Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients’ skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.
Acknowledgments
The authors would like to thank Lydia Touzel Deschênes, Lily-Ann Franche, and Gabriel Bengtsson for comments on the manuscript.
Funding: Our work was supported by the Canadian Institutes for Health Research and the W. Garfield Weston Foundation through the Weston Brain Institute. F.G.L. is the recipient of a tier 2 Canada research Chair. B.P. is the recipient of an ALS Canada Doctoral Research award.
Conflict of interest statement: The authors declare to have no competing interests.
References
Abrahamson, M., Barrett, A.J., Salvesen, G., and Grubb, A. (1986). Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11282–11289.10.1016/S0021-9258(18)67380-6Suche in Google Scholar
Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., Hori, M., Sakakita, H., and Ikehara, Y. (2016). Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94.10.1109/PLASMA.2016.7534126Suche in Google Scholar
Almeida, S., Gascon, E., Tran, H., Chou, H.J., Gendron, T.F., Degroot, S., Tapper, A.R, Sellier, C., Charlet-Berguerand, N., Karydas, A., et al. (2013). Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 126, 385–399.10.1007/s00401-013-1149-ySuche in Google Scholar
Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274, 19195–19203.10.1074/jbc.274.27.19195Suche in Google Scholar
Anderegg, U., Simon, J.C., and Averbeck, M. (2014). More than just a filler – the role of hyaluronan for skin homeostasis. Exp. Dermatol. 23, 295–303.10.1111/exd.12370Suche in Google Scholar
Andersen, P.M. and Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615.10.1038/nrneurol.2011.150Suche in Google Scholar
Angelopoulos, P., Agouridaki, H., Vaiopoulos, H., Siskou, E., Doutsou, K., Costa, V., and Baloyiannis, S.I. (2008). Cytokines in Alzheimer’s disease and vascular dementia. Int. J. Neurosci. 118, 1659–1672.10.1080/00207450701392068Suche in Google Scholar
Anzer, M.A.R.V.T. and Herbert, J. (1982). Collagen cross-linking. Coll. Relat. Res. 2, 177–180.10.1016/S0174-173X(82)80032-0Suche in Google Scholar
Asahina, M., Yoshiyama, Y., and Hattori, T. (2001). Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin. Neuropathol. 20, 60–63.Suche in Google Scholar
Ash, P.E.A., Bieniek, K F., Gendron, T.F., Caulfield, T., Lin, W.L., DeJesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.10.1016/j.neuron.2013.02.004Suche in Google Scholar PubMed PubMed Central
Aulas, A. and Vande Velde, C. (2015). Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front. Cell. Neurosci. 9, 423.10.3389/fncel.2015.00423Suche in Google Scholar PubMed PubMed Central
Babu, G.N., Kumar, A., Chandra, R., Puri, S.K., Kalita, J., and Misra, U.K. (2008). Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem. Res. 33, 1145–1149.10.1007/s11064-007-9564-xSuche in Google Scholar
Back, S.A, Tuohy, T.M.F., Chen, H., Wallingford, N., Craig, A., Struve, J., Luo, N.L., Banine, F., Liu, Y., Chang, A., et al. (2005). Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972.10.1038/nm1279Suche in Google Scholar
Baker, J., Liu, J.-P., Robertson, E J., and Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82.10.1016/S0092-8674(05)80085-6Suche in Google Scholar
Baker, M., Mackenzie, I.R., Pickering-Brown, S.M., Gass, J., Rademakers, R., Lindholm, C., Snowden, J., Adamson, J., Sadovnick, A.D., Rollinson, S., et al. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919.10.1038/nature05016Suche in Google Scholar
Barber, S.C., Mead, R.J., and Shaw, P.J. (2006). Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta Mol. Basis Dis. 1762, 1051–1067.10.1016/j.bbadis.2006.03.008Suche in Google Scholar
Bartolome, F., Wu, H.C., Burchell, V.S., Preza, E., Wray, S., Mahoney, C.J., Fox, N.C., Calvo, A., Canosa, A., Moglia, C., et al. (2013). Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP Levels. Neuron 78, 57–64.10.1016/j.neuron.2013.02.028Suche in Google Scholar
Baune, B.T., Konrad, C., Grotegerd, D., Suslow, T., Birosova, E., Ohrmann, P., Bauer, J., Arolt, V., Heindel, W., Domschke, K., et al. (2012). Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. J. Neuroinflamm. 9, 125.10.1186/1742-2094-9-125Suche in Google Scholar
Beach, R.L., Rao, J.S., Festoff, B.W., Reyes, E.T., Yanagihara, R., and Gajdusek, D.C. (1986). Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 72, 49–60.10.1016/0022-510X(86)90035-3Suche in Google Scholar
Belzil, V.V., Bauer, P.O., Prudencio, M., Gendron, T.F., Stetler, C.T., Yan, I.K., Pregent, L., Daughrity, L., Baker, M.C., Rademakers, R., et al. (2013). Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 126, 895–905.10.1007/s00401-013-1199-1Suche in Google Scholar PubMed PubMed Central
Benatar, M., Wuu, J., Fernandez, C., Weihl, C.C., Katzen, H., Steele, J., Oskarsson, B., and Taylor, J.P. (2013). Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology 80, 1874–1880.10.1212/WNL.0b013e3182929fc3Suche in Google Scholar PubMed PubMed Central
