Abstract
Since Alzheimer’s disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer’s disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer’s disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer’s disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer’s disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer’s disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Acknowledgments
The authors are thankful to Dr. Alexei Sokolov, Institute of Experimental Medicine, Saint-Petersburg, for comments that improved the manuscript. We would also like to thank Edward Ramsay, Research Institute of Influenza, Saint-Petersburg, for extensive changes which greatly improved the language of the article.
Conflict of interest statement: There are no actual or potential conflicts of interest for the authors on this article.
References
Adinolfi, S., Iannuzzi, C., Prischi, F., Pastore, C., Iametti, S., Martin, S.R., Bonomi, F., and Pastore, A. (2009). Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 16, 390–396.10.1038/nsmb.1579Suche in Google Scholar PubMed
Ajioka, I., Martins, R.A., Bayazitov, I.T., Donovan, S., Johnson, D.A., Frase, S., Cicero, S.A., Boyd, K., Zakharenko, S.S., and Dyer, M.A. (2007). Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131, 378–390.10.1016/j.cell.2007.09.036Suche in Google Scholar PubMed PubMed Central
Al-Olayan, E.M., El-Khadragy, M.F., and Abdel Moneim, A.E. (2015). The protective properties of melatonin against aluminium-induced neuronal injury. Int. J. Exp. Pathol. 96, 196–202.10.1111/iep.12122Suche in Google Scholar PubMed PubMed Central
Alfrey, A.C., LeGendre, G.R., and Kaehny, W.D. (1976). The dialysis encephalopathy syndrome: possible aluminum intoxication. New Engl. J. Med. 294, 184–188.10.1056/NEJM197601222940402Suche in Google Scholar PubMed
Ali-Rahmani, F., Schengrund, C.-L., and Connor, J.R. (2014). HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease. Front. Pharmacol. 5, 165.10.3389/fphar.2014.00165Suche in Google Scholar PubMed PubMed Central
Alzheimer, A. (1907). Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschr Psychiatrie 64, 146–148.Suche in Google Scholar
Arendt, T. (2012). Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol. Neurobiol. 46, 125–135.10.1007/s12035-012-8262-0Suche in Google Scholar PubMed
Arendt, T., Holzer, M., and Gärtner, U. (1998). Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J. Neural. Transm. 105, 949–960.10.1007/s007020050104Suche in Google Scholar PubMed
Arendt, T., Brückner, M.K., Mosch, B., and Lösche, A. (2010). Selective cell death of hyperploid neurons in Alzheimer’s disease. Am. J. Pathol. 177, 15–20.10.2353/ajpath.2010.090955Suche in Google Scholar PubMed PubMed Central
Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, X., Blazey, T.M., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New Engl. J. Med. 367, 795–804.10.1056/NEJMoa1202753Suche in Google Scholar PubMed PubMed Central
Bell, R.D., Sagare, A.P., Friedman, A.E., Bedi, G.S., Holtzman, D.M., Deane, R., and Zlokovic, B.V. (2007). Transport pathways for clearance of human Alzheimer’s amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cerebr. Blood F. Met. 27, 909–918.10.1038/sj.jcbfm.9600419Suche in Google Scholar PubMed PubMed Central
Berg, M.J., Durrie, R., Sapirstein, V.S., and Marks, N. (1997). Composition of white matter bovine brain coated vesicles: evidence that several components influence β-amyloid peptide to form oligomers and aggregates in vitro. Brain Res. 752, 72–80.10.1016/S0006-8993(96)01445-XSuche in Google Scholar PubMed
Berg, L., McKeel, D.W., Miller, J.P., Storandt, M., Rubin, E.H., Morris, J.C., Baty, J., Coats, M., Norton, J., Goate, A.M., et al. (1998). Clinicopathologic studies in cognitively healthy aging and Alzheimer disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch. Neurol. 55, 326–335.10.1001/archneur.55.3.326Suche in Google Scholar PubMed
Bien, J., Jefferson, T., Cauševi, M., Jumpertz, T., Munter, L., Multhaup, G., Weggen, S., Becker-Pauly, C., and Pietrzik, C.U. (2012). The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J. Biol. Chem. 287, 33304–33313.10.1074/jbc.M112.395608Suche in Google Scholar PubMed PubMed Central
Bordji, K., Becerril-Ortega, J., and Buisson, A. (2011). Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev. Neurosci. 22, 285–294.10.1515/rns.2011.029Suche in Google Scholar PubMed
Bosomworth, H.J., Adlard, P.A., Ford, D., and Valentine, R.A. (2013). Altered expression of ZnT10 in Alzheimer’s disease brain. PLoS One 8, e65475.10.1371/journal.pone.0065475Suche in Google Scholar PubMed PubMed Central
Bowser, R. and Smith, M.A. (2002). Cell cycle proteins in Alzheimer’s disease: plenty of wheels but no cycle. J. Alzheimers Dis. 4, 249–254.10.3233/JAD-2002-4316Suche in Google Scholar PubMed
Brand, M.D., Affourtit, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L., and Parker, N. (2004). Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Bio. Med. 37, 755–767.10.1016/j.freeradbiomed.2004.05.034Suche in Google Scholar PubMed
Brayne, C., Richardson, K., Matthews, F.E., Fleming, J., Hunter, S., Xuereb, J.H., Paykel, E., Mukaetova-Ladinska, E.B., Huppert, F.A., O’Sullivan, A., et al. (2009). Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75s cohort (CC75C) study. J. Alzheimers Dis. 18, 645–658.10.3233/JAD-2009-1182Suche in Google Scholar PubMed
