suche in Google Scholar PubMed
Song, S., Kim, S.Y., Hong, Y.M., Jo, D.G., Lee, J.Y., Shim, S.M., Chung, C.W., Seo, S.J., Yoo, Y.J., Koh, J.Y., et al. (2003). Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell 12, 553–563.10.1016/j.molcel.2003.08.005Suche in Google Scholar PubMed
Song, S., Lee, H., Kam, T.I., Tai, M.L., Lee, J.Y., Noh, J.Y., Shim, S.M., Seo, S.J., Kong, Y.Y., Nakagawa, T., et al. (2008). E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Aβ neurotoxicity. J. Cell Biol. 182, 675–684.10.1083/jcb.200711066Suche in Google Scholar PubMed PubMed Central
Takashima, A. (2010). Tau aggregation is a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 7, 665–669.10.2174/156720510793611600Suche in Google Scholar PubMed
Tanaka, K. and Matsuda, N. (2014). Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197–204.10.1016/j.bbamcr.2013.03.012Suche in Google Scholar PubMed
Tanokashira, D., Mamada, N., Yamamoto, F., Taniguchi, K., Tamaoka, A., Lakshmana, M.K., and Araki, W. (2017). The neurotoxicity of amyloid beta-protein oligomers is reversible in a primary neuron model. Mol. Brain 10, 4.10.1186/s13041-016-0284-5Suche in Google Scholar PubMed PubMed Central
Tramutola, A., Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D.A. (2016). It is all about (u)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxid. Med. Cell. Longev. 2016, 2756068.10.1155/2016/2756068Suche in Google Scholar PubMed PubMed Central
Ugalde, C.L., Finkelstein, D.I., Lawson, V.A., and Hill, A.F. (2016). Pathogenic mechanisms of prion protein, amyloid-beta and alpha-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J. Neurochem. 139, 162–180.10.1111/jnc.13772Suche in Google Scholar PubMed
Viola, K.L. and Klein, W.L. (2015). Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183–206.10.1007/s00401-015-1386-3Suche in Google Scholar PubMed PubMed Central
Vriend, J., Ghavami, S., and Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol. Brain 8, 64.10.1186/s13041-015-0155-5Suche in Google Scholar PubMed PubMed Central
Wang, Y. and Mandelkow, E. (2012). Degradation of tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans. 40, 644–652.10.1042/BST20120071Suche in Google Scholar PubMed
Wang, C., Zhang, X., Teng, Z., Zhang, T., and Li, Y. (2014). Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 740, 312–320.10.1016/j.ejphar.2014.06.051Suche in Google Scholar PubMed
Wolfe, D.M., Lee, J.H., Kumar, A., Lee, S., Orenstein, S.J., and Nixon, R.A. (2013). Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 37, 1949–1961.10.1111/ejn.12169Suche in Google Scholar PubMed PubMed Central
Xue, X., Wang, L.R., Sato, Y., Jiang, Y., Berg, M., Yang, D.S., Nixon, R.A., and Liang, X.J. (2014). Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett. 14, 5110–5117.10.1021/nl501839qSuche in Google Scholar PubMed PubMed Central
Yurinskaya, M.M., Mit’kevich, V.A., Evgen’ev, M.B., Makarov, A.A., and Vinokurov, M.G. (2016). Heat-shock protein HSP70 reduces the secretion of TNFα by neuroblastoma cells and human monocytes induced with beta-amyloid peptides. Mol. Biol. 50, 1053–1056.10.1134/S0026893316060236Suche in Google Scholar
Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., Wada, K., and Song, W. (2012a). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J. Neurochem. 120, 1129–1138.10.1111/j.1471-4159.2011.07644.xSuche in Google Scholar PubMed
Zhang, X., Garbett, K., Veeraraghavalu, K., Wilburn, B., Gilmore, R., Mirnics, K., and Sisodia, S.S. (2012b). A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32, 8633–8648.10.1523/JNEUROSCI.0556-12.2012Suche in Google Scholar PubMed PubMed Central
Zhang, M., Cai, F., Zhang, S., Zhang, S., and Song, W. (2014). Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 4, 7298.10.1038/srep07298Suche in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Alzheimer’s disease: as it was in the beginning
- Cognitive impairment in multiple sclerosis – a review of current knowledge and recent research
- The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease
- Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
- Iron in neurodegenerative disorders: being in the wrong place at the wrong time?
- Wearable technology for patients with brain and spinal cord injuries
Artikel in diesem Heft
- Frontmatter
- Alzheimer’s disease: as it was in the beginning
- Cognitive impairment in multiple sclerosis – a review of current knowledge and recent research
- The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease
- Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
- Iron in neurodegenerative disorders: being in the wrong place at the wrong time?
- Wearable technology for patients with brain and spinal cord injuries