Bevan, D., Gherardi, E., Fan, T.P., Edwards, D., and Warn, R. (2004). Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203, 831–838.10.1002/path.1578Suche in Google Scholar
Brettschneider, J., Van Deerlin, V.M., Robinson, J.L., Kwong, L., Lee, E.B., Ali, Y.O., Safren, N., Monteiro, M.J., Toledo, J.B., Elman, L., et al. (2012). Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol. 123, 825–839.10.1007/s00401-012-0970-zSuche in Google Scholar
Busciglio, J. and Yankner, B. (1995). Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378, 776–779.10.1038/378776a0Suche in Google Scholar
Cao, K., Nakajima, R., Meyer, H.H., and Zheng, Y. (2003). The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115, 355–367.10.1016/S0092-8674(03)00815-8Suche in Google Scholar
Carmeliet, P. and Collen, D. (2000). Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. N.Y. Acad. Sci. 902, 249–262. Discussion 262–264.10.1111/j.1749-6632.2000.tb06320.xSuche in Google Scholar
Caron, M., Bladier, D., and Joubert, R. (1990). Soluble galactoside-binding vertebrate lectins: a protein family with common properties. Int. J. Biochem. 22, 1379–1385.10.1016/0020-711X(90)90226-SSuche in Google Scholar
Chen, W.Y.J. and Abatangelo, G. (1999). Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79–89.10.1533/9781845693121.147Suche in Google Scholar
Chen, S., Sayana, P., Zhang, X., and Le, W. (2013). Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8, 28.10.1186/1750-1326-8-28Suche in Google Scholar
Ciechanover, A. and Brundin, P. (2003). The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446.10.1016/S0896-6273(03)00606-8Suche in Google Scholar
Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu, Y.F., Wang, Q., Krueger, B.J., et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441.10.1126/science.aaa3650Suche in Google Scholar PubMed PubMed Central
Corbo, M., Lunetta, C., Magni, P., Dozio, E., Ruscica, M., Adobbati, L., and Silani, V. (2010). Free insulin-like growth factor (IGF)-1 and IGF-binding proteins-2 and -3 in serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients. Eur. J. Neurol. 17, 398–404.10.1111/j.1468-1331.2009.02815.xSuche in Google Scholar
Cruts, M., Gijselinck, I., van der Zee, J., Engelborghs, S., Wils, H., Pirici, D., Rademakers, R., Vandenberghe, R., Dermaut, B., Martin, J.J., et al. (2006). Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924.10.1038/nature05017Suche in Google Scholar
Custer, S., Neumann, M., Lu, H., Wright, A., and Taylor, J. (2010). Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum. Mol. Genet. 19, 1741–1755.10.1093/hmg/ddq050Suche in Google Scholar
Daniel, R., He, Z., Carmichael, K.P., Halper, J., and Bateman, A. (2000). Cellular localization of gene expression for progranulin. J. Histochem. Cytochem. 48, 999–1009.10.1177/002215540004800713Suche in Google Scholar
Daoud, H., Valdmanis, P.N., Kabashi, E., Dion, P., Dupré, N., Camu, W., Meininger, V., and Rouleau, G.A. (2009). Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J. Med. Genet. 46, 112–114.10.1136/jmg.2008.062463Suche in Google Scholar
DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.10.1016/j.neuron.2011.09.011Suche in Google Scholar
Deng, H.-X., Chen, W., Hong, S.-T., and Boycott, K.M. (2012). Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia. Nature 477, 211–215.10.1038/nature10353Suche in Google Scholar
Di Lullo, G.A., Sweeney, S.M., Körkkö, J., Ala-Kokko, L., and San Antonio, J.D. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231.10.1074/jbc.M110709200Suche in Google Scholar
Dipasquale, B., Marini, A.M., and Youle, R.J. (1991). Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem. Biophys. Res. Commun. 181, 1442–1448.10.1016/0006-291X(91)92101-OSuche in Google Scholar
Donnelly, C.J., Zhang, P., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al. (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428.10.1016/j.neuron.2013.10.015Suche in Google Scholar PubMed PubMed Central
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctôt, K.L. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457.10.1016/j.biopsych.2009.09.033Suche in Google Scholar
Dreyfuss, G., Matunis, M.J., Piñol-Roma, S., and Burd, C.G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321.10.1146/annurev.bi.62.070193.001445Suche in Google Scholar
Ebens, A., Brose, K., Leonardo, E.D., Jr, Hanson, M.G., Bladt, F., Birchmeier, C., Barres, B.A., and Tessier-Lavigne, M. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172.10.1016/S0896-6273(00)80247-0Suche in Google Scholar
Edgar, D. (1991). The expression and distribution of laminin in the developing nervous system. J. Cell Sci. 1991, 9–12.10.1242/jcs.1991.Supplement_15.2Suche in Google Scholar