Brunk, U.T. and Terman, A. (2002). The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002.10.1046/j.1432-1033.2002.02869.xSuche in Google Scholar PubMed
Burns, K.A., Ayoub, A.E., Breunig, J.J., Adhami, F., Weng, W.-L., Colbert, M.C., Rakic, P., and Kuan, C.-Y. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia–hypoxia. Cereb. Cortex 17, 2585–2592.10.1093/cercor/bhl164Suche in Google Scholar PubMed
Bush, A.I. (2013). The metal theory of Alzheimer’s disease. J. Alzheimers Dis. 33, S277–S281.10.3233/JAD-2012-129011Suche in Google Scholar
Bush, A.I., Multhaup, G., Moir, R.D., Williamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Beyreuther, K., and Masters, C.L. (1993). A novel zinc (II) binding site modulates the function of the βA4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268, 16109–16112.10.1016/S0021-9258(19)85394-2Suche in Google Scholar
Castellani, R.J. and Smith, M.A. (2011). Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J. Pathol. 224, 147–152.10.1002/path.2885Suche in Google Scholar PubMed
Castellani, R.J., Moreira, P.I., Liu, G., Dobson, J., Perry, G., Smith, M.A., and Zhu, X. (2007). Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem. Res. 32, 1640–1645.10.1007/s11064-007-9360-7Suche in Google Scholar PubMed
Castellani, R.J., Lee, H., Siedlak, S.L., Nunomura, A., Hayashi, T., Nakamura, M., Zhu, X., Perry, G., and Smith, M.A. (2009). Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-β protein precursor and amyloid-β. J. Alzheimers Dis. 18, 447–452.10.3233/JAD-2009-1151Suche in Google Scholar PubMed PubMed Central
Chistiakov, D.A., Sobenin, I.A., Revin, V.V., Orekhov, A.N., and Bobryshev, Y.V. (2014). Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Res. Int. 2014, Article ID 238463, 7.10.1155/2014/238463Suche in Google Scholar PubMed PubMed Central
Corder, E., Saunders, A., Strittmatter, W., Schmechel, D., Gaskell, P., Small, Gw., Roses, A., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.10.1126/science.8346443Suche in Google Scholar PubMed
Coria, F., Castano, E., and Frangione, B. (1987). Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease β-protein. Am. J. Pathol. 129, 422.Suche in Google Scholar PubMed
Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., McKee, A.C., Beal, M.F., Graham, B.H., and Wallace, D.C. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471–476.10.1006/geno.1994.1525Suche in Google Scholar PubMed
Correia-Melo, C. and Passos, J.F. (2015). Mitochondria: are they causal players in cellular senescence? Biochim. Biophys. Acta 1847, 1373–1379.10.1016/j.bbabio.2015.05.017Suche in Google Scholar PubMed
Crapper, D., Krishnan, S., and Dalton, A. (1973). Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180, 511–513.10.1126/science.180.4085.511Suche in Google Scholar PubMed
Cruchaga, C., Haller, G., Chakraverty, S., Mayo, K., Vallania, F.L., Mitra, R.D., Faber, K., Williamson, J., Bird, T., Diaz-Arrastia, R., et al. (2012). Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 7, e31039.10.1371/journal.pone.0031039Suche in Google Scholar PubMed
Cuajungco, M.P. and Faget, K.Y. (2003). Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Res. Rev. 41, 44–56.10.1016/S0165-0173(02)00219-9Suche in Google Scholar
Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I., and Barnham, K.J. (2001). Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466–20473.10.1074/jbc.M100175200Suche in Google Scholar PubMed
Cutler, R.G., Kelly, J., Storie, K., Pedersen, W.A., Tammara, A., Hatanpaa, K., Troncoso, J.C., and Mattson, M.P. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci.-Biol. 101, 2070–2075.10.1073/pnas.0305799101Suche in Google Scholar
De Domenico, I., Ward, D.M., Patti, M.C.B. di Jeong, S.Y., David, S., Musci, G., and Kaplan, J. (2007). Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 26, 2823–2831.10.1038/sj.emboj.7601735Suche in Google Scholar PubMed
Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D.A. (2015). Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev. Neurother. 15, 19–40.10.1586/14737175.2015.955853Suche in Google Scholar PubMed
Diaz, F., Bayona-Bafaluy, M.P., Rana, M., Mora, M., Hao, H., and Moraes, C.T. (2002). Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 30, 4626–4633.10.1093/nar/gkf602Suche in Google Scholar PubMed
Dickson, D.W., Crystal, H.A., Mattiace, L.A., Masur, D.M., Blau, A.D., Davies, P., Yen, S.-H., and Aronson, M.K. (1992). Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol. Aging 13, 179–189.10.1016/0197-4580(92)90027-USuche in Google Scholar PubMed
Dineley, K.E., Votyakova, T.V., and Reynolds, I.J. (2003). Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J. Neurochem. 85, 563–570.10.1046/j.1471-4159.2003.01678.xSuche in Google Scholar PubMed
Dong, W., Qi, Z., Liang, J., Shi, W., Zhao, Y., Luo, Y., Ji, X., and Liu, K.J. (2015). Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model. Exp. Neurol. 272, 181–189.10.1016/j.expneurol.2015.04.005Suche in Google Scholar PubMed PubMed Central
Drysdale, J., Arosio, P., Invernizzi, R., Cazzola, M., Volz, A., Corsi, B., Biasiotto, G., and Levi, S. (2002). Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol. Dis. 29, 376–383.10.1006/bcmd.2002.0577Suche in Google Scholar PubMed
Dubinina, E., Schedrina, L., Neznanov, N., Zalutskaya, N., and Zakharchenko, D. (2014). Oxidative stress and its effect on cell functional activity in Alzheimer’s disease. Biochem. (Mosc.) Suppl., Ser. B. Biomed. Chem. 8, 181–191.10.1134/S1990750814030044Suche in Google Scholar