Ekblom, P., Lonai, P., and Talts, J.F. (2003). Expression and biological role of laminin-1. Matrix Biol. 22, 35–47.10.1016/S0945-053X(03)00015-5Suche in Google Scholar
Elliott, J.L. (2001). Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res. 95, 172–178.10.1016/S0169-328X(01)00242-XSuche in Google Scholar
Eyre, D.R., Paz, M.A, and Gallop, P.M. (1984). Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53, 717–748.10.1146/annurev.bi.53.070184.003441Suche in Google Scholar PubMed
Fang, L., Huber-Abel, F., Teuchert, M., Hendrich, C., Dorst, J., Schattauer, D., Zettlmeissel, H., Wlaschek, M., Scharffetter-Kochanek, K., Tumani, H., et al. (2009). Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J. Neurol. Sci. 285, 62–66.10.1016/j.jns.2009.05.025Suche in Google Scholar PubMed
Fang, L., Teuchert, M., Huber-Abel, F., Schattauer, D., Hendrich, C., Dorst, J., Zettlmeissel, H., Wlaschek, M., Scharffetter-Kochanek, K., Kapfer, T., et al. (2010). MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J. Neurol. Sci. 294, 51–56.10.1016/j.jns.2010.04.005Suche in Google Scholar PubMed
Fernandez, A.M. and Torres-Alemán, I. (2012). The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 13, 225–239.10.1038/nrn3209Suche in Google Scholar PubMed
Ferrara, N. and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25.10.1007/978-1-4613-0389-3_7Suche in Google Scholar
Flint, M.H., Craig, A.S., Reilly, H.C., Gillard, G.C., and Parry, D.A. (1984). Collagen fibril diameters and glycosaminoglycan content of skins – indices of tissue maturity and function. Connect. Tissue Res. 13, 69–81.10.3109/03008208409152144Suche in Google Scholar
Fraser, J.R., Laurent, T.C., and Laurent, U.B. (1997). Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33.10.1046/j.1365-2796.1997.00170.xSuche in Google Scholar
Fratta, P., Poulter, M., Lashley, T., Rohrer, J.D., Polke, J.M., Beck, J., Ryan, N., Hensman, D., Mizielinska, S., Waite, A.J., et al. (2013). Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 126, 401–409.10.1007/s00401-013-1147-0Suche in Google Scholar
Frei, K., P. Leist, T., Meager, A., Gallo, P., Leppert, D., M. Zinkernagel, R., and Fontana, A. (1988). Production of B cell stimulatory factor-2 and interferon γ in the central nervous system during viral meningitis and encephalitis – evaluation in a murine model infection and in patients. J. Exp. Med. 168, 449–453.10.1084/jem.168.1.449Suche in Google Scholar
Fujii, R. and Takumi, T. (2005). TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J. Cell Sci. 118, 5755–5765.10.1242/jcs.02692Suche in Google Scholar
Fujii, R., Okabe, S., Urushido, T., Inoue, K., Yoshimura, A., Tachibana, T., Nishikawa, T., Hicks, G.G., and Takumi, T. (2005). The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593.10.1016/j.cub.2005.01.058Suche in Google Scholar
Fukazawa, H., Tsukie, T., Higashida, K., Fujikura, M., and Ono, S. (2013). An immunohistochemical study of increased tumor necrosis factor-α in the skin of patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 20, 1371–1376.10.1016/j.jocn.2012.11.007Suche in Google Scholar
Fullmer, H., Siedler, H., Krooth, R., and Kurland, L. (1960). A cutaneous disorder of connective tissue in amyotrophic lateral sclerosis. Neurology 10, 717–724.10.1212/WNL.10.8.717Suche in Google Scholar
Funakoshi, H. and Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clin. Chim. Acta. 327, 1–23.10.1016/S0009-8981(02)00302-9Suche in Google Scholar
Furukawa, T. and Toyokura, Y. (1976). Amyotrophic lateral sclerosis and bedsores. Lancet 307, 862.10.1016/S0140-6736(76)90517-1Suche in Google Scholar
Gadient, R.A. and Otten, U. (1994). Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res. 637, 10–14.10.1016/0006-8993(94)91211-4Suche in Google Scholar
Gao, X. and Xu, Z. (2008). Mechanisms of action of angiogenin. Acta Biochim. Biophys. Sin. 40, 619–624.10.1111/j.1745-7270.2008.00442.xSuche in Google Scholar PubMed
Gasche, Y., Soccal, P.M., Kanemitsu, M., and Copin, J.C. (2006). Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci 11, 1289–1301.10.2741/1883Suche in Google Scholar PubMed
Gaudet, A.D., Popovich, P.G., and Ramer, M.S. (2011). Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 8, 110.10.1186/1742-2094-8-110Suche in Google Scholar PubMed PubMed Central
Genis, L., Dávila, D., Fernandez, S., Pozo-Rodrigálvarez, A., Martínez-Murillo, R., and Torres-Aleman, I. (2014). Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res. 3, 28.10.12688/f1000research.3-28.v2Suche in Google Scholar PubMed PubMed Central
Ghezzi, P. and Mennini, T. (2001). Tumor necrosis factor and motoneuronal degeneration: an open problem. Neuroimmunomodulation 9, 178–182.10.1159/000049024Suche in Google Scholar PubMed
Gijbels, K., Van Damme, J., Proost, P., Put, W., Carton, H., and Billiau, A. (1990). Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 20, 233–235.10.1002/eji.1830200134Suche in Google Scholar PubMed
Gitcho, M.A., Bigio, E.H., Mishra, M., Johnson, N., Weintraub, S., Mesulam, M., Rademakers, R., Chakraverty, S., Cruchaga, C., Morris, J.C., et al. (2009). TARDBP 3’-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol. 118, 633–645.10.1007/s00401-009-0571-7Suche in Google Scholar PubMed PubMed Central
Greenberg, D.A. and Jin, K. (2004). VEGF and AL: the luckiest growth factor? Trends Mol. Med. 10, 1–3.10.1016/j.molmed.2003.11.006Suche in Google Scholar PubMed
Greenway, M.J., Alexander, M.D., Ennis, S., Traynor, B.J., Corr, B., Frost, E., Green, A., and Hardiman, O. (2004). A novel candidate region for ALS on chromosome 14q11.2. Neurology 63, 1936–1938.10.1212/01.WNL.0000144344.39103.F6Suche in Google Scholar
Greenway, M.J., Andersen, P.M., Russ, C., Ennis, S., Cashman, S., Donaghy, C., Patterson, V., Swingler, R., Kieran, D., Prehn, J., et al. (2006). ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat. Genet. 38, 411–413.10.1038/ng1742Suche in Google Scholar
Gros-Louis, F., Gaspar, C., and Rouleau, G.A. (2006). Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762, 956–72.10.1016/j.bbadis.2006.01.004Suche in Google Scholar
Gros-Louis, F., Soucy, G., Larivière, R., and Julien, J.P. (2010). Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199.10.1111/j.1471-4159.2010.06683.xSuche in Google Scholar
Hama, T., Miyamoto, M., Tsukui, H., Nishio, C., and Hatanaka, H. (1989). Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci. Lett. 104, 340–344.10.1016/0304-3940(89)90600-9Suche in Google Scholar
Hamanoue, M., Takemoto, N., Matsumoto, K., Nakamura, T., Nakajima, K., and Kohsaka, S. (1996). Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J. Neurosci. Res. 43, 554–564.10.1002/(SICI)1097-4547(19960301)43:5<554::AID-JNR5>3.0.CO;2-HSuche in Google Scholar
Han, H., Xia, Y., Wang, S., Zhao, B., Sun, Z., and Yuan, L. (2011). Synergistic effects of galectin-1 and reactive astrocytes on functional recovery after contusive spinal cord injury. Arch. Orthop. Trauma Surg. 131, 829–839.10.1007/s00402-010-1233-xSuche in Google Scholar
Hartley, A., Stone, J.M., Heron, C., Cooper, J.M., and Schapira, A.H. (1994). Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J. Neurochem. 63, 1987–1990.10.1046/j.1471-4159.1994.63051987.xSuche in Google Scholar
Hayashi, T., Ishida, Y., Kimura, A., Takayasu, T., Eisenmenger, W., and Kondo, T. (2004). Forensic application of VEGF expression to skin wound age determination. Int. J. Legal Med. 118, 320–325.10.1007/s00414-004-0468-xSuche in Google Scholar
He, Z. and Bateman, A. (1999). Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res. 59, 3222–3229.Suche in Google Scholar
He, Z. and Bateman, A. (2003). Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med. 81, 600–612.10.1007/s00109-003-0474-3Suche in Google Scholar
He, Z., Ong, C.H.P., Halper, J., and Bateman, A. (2003). Progranulin is a mediator of the wound response. Nat. Med. 9, 225–229.10.1038/nm816Suche in Google Scholar
He, X., Zhang, L., Yao, X., Hu, J., Yu, L., Jia, H., An, R., Liu, Z., and Xu, Y. (2013). Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One 8, 1–5.10.1371/journal.pone.0073777Suche in Google Scholar
Hegde, A.N. and Upadhya, S.C. (2007). The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci. 30, 587–595.10.1016/j.tins.2007.08.005Suche in Google Scholar
Hensley, K., Fedynyshyn, J., Ferrell, S., Floyd, R.A., Gordon, B., Grammas, P., Hamdheydari, L., Mhatre, M., Mou, S., Pye, Q.N., et al. (2003). Message and protein-level elevation of tumor necrosis factor alpha (TNFalpha) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol. Dis. 14, 74–80.10.1016/S0969-9961(03)00087-1Suche in Google Scholar
Higashida, K., Tsukie, T., Fukazawa, H., Fujikura, M., and Ono, S. (2013). Immunohistochemical studies of angiogenin in the skin of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 326, 18–23.10.1016/j.jns.2013.01.002Suche in Google Scholar PubMed
Hirohata, S. and Miyamoto, T. (1990). Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 33, 644–649.10.1002/art.1780330506Suche in Google Scholar PubMed
Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., Asawa, R., Hiroi, T., Sato, M., Yoshioka, T., et al. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci. 24, 1873–1880.10.1523/JNEUROSCI.4483-03.2004Suche in Google Scholar PubMed PubMed Central
Houssiau, F.A., Coulie, P.G., and Van Snick, J. (1989). Distinct roles of IL-1 and IL-6 in human T cell activation. J. Immunol. 143, 2520–2524.10.4049/jimmunol.143.8.2520Suche in Google Scholar
Huang, J.T.J., Chaudhuri, R., Albarbarawi, O., Barton, A., Grierson, C., Rauchhaus, P., Weir, C.J., Messow, M., Stevens, N., McSharry, C., et al. (2012). Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease. Thorax 67, 502–508.10.1136/thoraxjnl-2011-200279Suche in Google Scholar PubMed PubMed Central