Duce, J.A., Tsatsanis, A., Cater, M.A., James, S.A., Robb, E., Wikhe, K., Leong, S.L., Perez, K., Johanssen, T., Greenough, M.A., et al. (2010). Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142, 857–867.10.1016/j.cell.2010.08.014Suche in Google Scholar PubMed PubMed Central
Elleder, M., Sokolova, J., and Hrebicek, M. (1997). Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol. 93, 379–390.10.1007/s004010050629Suche in Google Scholar PubMed
Ertekin-Taner, N. (2007). Genetics of Alzheimer’s disease: a centennial review. Neurol. Clin. 25, 611–667.10.1016/j.ncl.2007.03.009Suche in Google Scholar PubMed PubMed Central
Fang, B., Wang, D., Huang, M., Yu, G., and Li, H. (2010). Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int. J. Neurosci. 120, 591–595.10.3109/00207454.2010.505353Suche in Google Scholar PubMed
Fenton, H.J. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910.10.1039/CT8946500899Suche in Google Scholar
Ferreira, S.T., Vieira, M.N., and De Felice, F.G. (2007). Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB life 59, 332–345.10.1080/15216540701283882Suche in Google Scholar PubMed
Fisher, R.P. (2012). The CDK: network linking cycles of cell division and gene expression. Genes Cancer 3, 731–738.10.1177/1947601912473308Suche in Google Scholar PubMed PubMed Central
Folch, J., Junyent, F., Verdaguer, E., Auladell, C., Pizarro, J.G., Beas-Zarate, C., Pallàs, M., and Camins, A. (2012). Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox. Res. 22, 195–207.10.1007/s12640-011-9277-4Suche in Google Scholar PubMed
Foury, F. and Roganti, T. (2002). Deletion of the mitochondrial carrier genes MRS3 andMRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 277, 24475–24483.10.1074/jbc.M111789200Suche in Google Scholar PubMed
Frade, J.M. and López-Sánchez, N. (2010). A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75NTR. Cell Cycle 9, 1934–1941.10.4161/cc.9.10.11582Suche in Google Scholar PubMed
Frade, J.M. and Ovejero-Benito, M.C. (2015). Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14, 712–720.10.1080/15384101.2015.1004937Suche in Google Scholar PubMed PubMed Central
Friedman, A., Arosio, P., Finazzi, D., Koziorowski, D., and Galazka-Friedman, J. (2011). Ferritin as an important player in neurodegeneration. Parkinsonism Relat. Dis. 17, 423–430.10.1016/j.parkreldis.2011.03.016Suche in Google Scholar PubMed
Furukawa, K., Sopher, B.L., Rydel, R.E., Begley, J.G., Pham, D.G., Martin, G.M., Fox, M., and Mattson, M.P. (1996). Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67, 1882–1896.10.1046/j.1471-4159.1996.67051882.xSuche in Google Scholar PubMed
Furuyama, K., Kaneko, K., and Vargas V, P. D. (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J. Exp. Med. 213, 1–16.10.1620/tjem.213.1Suche in Google Scholar PubMed
Ganz, T. (2011). Hepcidin and iron regulation, 10 years later. Blood 117, 4425–4433.10.1182/blood-2011-01-258467Suche in Google Scholar PubMed PubMed Central
Garner, B., Roberg, K., and Brunk, U.T. (1998). Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radical Res. 29, 103–114.10.1080/10715769800300121Suche in Google Scholar PubMed
Ghoshal, N., Garci, F., Wuu, J., Leurgans, S., Bennett, D.A., Berry, R.W., and Binder, L.I. (2002). Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Exp. Neurol. 177, 475–493.10.1006/exnr.2002.8014Suche in Google Scholar PubMed
Giaccone, G., Orsi, L., Cupidi, C., and Tagliavini, F. (2011). Lipofuscin hypothesis of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Extra. 1, 292–296.10.1159/000329544Suche in Google Scholar PubMed PubMed Central
Giannakopoulos, P., Herrmann, F., Bussiere, T., Bouras, C., Kövari, E., Perl, D., Morrison, J.,, Gold, G., and Hof, P.R. (2003). Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’ disease. Neurology 60, 1495–1500.10.1212/01.WNL.0000063311.58879.01Suche in Google Scholar
Glenner, G.G. and Wong, C.W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Bioph. Res. Commun. 122, 1131–1135.10.1016/0006-291X(84)91209-9Suche in Google Scholar
González, M.A., Bernal, C.A., Mahieu, S., and Carrillo, M.C. (2009). The interactions between the chronic exposure to aluminum and liver regeneration on bile flow and organic anion transport in rats. Biol. Trace Elem. Res. 127, 164–176.10.1007/s12011-008-8234-4Suche in Google Scholar PubMed
Granzotto, A. and Sensi, S.L. (2015). Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol. Dis. 81, 25–37.10.1016/j.nbd.2015.04.010Suche in Google Scholar PubMed
Greenough, M.A., Camakaris, J., and Bush, A.I. (2013). Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem. Int. 62, 540–555.10.1016/j.neuint.2012.08.014Suche in Google Scholar PubMed
Griffin, W., Stanley, L., Ling, C., White, L., MacLeod, V., Perrot, L., White, Cl., and Araoz, C. (1989). Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. Biol. 86, 7611–7615.10.1073/pnas.86.19.7611Suche in Google Scholar PubMed PubMed Central
Haber, F. and Weiss, J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Math Phys. Eng. Sci. 147, 332–351.10.1098/rspa.1934.0221Suche in Google Scholar
Hardy, J.A. and Higgins, G.A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.10.1126/science.1566067Suche in Google Scholar PubMed
Hentze, M.W. and Kühn, L.C. (1996). Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. Biol. 93, 8175–8182.10.1073/pnas.93.16.8175Suche in Google Scholar PubMed PubMed Central
Herrup, K., Neve, R., Ackerman, S.L., and Copani, A. (2004). Divide and die: cell cycle events as triggers of nerve cell death. J. Neurosci. 24, 9232–9239.10.1523/JNEUROSCI.3347-04.2004Suche in Google Scholar PubMed PubMed Central
Hooijmans, C.R. and Kiliaan, A.J. (2008). Fatty acids, lipid metabolism and Alzheimer pathology. Eur. J. Pharmacol. 585, 176–196.10.1016/j.ejphar.2007.11.081Suche in Google Scholar PubMed
Hort, J., O’brien, J., Gainotti, G., Pirttila, T., Popescu, B., Rektorova, I., Sorbi, S., Scheltens, P., and EFNS Scientist Panel on Dementia. (2010). EFNS guidelines for the diagnosis and management of Alzheimer’s disease. Eur. J. Neurol. 17, 1236–1248.10.1111/j.1468-1331.2010.03040.xSuche in Google Scholar PubMed
Jang, B.G., In, S., Choi, B., and Kim, M.-J. (2014). Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. Neuroreport 25, 1281–1288.10.1097/WNR.0000000000000260Suche in Google Scholar PubMed
Jolly, R., Douglas, B., Davey, P., and Roiri, J. (1995). Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41, 283–296.10.1159/000213750Suche in Google Scholar
Jordan-Sciutto, K.L., Morgan, K., and Bowser, R. (1999). Increased cyclin G1 immunoreactivity during Alzheimer’s disease. J. Alzheimers Dis. 1, 409–417.10.3233/JAD-1999-1605Suche in Google Scholar PubMed
Joseph, J., Shukitt-Hale, B., Denisova, N.A., Martin, A., Perry, G., and Smith, M.A. (2001). Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol. Aging 22, 131–146.10.1016/S0197-4580(00)00211-6Suche in Google Scholar PubMed
Kalaria, R., Cohen, D., and Premkumar, D. (1996). Apolipoprotein E alleles and brain vascular pathology in Alzheimer’s disease. Ann. NY Acad. Sci. 777, 266–270.10.1111/j.1749-6632.1996.tb34430.xSuche in Google Scholar PubMed
Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug discov. 10, 698–712.10.1038/nrd3505Suche in Google Scholar PubMed
Keogh, M.J. and Chinnery, P.F. (2015). Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta 1847, 1401–1411.10.1016/j.bbabio.2015.05.015Suche in Google Scholar PubMed
Khrapko, K. (2011). The timing of mitochondrial DNA mutations in aging. Nat. Genet. 43, 726.10.1038/ng.895Suche in Google Scholar PubMed PubMed Central
Kidane, T.Z., Sauble, E., and Linder, M.C. (2006). Release of iron from ferritin requires lysosomal activity. Am. J. Physiol. Cell Physiol. 291, C445–C455.10.1152/ajpcell.00505.2005Suche in Google Scholar PubMed
Kiedrowski, L. (2012). Cytosolic acidification and intracellular zinc release in hippocampal neurons. J. Neurochem. 121, 438–450.10.1111/j.1471-4159.2012.07695.xSuche in Google Scholar PubMed PubMed Central
Kiedrowski, L. (2014). Proton-dependent zinc release from intracellular ligands. J. Neurochem. 130, 87–96.10.1111/jnc.12712Suche in Google Scholar PubMed PubMed Central
Kim, I., Rodriguez-Enriquez, S., and Lemasters, J.J. (2007). Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253.10.1016/j.abb.2007.03.034Suche in Google Scholar PubMed PubMed Central
Klatzo, I., Wisniewski, H., and Streicher, E. (1965). Experimental production of neurofibrillary degeneration: 1. Light microscopic observations. J. Neuropath. Exp. Neur. 24, 187–199.10.1097/00005072-196504000-00002Suche in Google Scholar PubMed
Klevay, L.M. (2008). Alzheimer’s disease as copper deficiency. Med. Hypotheses 70, 802–807.10.1016/j.mehy.2007.04.051Suche in Google Scholar PubMed
Kruman, I.I. (2004). Why do neurons enter the cell cycle? Cell Cycle 3, 767–771.10.4161/cc.3.6.901Suche in Google Scholar
Kuhn, P.-H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J.W., Kremmer, E., Rossner, S, and Lichtenthaler, S.F. (2010). ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 3020–3032.10.1038/emboj.2010.167Suche in Google Scholar PubMed PubMed Central
Kukreja, L., Kujoth, G.C., Prolla, T.A., Van Leuven, F., and Vassar, R. (2014). Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease. Mol. Neurodegener. 9, 9–16.10.1186/1750-1326-9-16Suche in Google Scholar PubMed PubMed Central
Kumar, A., Singh, A., Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep. 67, 195–203.10.1016/j.pharep.2014.09.004Suche in Google Scholar PubMed
Kurz, T., Terman, A., Gustafsson, B., and Brunk, U.T. (2008). Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 129, 389–406.10.1007/s00418-008-0394-ySuche in Google Scholar PubMed
Kurz, T., Eaton, J.W., and Brunk, U.T. (2011). The role of lysosomes in iron metabolism and recycling. Int. J. Biochem. Cell Biol. 43, 1686–1697.10.1016/j.biocel.2011.08.016Suche in Google Scholar PubMed
Kwok, J. and Richardson, D. (2004). Examination of the mechanism (s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents. Mol. Pharmacol. 65, 181–195.10.1124/mol.65.1.181Suche in Google Scholar PubMed
LaCross, D.M. and Linder, M.C. (1980). Synthesis of rat muscle ferritins and function in iron metabolism of heart and diaphragm. Biochim. Biophys. Acta Gen. Subj. 633, 45–55.10.1016/0304-4165(80)90036-7Suche in Google Scholar
Lee, H., Zhu, X., Nunomura, A., Perry, G., and Smith, M.A. (2006). Amyloid beta: the alternate hypothesis. Curr. Alzheimer Res. 3, 75–80.10.2174/156720506775697124Suche in Google Scholar PubMed
Lee, H., Casadesus, G., Zhu, X., Castellani, R.J., McShea, A., Perry, G., Petersen, R.B., Bajic, V., and Smith, M.A. (2009). Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem. Int. 54, 84–88.10.1016/j.neuint.2008.10.013Suche in Google Scholar PubMed