Huat, T., Khan, A., Pati, S., Mustafa, Z., Abdullah, J., and Jaafar, H. (2014). IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 15, 91.10.1186/1471-2202-15-91Suche in Google Scholar PubMed PubMed Central
Hunter, I. and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 4, 148–160.10.1096/fasebj.4.2.2404817Suche in Google Scholar PubMed
Ichikawa, N., Iwabuchi, K., Kurihara, H., Ishii, K., Kobayashi, T., Sasaki, T., Hattori, N., Mizuno, Y., Hozumi, K., Yamada, Y., et al. (2009). Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J. Cell Sci. 122, 289–299.10.1242/jcs.030338Suche in Google Scholar PubMed PubMed Central
Ilieva, H., Polymenidou, M., and Cleveland, D.W. (2009). Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772.10.1083/jcb.200908164Suche in Google Scholar PubMed PubMed Central
Iłzecka, J. (2004). Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 106, 289–293.10.1016/j.clineuro.2003.12.007Suche in Google Scholar PubMed
Irwin, D., Lippa, C.F., and Rosso, A. (2009). Progranulin (PGRN) expression in ALS: an immunohistochemical study. J. Neurol. Sci. 276, 9–13.10.1016/j.jns.2008.08.024Suche in Google Scholar PubMed
Ishikawa, H., Yasui, K., Oketa, Y., Suzuki, M., and Ono, S. (2012). Increased expression of valosin-containing protein in the skin of patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 19, 522–526.10.1016/j.jocn.2011.05.044Suche in Google Scholar PubMed
Jian, J., Konopka, J., and Liu, C. (2013). Insights into the role of progranulin in immunity, infection, and inflammation. J. Leukoc. Biol. 93, 199–208.10.1189/jlb.0812429Suche in Google Scholar PubMed PubMed Central
Jiang, L., Dai, Y., Cui, F., Pan, Y., Zhang, H., Xiao, J., and Xiaobing, F.U. (2013). Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. Spinal Cord 52, 1–7.Suche in Google Scholar
Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.10.1073/pnas.182296499Suche in Google Scholar PubMed PubMed Central
Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M., Trojanowski, J.Q., Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., et al. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864.10.1016/j.neuron.2010.11.036Suche in Google Scholar PubMed PubMed Central
Ju, J.S., Fuentealba, R.A., Miller, S.E., Jackson, E., Piwnica-Worms, D., Baloh, R.H., and Weihl, C.C. (2009). Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888.10.1083/jcb.200908115Suche in Google Scholar PubMed PubMed Central
Kadoyama, K., Funakoshi, H., Ohya, W., and Nakamura, T. (2007). Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS. Neurosci. Res. 59, 446–456.10.1016/j.neures.2007.08.017Suche in Google Scholar PubMed
Kahn, M.A. and De Vellis, J. (1994). Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia 12, 87–98.10.1002/glia.440120202Suche in Google Scholar
Kariya, S., Sampson, J.B., Northrop, L.E., Luccarelli, C.M., Naini, A.B., Re, D.B., Hirano, M., and Mitsumoto, H. (2014). Nuclear localization of SMN and FUS is not altered in fibroblasts from patients with sporadic ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 581–587.10.3109/21678421.2014.907319Suche in Google Scholar
Kenna, K.P., van Doormaal, P.T.C., Dekker, A.M., Ticozzi, N., Kenna, B.J., Diekstra, F.P., van Rheenen, W., van Eijk, K.R., Jones, A.R., Keagle, P., et al. (2016). NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042.10.1038/ng.3626Suche in Google Scholar
Kerkhoff, H., Hassan, S.M., Troost, D., Vanetten, R.W., Veldman, H., and Jennekens, F.G.I. (1994). Insulin-like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol. 87, 411–421.10.1007/BF00313611Suche in Google Scholar
Khoshnoodi, J., Pedchenko, V., and Hudson, B.G. (2008). Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370.10.1002/jemt.20564Suche in Google Scholar
Kielty, C.M., Sherratt, M.J., and Shuttleworth, C.A. (2002). Elastic fibres. J. Cell Sci. 115, 2817–2828.10.1242/jcs.115.14.2817Suche in Google Scholar
Kim, S.Y., Woo, M.S., Park, J.S., and Kim, H.S. (2010). Regulation of matrix metalloproteinase-9 gene expression in MPP+- or 6-OHDA-treated human neuroblastoma SK-N-BE(2)C cells. Neurochem. Int. 56, 437–442.10.1016/j.neuint.2009.11.019Suche in Google Scholar
Kim, N.C., Tresse, E., Kolaitis, R.M., Molliex, A., Thomas, R.E., Alami, N.H., Wang, B., Joshi, A., Smith, R.B., Ritson, G.P., et al. (2013). VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78, 65–80.10.1016/j.neuron.2013.02.029Suche in Google Scholar
Kolodziejczyk, R., Michalska, K., Hernandez-Santoyo, A., Wahlbom, M., Grubb, A., and Jaskolski, M. (2010). Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J. 277, 1726–1737.10.1111/j.1742-4658.2010.07596.xSuche in Google Scholar
Kushima, Y. and Hatanaka, H. (1992). Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat spinal cord. Neurosci. Lett. 143, 110–114.10.1016/0304-3940(92)90244-2Suche in Google Scholar
Kwiatkowski, T.J., Bosco, D.A, Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208.10.1126/science.1166066Suche in Google Scholar
Lagier-Tourenne, C., Polymenidou, M., and Cleveland, D.W. (2010). TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, 46–64.10.1093/hmg/ddq137Suche in Google Scholar
Lagier-Tourenne, C., Baughn, M., Rigo, F., Sun, S., Liu, P., Li, H.-R., Jiang, J., Watt, A.T., Chun, S., Katz, M., et al. (2013). Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. USA 110, E4530–E4539.10.1073/pnas.1318835110Suche in Google Scholar
Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S.L., Wyns, S., Thijs, V., Andersson, J., van Marion, I., et al. (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394.10.1038/ng1211Suche in Google Scholar
Lambrechts, D., Storkebaum, E., and Carmeliet, P. (2004). VEGF: necessary to prevent motoneuron degeneration, sufficient to treat ALS? Trends Mol. Med. 10, 275–282.10.1016/j.molmed.2004.04.004Suche in Google Scholar
Lange, D.J., Felice, K.J., Festoff, B.W., Gawel, M.J., Gelinas, D.F., Kratz, R., Lai, E.C., Murphy, M.F., Natter, H.M., Norris, F.H., et al. (1996). Recombinant human insulin-like growth factor-I in ALS: description of a double-blind, placebo-controlled study. Neurology 47, S93–S94.10.1212/WNL.47.4_Suppl_2.93SSuche in Google Scholar
Latterich, M., Fröhlich, K.U., and Schekman, R. (1995). Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893.10.1016/0092-8674(95)90268-6Suche in Google Scholar
Laurent, U.B.G. and Reed, R.K. (1991). Turnover of hyaluronan in the tissues. Adv. Drug Deliv. Rev. 7, 237–256.10.1016/0169-409X(91)90004-VSuche in Google Scholar
Law, W.J., Cann, K.L., and Hicks, G.G. (2006). TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Briefings Funct. Genomics Proteomics 5, 8–14.10.1093/bfgp/ell015Suche in Google Scholar PubMed
Leblond, C.S., Kaneb, H.M., Dion, P.A., and Rouleau, G.A. (2014). Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp. Neurol. 262, 91–101.10.1016/j.expneurol.2014.04.013Suche in Google Scholar PubMed
Lee, D.H., Oh, J.-H., and Chung, J.H. (2016). Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 83, 174–181.10.1016/j.jdermsci.2016.05.016Suche in Google Scholar
Lever, E. and Sheer, D. (2010). The role of nuclear organization in cancer. J. Pathol. 220, 114–125.10.1002/path.2651Suche in Google Scholar
Li, J.F., Duan, H.F., Wu, C.T., Zhang, D.J., Deng, Y., Yin, H.L., Han, B., Gong, H.C., Wang, H.W., and Wang, Y.L. (2013). HGF accelerates wound healing by promoting the dedifferentiation of epidermal cells through β1-integrin/ILK pathway. Biomed Res. Int. 2013, 470418.10.1155/2013/470418Suche in Google Scholar
Lim, G.P., Backstrom, J.R., Cullen, M.J., Miller, C.A., Atkinson, R.D., and Tökés, Z.A. (1996). Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J. Neurochem. 67, 251–259.10.1046/j.1471-4159.1996.67010251.xSuche in Google Scholar
Lin, Y.-T., Chen, J.-S., Wu, M.-H., Hsieh, I.-S., Liang, C.-H., Hsu, C.-L., Hong, T.M., and Chen, Y.-L. (2015). Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J. Invest. Dermatol. 135, 258–268.10.1038/jid.2014.288Suche in Google Scholar
Ling, S., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438.10.1016/j.neuron.2013.07.033Suche in Google Scholar
Löfberg, H. and Grubb, A.O. (1979). Quantitation of gamma-trace in human biological fluids: indications for production in the central nervous system. Scand. J. Clin. Lab. Invest. 39, 619–626.10.3109/00365517909108866Suche in Google Scholar
Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., and Cotman, C.W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90, 7951–7955.10.1073/pnas.90.17.7951Suche in Google Scholar
Lorenzl, S., Albers, D.S., Relkin, N., Ngyuen, T., Hilgenberg, S.L., Chirichigno, J., Cudkowicz, M.E., and Beal, M.F. (2003). Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem. Int. 43, 191–196.10.1016/S0197-0186(03)00004-4Suche in Google Scholar
Lorenzl, S., Calingasan, N., Yang, L., Albers, D.S., Shugama, S., Gregorio, J., Krell, H.W., Chirichigno, J., Joh, T., and Beal, M.F. (2004). Matrix metalloproteinase-9 Is elevated parkinsonism in mice. Neuromolecular Med. 5, 119–131.10.1385/NMM:5:2:119Suche in Google Scholar
Lunetta, C., Serafini, M., Prelle, A., Magni, P., Dozio, E., Ruscica, M., Sassone, J., Colciago, C., Moggio, M., Corbo, M., et al. (2012). Impaired expression of insulin-like growth factor-1 system in skeletal muscle of amyotrophic lateral sclerosis patients. Muscle Nerve 45, 200–208.10.1002/mus.22288Suche in Google Scholar
Ma, S., Turino, G.M., and Lin, Y.Y. (2011). Quantitation of desmosine and isodesmosine in urine, plasma, and sputum by LC-MS/MS as biomarkers for elastin degradation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 1893–1898.10.1016/j.jchromb.2011.05.011Suche in Google Scholar
Mackenzie, I.R.A., Bigio, E.H., Ince, P.G., Geser, F., Neumann, M., Cairns, N.J., Kwong, L.K., Forman, M.S., Ravits, J., Stewart, H., et al. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434.10.1002/ana.21147Suche in Google Scholar