Li, L., Holscher, C., Chen, B.-B., Zhang, Z.-F., and Liu, Y.-Z. (2011). Hepcidin treatment modulates the expression of divalent metal transporter-1, ceruloplasmin, and ferroportin-1 in the rat cerebral cortex and hippocampus. Biol. Trace Elem. Res. 143, 1581–1593.10.1007/s12011-011-8967-3Suche in Google Scholar PubMed
Lidsky, T.I. (2014). Is the aluminum hypothesis dead?. J. Occup. Env. Med. 56, S73–S79.10.1097/JOM.0000000000000063Suche in Google Scholar
Lilly, E. and Company (2010). Lilly halts development of semagacestat for Alzheimer’s disease based on preliminary results of phase III clinical trials. Eli Lilly and Company [online], http://newsroom.lilly.com/releasedetail.cfm?ReleaseID=499794.Suche in Google Scholar
Liu, D.X. and Greene, L.A. (2001). Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res. 305, 217–228.10.1007/s004410100396Suche in Google Scholar PubMed
Lloyd, R.V., Hanna, P.M., and Mason, R.P. (1997). The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic. Bio. Med. 22, 885–888.10.1016/S0891-5849(96)00432-7Suche in Google Scholar
Maccioni, R.B. and Cambiazo, V. (1995). Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 75, 835–864.10.1152/physrev.1995.75.4.835Suche in Google Scholar PubMed
Maccioni, R.B., Farias, G., Morales, I., and Navarrete, L. (2010). The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res. 41, 226–231.10.1016/j.arcmed.2010.03.007Suche in Google Scholar PubMed
Mahley, R.W., Weisgraber, K.H., and Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. Biol. 103, 5644–5651.10.1073/pnas.0600549103Suche in Google Scholar
McInnes, J. (2013). Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl. Neurodegener. 2, 12.10.1186/2047-9158-2-12Suche in Google Scholar PubMed
Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M.C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M.F. (1999). Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Bio. Med. 26, 303–308.10.1016/S0891-5849(98)00208-1Suche in Google Scholar
Meziane, H., Dodart, J.-C., Mathis, C., Little, S., Clemens, J., Paul, S., and Ungerer, A. (1998). Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc. Natl. Acad. Sci. Biol. 95, 12683–12688.10.1073/pnas.95.21.12683Suche in Google Scholar
Morales, I., Farias, G., and Maccioni, R.B. (2010). Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. Neuroimmunomodulation 17, 202–204.10.1159/000258724Suche in Google Scholar PubMed
Moreira, P.I., Zhu, X., Wang, X., Lee, H., Nunomura, A., Petersen, R.B., Perry, G., and Smith, M.A. (2010). Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta Mol. Basis. Dis. 1802, 212–220.10.1016/j.bbadis.2009.10.007Suche in Google Scholar
Moreno-Treviño, M.G., Castillo-López, J., and Meester, I. (2015). Moving away from amyloid beta to move on in Alzheimer research. Front. Aging Neurosci. 7, 1–4.Suche in Google Scholar
Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., and Arendt, T. (2007). Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J. Neurosci. 27, 6859–6867.10.1523/JNEUROSCI.0379-07.2007Suche in Google Scholar PubMed
Mrak, R.E. and Griffin, W.S.T. (2001). Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22, 903–908.10.1016/S0197-4580(01)00287-1Suche in Google Scholar PubMed
Mucke, L., Masliah, E., Yu, G.-Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000). High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.10.1523/JNEUROSCI.20-11-04050.2000Suche in Google Scholar
Mullane, K. and Williams, M. (2013). Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis – but what lies beyond? Biochem. Pharmacol. 85, 289–305.10.1016/j.bcp.2012.11.014Suche in Google Scholar PubMed
Musiek, E.S. and Holtzman, D.M. (2015). Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat. Neurosci. 18, 800–806.10.1038/nn.4018Suche in Google Scholar PubMed PubMed Central
Myhre, O., Utkilen, H., Duale, N., Brunborg, G., and Hofer, T. (2013). Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxid. Med. Cell. Longev. 2013, Article ID 726954, 19.10.1155/2013/726954Suche in Google Scholar PubMed PubMed Central
Navratil, M., Terman, A., and Arriaga, E.A. (2008). Giant mitochondria do not fuse and exchange their contents with normal mitochondria. Exp. Cell Res. 314, 164–172.10.1016/j.yexcr.2007.09.013Suche in Google Scholar PubMed
Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T., and Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093.10.1126/science.1104742Suche in Google Scholar PubMed
Nilsson, E., Ghassemifar, R., and Brunk, U.T. (1997). Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress. Histochem. J. 29, 857–865.10.1023/A:1026441907803Suche in Google Scholar PubMed
Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. J. Neuropath. Exp. Neur. 60, 759–767.10.1093/jnen/60.8.759Suche in Google Scholar PubMed
Nunomura, A., Perry, G., Pappolla, M.A., Friedland, R.P., Hirai, K., Chiba, S., and Smith, M.A. (2000). Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J. Neuropath. Exp. Neur. 59, 1011–1017.10.1093/jnen/59.11.1011Suche in Google Scholar PubMed
Opazo, C., Huang, X., Cherny, R.A., Moir, R.D., Roher, A.E., White, A.R., Cappai, R., Masters, C.L., Tanzi, R.E., Inestrosa, N.C., et al. (2002). Metalloenzyme-like activity of Alzheimer’s disease β-amyloid Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem. 277, 40302–40308.10.1074/jbc.M206428200Suche in Google Scholar PubMed
Ovejero-Benito, M.C. and Frade, J.M. (2013). Brain-derived neurotrophic factor-dependent cdk1 inhibition prevents G2/M progression in differentiating tetraploid neurons. PLoS One 8, e64890.10.1371/journal.pone.0064890Suche in Google Scholar PubMed PubMed Central
Padmanabhan, J., Park, D.S., Greene, L.A., and Shelanski, M.L. (1999). Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J. Neurosci. 19, 8747–8756.10.1523/JNEUROSCI.19-20-08747.1999Suche in Google Scholar PubMed
Palikaras, K. and Tavernarakis, N. (2014). Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182–188.10.1016/j.exger.2014.01.021Suche in Google Scholar PubMed
Papanikolaou, G., Tzilianos, M., Christakis, J.I., Bogdanos, D., Tsimirika, K., MacFarlane, J., Goldberg, Y.P., Sakellaropoulos, N., Ganz, T., and Nemeth, E. (2005). Hepcidin in iron overload disorders. Blood 105, 4103–4105.10.1182/blood-2004-12-4844Suche in Google Scholar PubMed PubMed Central
Park, D.S., Morris, E.J., Bremner, R., Keramaris, E., Padmanabhan, J., Rosenbaum, M., Shelanski, M.L., Geller, H.M., and Greene, L.A. (2000). Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J. Neurosci. 20, 3104–3114.10.1523/JNEUROSCI.20-09-03104.2000Suche in Google Scholar PubMed
Paul, T. (2000). Effect of a prolonged superoxide flux on transferrin and ferritin. Arch. Biochem. Biophys. 382, 253–261.10.1006/abbi.2000.2027Suche in Google Scholar PubMed
Payne, B.A. and Chinnery, P.F. (2015). Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353.10.1016/j.bbabio.2015.05.022Suche in Google Scholar PubMed PubMed Central
Pearson, R., Esiri, M., Hiorns, R., Wilcock, G., and Powell, T. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci. Biol. 82, 4531–4534.10.1073/pnas.82.13.4531Suche in Google Scholar PubMed PubMed Central
Perry, G., Taddeo, M.A., Petersen, R.B., Castellani, R.J., Harris, P.L., Siedlak, S.L., Cash, A.D., Liu, Q., Nunomura, A., Atwood, C.S., et al. (2003). Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16, 77–81.10.1023/A:1020731021276Suche in Google Scholar PubMed
Pierrel, F., Cobine, P.A., and Winge, D.R. (2007). Metal ion availability in mitochondria. Biometals 20, 675–682.10.1007/s10534-006-9052-9Suche in Google Scholar PubMed
Pogocki, D. (2003). Alzheimer’s beta-amyloid peptide as a source of neurotoxic free radicals: the role of structural effects. Acta Neurobil. Exp. 63, 131–146.Suche in Google Scholar
Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., et al. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest. 113, 1456–1464.10.1172/JCI20864Suche in Google Scholar
Praticò, D., Uryu, K., Leight, S., Trojanoswki, J.Q., and Lee, V.M.-Y. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187.10.1523/JNEUROSCI.21-12-04183.2001Suche in Google Scholar
Richardson, D.R., Lane, D.J., Becker, E.M., Huang, M.L.-H., Whitnall, M., Rahmanto, Y.S., Sheftel, A.D., and Ponka, P. (2010). Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. Biol. 107, 10775–10782.10.1073/pnas.0912925107Suche in Google Scholar
Richter, C. (1995). Oxidative damage to mitochondrial DNA and its relationship to ageing. Int. J. Biochem. Cell B. 27, 647–653.10.1016/1357-2725(95)00025-KSuche in Google Scholar
Rödel, T.A.L., Gärtner, U., and Holzer, M. (1996). Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 7, 3047–3050.10.1097/00001756-199611250-00050Suche in Google Scholar PubMed
Rogers, J.T., Bush, A.I., Cho, H.-H., Smith, D.H., Thomson, A.M., Friedlich, A.L., Lahiri, D.K., Leedman, P.J., Huang, X., and Cahill, C.M. (2008). Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. T. 36, 1282–1287.10.1042/BST0361282Suche in Google Scholar
Rolig, R.L. and McKinnon, P.J. (2000). Linking DNA damage and neurodegeneration. Trends Neurosci. 23, 417–424.10.1016/S0166-2236(00)01625-8Suche in Google Scholar PubMed
Rouault, T.A. and Tong, W.-H. (2005). Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol. 6, 345–351.10.1038/nrm1620Suche in Google Scholar PubMed
Salloway, S., Sperling, R., Keren, R., Porsteinsson, A., Van Dyck, C., Tariot, P., Gilman, S., Arnold, D., Abushakra, S., Hernandez, C., et al. (2011). A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77, 1253–1262.10.1212/WNL.0b013e3182309fa5Suche in Google Scholar PubMed PubMed Central
Sancar, A., Lindsey-Boltz, L.A., Ünsal-Kaçmaz, K., and Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85.10.1146/annurev.biochem.73.011303.073723Suche in Google Scholar PubMed
Saumier, D., Duong, A., Haine, D., Garceau, D., and Sampalis, J. (2009). Domain-specific cognitive effects of tramiprosate in patients with mild to moderate Alzheimer’s disease: ADAS-cog subscale results from the Alphase Study. J. Nutr. Health Aging 13, 808–812.10.1007/s12603-009-0217-4Suche in Google Scholar PubMed
Schulz, K., Vulpe, C.D., Harris, L.Z., and David, S. (2011). Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J. Neurosci. 31, 13301–13311.10.1523/JNEUROSCI.2838-11.2011Suche in Google Scholar PubMed
Selkoe, D.J. (2008). Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113.10.1016/j.bbr.2008.02.016Suche in Google Scholar PubMed
Selkoe, D.J. and Schenk, D. (2003). Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. 43, 545–584.10.1146/annurev.pharmtox.43.100901.140248Suche in Google Scholar
Sensi, S.L., Paoletti, P., Bush, A.I., and Sekler, I. (2009). Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10, 780–791.10.1038/nrn2734Suche in Google Scholar PubMed