Maeshima, N., Poon, G.F.T., Dosanjh, M., Felberg, J., Lee, S.S.M., Cross, J.L., Birkenhead, D., and Johnson, P. (2011). Hyaluronan binding identifies the most proliferative activated and memory T cells. Eur. J. Immunol. 41, 1108–1119.10.1002/eji.201040870Suche in Google Scholar
Mahaffey, C.L. and Mummert, M.E. (2007). Hyaluronan synthesis is required for IL-2-mediated T cell proliferation. J. Immunol. 179, 8191–8199.10.4049/jimmunol.179.12.8191Suche in Google Scholar
Maina, F. and Klein, R. (1999). Hepatocyte growth factor, a versatile signal for developing neurons. Nat. Neurosci. 2, 213–217.10.1038/6310Suche in Google Scholar
Maina, F., Hilton, M.C., Ponzetto, C., Davies, A.M., and Klein, R. (1997). Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11, 3341–3350.10.1101/gad.11.24.3341Suche in Google Scholar
Malaspina, A., Kaushik, N., and De Belleroche, J. (2001). Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem. 77, 132–145.10.1046/j.1471-4159.2001.t01-1-00231.xSuche in Google Scholar
Matsumoto, K., Hashimoto, K., Yoshikawa, K., and Nakamura, T. (1991). Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor. Exp. Cell Res. 196, 114–120.10.1016/0014-4827(91)90462-4Suche in Google Scholar
McGraw, J., Gaudet, A.D., Oschipok, L.W., Kadoya, T., Horie, H., Steeves, J.D., Tetzlaff, W., and Ramer, M.S. (2005). Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp. Neurol. 195, 103–114.10.1016/j.expneurol.2005.04.004Suche in Google Scholar PubMed
Meyer, H., Bug, M., and Bremer, S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123.10.1038/ncb2407Suche in Google Scholar PubMed
Mi, W., Jung, S.S., Yu, H., Schmidt, S.D., Nixon, R.A., Mathews, P.M., Tagliavini, F., and Levy, E. (2009). Complexes of amyloid-beta and cystatin C in the human central nervous system. J. Alzheimers. Dis. 18, 273–280.10.3233/JAD-2009-1147Suche in Google Scholar PubMed PubMed Central
Mitchell, J.C., Constable, R., So, E., Vance, C., Scotter, E., Glover, L., Hortobagyi, T., Arnold, E.S., Ling, S.C., McAlonis, M., et al. (2015). Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol. Commun. 3, 36.10.1186/s40478-015-0212-4Suche in Google Scholar PubMed PubMed Central
Miyagaki, T., Sugaya, M., Suga, H., Akamata, K., Ohmatsu, H., Fujita, H., Asano, Y., Tada, Y., Kadono, T., and Sato, S. (2012). Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. Arch. Dermatol. Res. 304, 401–406.10.1007/s00403-012-1238-0Suche in Google Scholar PubMed
Mizielinska, S., Lashley, T., Norona, F.E., Clayton, E.L., Ridler, C.E., Fratta, P., and Isaacs, A.M. (2013). C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. 126, 845–857.10.1007/s00401-013-1200-zSuche in Google Scholar PubMed PubMed Central
Moreau, C., Devos, D., Brunaud-Danel, V., Defebvre, L., Perez, T., Destée, A., Tonnel, A.B., Lassalle, P., and Just, N. (2005). Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65, 1958–1960.10.1212/01.wnl.0000188907.97339.76Suche in Google Scholar PubMed
Mori, K., Arzberger, T., Grässer, F.A., Gijselinck, I., May, S., Rentzsch, K., Weng, S.M., Schludi, M.H., van der Zee, J., Cruts, M., et al. (2013). Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 126, 881–893.10.1007/s00401-013-1189-3Suche in Google Scholar PubMed
Mulder, D.W., Kurland, L.T., Offord, K.P., and Beard, C.M. (1986). Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511–517.10.1212/WNL.36.4.511Suche in Google Scholar PubMed
Mummert, M.E., Mummert, D., Edelbaum, D., Hui, F., Matsue, H., and Takashima, A. (2002). Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J. Immunol. 169, 4322–4331.10.4049/jimmunol.169.8.4322Suche in Google Scholar PubMed
Murphy, G. and J. Reynolds, J. (1985). Current views of collagen degeradation. Progress towards understanding the resorption of connective tissues. BioEssays 2, 55–60.10.1002/bies.950020204Suche in Google Scholar
Murphy, M., Dutton, R., Koblar, S., Cheema, S., and Bartlett, P. (1997). Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog. Neurobiol. 52, 355–378.10.1016/S0301-0082(97)00020-8Suche in Google Scholar
Nakamura, T., Nawa, K., and Ichihara, A. (1984). Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 122, 1450–1459.10.1016/0006-291X(84)91253-1Suche in Google Scholar
Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in Frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133.10.1126/science.1134108Suche in Google Scholar
Nguyen, M.D., Julien, J.P., and Rivest, S. (2001). Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1B in neurodegeneration. Ann. Neurol. 50, 630–639.10.1002/ana.1256Suche in Google Scholar
Nishio, C., Yoshida, K., Nishiyama, K., Hatanaka, H., and Yamada, M. (2000). Involvement of cystatin C in oxidative stress-induced apoptosis of cultured rat CNS neurons. Brain Res. 873, 252–262.10.1016/S0006-8993(00)02540-3Suche in Google Scholar