Seward, M.E., Swanson, E., Norambuena, A., Reimann, A., Cochran, J.N., Li, R., Roberson, E.D., and Bloom, G.S. (2013). Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J. Cell Sci. 126, 1278–1286.10.1242/jcs.1125880Suche in Google Scholar PubMed
Sharaf, M.S., Van den Heuvel, M.R., Stevens, D., and Kamunde, C. (2015). Zinc and calcium modulate mitochondrial redox state and morphofunctional integrity. Free Radic. Bio. Med. 84, 142–153.10.1016/j.freeradbiomed.2015.03.017Suche in Google Scholar
Sheng, J.G., Ito, K., Skinner, R.D., Mrak, R.E., Rovnaghi, C.R., Van Eldik, L.J., and Griffin, W.S.T. (1996). In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol. Aging 17, 761–766.10.1016/0197-4580(96)00104-2Suche in Google Scholar PubMed
Shepherd, C., McCann, H., and Halliday, G.M. (2009). Variations in the neuropathology of familial Alzheimer’s disease. Acta Neuropathol. 118, 37–52.10.1007/s00401-009-0521-4Suche in Google Scholar PubMed
Shuttleworth, C.W. and Weiss, J.H. (2011). Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol. Sci. 32, 480–486.10.1016/j.tips.2011.04.001Suche in Google Scholar PubMed PubMed Central
Simic, G., Kostovi, I., Winblad, B., and Bogdanovi, N. (1997). Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J. Compar. Neurol. 379, 482–494.10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-ZSuche in Google Scholar
Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. Biol. 94, 9866–9868.10.1073/pnas.94.18.9866Suche in Google Scholar
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, C.R. Jr, Kaye, J., Montine, T.J., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292.10.1016/j.jalz.2011.03.003Suche in Google Scholar PubMed
Spoerri, L., Vella, L.J., Pham, C.L., Barnham, K.J., and Cappai, R. (2012). The amyloid precursor protein copper binding domain histidine residues 149 and 151 mediate APP stability and metabolism. J. Biol. Chem. 287, 26840–26853.10.1074/jbc.M112.355743Suche in Google Scholar PubMed
Stein, T.D., Anders, N.J., DeCarli, C., Chan, S.L., Mattson, M.P., and Johnson, J.A. (2004). Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J. Neurosci. 24, 7707–7717.10.1523/JNEUROSCI.2211-04.2004Suche in Google Scholar PubMed
Stelzmann, R.A., Norman Schnitzlein, H., and Reed Murtagh, F. (1995). An English translation of Alzheimer’s 1907 paper, ‘Über eine eigenartige Erkankung der Hirnrinde’. Clin. Anat. 8, 429–431.10.1002/ca.980080612Suche in Google Scholar PubMed
Su, B., Wang, X., Bonda, D., Perry, G., Smith, M., and Zhu, X. (2010). Abnormal mitochondrial dynamics – a novel therapeutic target for Alzheimer’s disease? Mol. Neurobiol. 41, 87–96.Suche in Google Scholar
Sun, C., Song, N., Xie, A., Xie, J., and Jiang, H. (2012). High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats. Toxicol. Lett. 212, 276–281.10.1016/j.toxlet.2012.05.022Suche in Google Scholar PubMed
Sweet, S. and Singh, G. (1995). Accumulation of human promyelocytic leukemia (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res. 55, 5164–5167.Suche in Google Scholar
Swerdlow, R.H. and Khan, S.M. (2004). A ‘mitochondrial cascade hypothesis’ for sporadic Alzheimer’s disease. Med. Hypotheses 63, 8–20.10.1016/j.mehy.2003.12.045Suche in Google Scholar
Swerdlow, R.H., Burns, J.M., and Khan, S.M. (2010). The Alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 20, 265–279.10.3233/JAD-2010-100339Suche in Google Scholar
Swomley, A.M., Förster, S., Keeney, J.T., Triplett, J., Zhang, Z., Sultana, R., and Butterfield, D.A. (2014). Aβ, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 1248–1257.10.1016/j.bbadis.2013.09.015Suche in Google Scholar
Szewczyk, B. (2013). Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 19, 5–33.10.3389/fnagi.2013.00033Suche in Google Scholar PubMed PubMed Central
Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M.A., Danni, O., Smith, M.A., Perry, G., et al. (2002). Oxidative stress increases expression and activity of BACE in NT 2 neurons. Neurobiol. Dis. 10, 279–288.10.1006/nbdi.2002.0515Suche in Google Scholar PubMed
Tamagno, E., Parola, M., Bardini, P., Piccini, A., Borghi, R., Guglielmotto, M., Santoro, G., Davit, A., Danni, O., Smith, M.A., et al. (2005). β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636.10.1111/j.1471-4159.2004.02895.xSuche in Google Scholar PubMed
Teich, A.F. and Arancio, O. (2012). Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem. J. 446, 165–177.Suche in Google Scholar
Terman, A. and Kurz, T. (2013). Lysosomal iron, iron chelation, and cell death. Antioxid. Redox Signal. 18, 888–898.10.1089/ars.2012.4885Suche in Google Scholar PubMed
Terman, A., Gustafsson, B., and Brunk, U.T. (2006a). The lysosomal–mitochondrial axis theory of postmitotic aging and cell death. Chem. Biol. Interact. 163, 29–37.10.1016/j.cbi.2006.04.013Suche in Google Scholar PubMed
Terman, A., Kurz, T., Gustafsson, B., and Brunk, U. (2006b). Lysosomal labilization. IUBMB Life 58, 531–539.10.1080/15216540600904885Suche in Google Scholar PubMed
Terman, A., Gustafsson, B., and Brunk, U. (2007). Autophagy, organelles and ageing. J. Pathol. 211, 134–143.10.1002/path.2094Suche in Google Scholar PubMed
Terman, A., Kurz, T., Navratil, M., Arriaga, E.A., and Brunk, U.T. (2010). Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid. Redox Signal. 12, 503–535.10.1089/ars.2009.2598Suche in Google Scholar PubMed PubMed Central
Terry, R.D. and Peña, C. (1965). Experimental production of neurofibrillary degeneration: 2. Electron microscopy, phosphatase histochemistry and electron prose analysis. J. Neuropath. Exp. Neur. 24, 200–210.10.1097/00005072-196504000-00003Suche in Google Scholar PubMed
Thies, W. and Bleiler, L. (2011). Alzheimer’s disease facts and figures. Alzheimers Dement. 7, 208–244.10.1016/j.jalz.2011.02.004Suche in Google Scholar PubMed
Tiraboschi, P., Hansen, L., Thal, L., and Corey-Bloom, J. (2004). The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62, 1984–1989.10.1212/01.WNL.0000129697.01779.0ASuche in Google Scholar PubMed
Tomashevski, A., Husseman, J., Jin, L.-W., Nochlin, D., and Vincent, I. (2001). Constitutive Wee1 activity in adult brain neurons with M phase-type alterations in Alzheimer neurodegeneration. J. Alzheimers Dis. 3, 195–207.10.3233/JAD-2001-3205Suche in Google Scholar
Trapp, G.A., Miner, G., Zimmerman, R., Mastri, A., and Heston, L. (1978). Aluminum levels in brain in Alzheimer’s disease. Biol. Psychiat. 13, 709–718.Suche in Google Scholar
Turk, B., Stoka, V., Rozman-Pungercar, J., Cirman, T., Droga-Mazovec, G., Oreic, K., and Turk, V. (2002). Apoptotic pathways: involvement of lysosomal proteases. Biol. Chem. 383, 1035–1044.10.1515/BC.2002.112Suche in Google Scholar PubMed
Uylings, H.B. and De Brabander, J. (2002). Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cognit. 49, 268–276.10.1006/brcg.2001.1500Suche in Google Scholar
Varvel, N.H., Bhaskar, K., Patil, A.R., Pimplikar, S.W., Herrup, K., and Lamb, B.T. (2008). Aβ oligomers induce neuronal cell cycle events in Alzheimer’s disease. J. Neurosci. 28, 10786–10793.10.1523/JNEUROSCI.2441-08.2008Suche in Google Scholar PubMed
Vincent, I., Jicha, G., Rosado, M., and Dickson, D.W. (1997). Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 17, 3588–3598.10.1523/JNEUROSCI.17-10-03588.1997Suche in Google Scholar PubMed
Virk, S.A. and Eslick, G.D. (2015). Occupational exposure to aluminum and alzheimer disease: a meta-analysis. J. Occup. Environ. Med. 57, 893–896.10.1097/JOM.0000000000000487Suche in Google Scholar PubMed
Wang, X., Su, B., Lee, H., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29, 9090–9103.10.1523/JNEUROSCI.1357-09.2009Suche in Google Scholar PubMed
Wang, S.-M., Fu, L.-J., Duan, X.-L., Crooks, D., Yu, P., Qian, Z.-M., Di, X.-J., Li, J., Rouault, T.A., and Chang, Y.Z. (2010). Role of hepcidin in murine brain iron metabolism. Cell. Mol. Life Sci. 67, 123–133.10.1007/s00018-009-0167-3Suche in Google Scholar PubMed
West, M.J., Coleman, P.D., Flood, D.G., and Troncoso, J.C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344, 769–772.10.1016/S0140-6736(94)92338-8Suche in Google Scholar PubMed
Williams, G.H. and Stoeber, K. (2012). The cell cycle and cancer. J. Pathol. 226, 352–364.10.1002/path.3022Suche in Google Scholar PubMed
Wisniewski, H.M., and Wen, G.Y. (1992). Aluminum and Alzheimer’s disease. Aluminum in Biology and Medicine. 169, 142–154.Suche in Google Scholar
Wong, B.X., Tsatsanis, A., Lim, L.Q., Adlard, P.A., Bush, A.I., and Duce, J.A. (2014). β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 9, e114174.10.1371/journal.pone.0114174Suche in Google Scholar PubMed PubMed Central
Wu, L.J., Leenders, A.M., Cooperman, S., Meyron-Holtz, E., Smith, S., Land, W., Tsai, R.Y., Berger, U.V., Sheng, Z.H., and Rouault, T.A. (2004). Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res. 1001, 108–117.10.1016/j.brainres.2003.10.066Suche in Google Scholar PubMed
Xu, N., Majidi, V., Markesbery, W., and Ehmann, W. (1992). Brain aluminum in Alzheimer’s disease using an improved GFAAS method. Neurotoxicology 13, 735–743.Suche in Google Scholar PubMed
Yan, M.H., Wang, X., and Zhu, X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Bio. Med. 62, 90–101.10.1016/j.freeradbiomed.2012.11.014Suche in Google Scholar PubMed PubMed Central
Yang, Y., Geldmacher, D.S., and Herrup, K. (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 21, 2661–2668.10.1523/JNEUROSCI.21-08-02661.2001Suche in Google Scholar PubMed
Yang, Y., Mufson, E.J., and Herrup, K. (2003). Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J. Neurosci. 23, 2557–2563.10.1523/JNEUROSCI.23-07-02557.2003Suche in Google Scholar PubMed
Yang, J.-L., Weissman, L., Bohr, V.A., and Mattson, M.P. (2008). Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120.10.1016/j.dnarep.2008.03.012Suche in Google Scholar PubMed PubMed Central
Yeh, K., Yeh, M., and Glass, J. (2011). Interactions between ferroportin and hephaestin in rat enterocytes are reduced after iron ingestion. Gastroenterology 141, 292–299.10.1053/j.gastro.2011.03.059Suche in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Alzheimer’s disease: as it was in the beginning
- Cognitive impairment in multiple sclerosis – a review of current knowledge and recent research
- The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease
- Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
- Iron in neurodegenerative disorders: being in the wrong place at the wrong time?
- Wearable technology for patients with brain and spinal cord injuries
Artikel in diesem Heft
- Frontmatter
- Alzheimer’s disease: as it was in the beginning
- Cognitive impairment in multiple sclerosis – a review of current knowledge and recent research
- The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease
- Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
- Iron in neurodegenerative disorders: being in the wrong place at the wrong time?
- Wearable technology for patients with brain and spinal cord injuries