Nobre, P.W., Liang, J., and Jiang, D. (2011). Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 91, 221–264.10.1152/physrev.00052.2009Suche in Google Scholar PubMed PubMed Central
Nomura, M., Oketa, Y., Yasui, K., Ishikawa, H., and Ono, S. (2012). Expression of hepatocyte growth factor in the skin of amyotrophic lateral sclerosis. Acta Neurol. Scand. 125, 389–397.10.1111/j.1600-0404.2011.01579.xSuche in Google Scholar PubMed
Okamoto, K., Mizuno, Y., and Fujita, Y. (2008). Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 28, 109–115.10.1111/j.1440-1789.2007.00873.xSuche in Google Scholar PubMed
Oketa, Y., Higashida, K., Fukasawa, H., Tsukie, T., and Ono, S. (2013). Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol. Scand. 128, 257–264.10.1111/ane.12114Suche in Google Scholar PubMed
Ono, S. (1992). Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis. Ann. Neurol. 31, 305–310.10.1002/ana.410310313Suche in Google Scholar PubMed
Ono, S. (2000). The skin in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 1, 191–199.10.1080/14660820050515188Suche in Google Scholar
Ono, S. and Toyokura, Y. (1988). ‘Delayed return phenomenon’ in amyotrophic lateral sclerosis. Acta Neurol. Scand. 77, 102–107.10.1111/j.1600-0404.1988.tb05879.xSuche in Google Scholar
Ono, S. and Yamauchi, M. (1994). Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 57, 94–96.10.1136/jnnp.57.1.94Suche in Google Scholar
Ono, S., Toyokura, Y., Mannen, T., and Ishibashi, Y. (1988). Increased dermal collagen density in amyotrophic lateral sclerosis. J. Neurol. Sci. 83, 81–92.10.1016/0022-510X(88)90022-6Suche in Google Scholar
Ono, S., Mechanic, G., and Yamauchi, M. (1990). Amyotrophic lateral sclerosis: unusually low content of collagen in skin. J. Neurol. Sci. 100, 234–237.10.1016/0022-510X(90)90038-OSuche in Google Scholar
Ono, S., Nagao, K., and Yamauchi, M. (1994). Amorphous material of the skin in amyotrophic lateral sclerosis: a morphologic and biochemical study. Neurology 44, 537–540.10.1212/WNL.44.3_Part_1.537Suche in Google Scholar
Ono, S., Imai, T., Yamauchi, M., and Nagao, K. (1996). Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis. J. Neurol. 243, 693–699.10.1007/BF00873974Suche in Google Scholar
Ono, S., Waring, S.C., Kurland, L.L., Katrina-Craig, U., and Petersen, R.C. (1997). Guamanian neurodegenerative disease: ultrastructural studies of skin. J. Neurol. Sci. 146, 35–40.10.1016/S0022-510X(96)00273-0Suche in Google Scholar
Ono, S., Imai, T., Takahashi, K., Jinnai, K., Yamano, T., Nagao, K., Shimizu, N., and Yamauchi, M. (1998). Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis. Neurology 51, 114–120.10.1212/WNL.51.1.114Suche in Google Scholar PubMed
Ono, S., Imai, T., Matsubara, S., Takahashi, K., Jinnai, K., Yamano, T., and Shimizu, N. (1999a). Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol. Scand. 100, 111–116.10.1111/j.1600-0404.1999.tb01048.xSuche in Google Scholar PubMed
Ono, S., Imai, T., and Takahashi, K. (1999b). Increased type III procollagen in serum and skin of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 100, 377–384.10.1111/j.1600-0404.1999.tb01056.xSuche in Google Scholar
Ono, S., Shimizu, N., Imai, T., Mihori, A., and Nagao, K. (2000a). Increased cystatin C immunoreactivity in the skin in amyotrophic lateral sclerosis. Acta Neurol. Scand. 102, 47–52.10.1034/j.1600-0404.2000.102001047.xSuche in Google Scholar
Ono, S., Imai, T., Shimizu, N., and Nagao, K. (2000b). Increased expression of laminin 1 in the skin of amyotrophic lateral sclerosis. Eur. Neurol. 43, 215–220.10.1159/000008178Suche in Google Scholar
Ono, S., Hu, J., Imai, T., Shimizu, N., Tsumura, M., and Nakagawa, H. (2000c). Increased expression of insulin-like growth factor I in skin in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 69, 199–203.10.1136/jnnp.69.2.199Suche in Google Scholar
Ono, S., Hu, J., Shimizu, N., Imai, T., and Nakagawa, H. (2001). Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J. Neurol. Sci. 187, 27–34.10.1016/S0022-510X(01)00514-7Suche in Google Scholar
Paré, B., Touzel-Deschênes, L., Lamontagne, R., Lamarre, M.-S., Scott, F.-D., Khuong, H.T., Dion, P.A., Bouchard, J.P., Gould, P., Rouleau, G.A., et al. (2015). Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skins derived from ALS patients. Acta Neuropathol. Commun. 3, 5.10.1186/s40478-014-0181-zSuche in Google Scholar PubMed PubMed Central
Pasinelli, P. and Brown, R.H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723.10.1038/nrn1971Suche in Google Scholar PubMed
Petkau, T.L. and Leavitt, B.R. (2014). Progranulin in neurodegenerative disease. Trends Neurosci. 37, 388–398.10.1016/j.tins.2014.04.003Suche in Google Scholar PubMed
Philips, T., De Muynck, L., Thu, H.N.T., Weynants, B., Vanacker, P., Dhondt, J., Sleegers, K., Schelhaas, H.J., Verbeek, M., Vandenberghe, R., et al. (2010). Microglial upregulation of progranulin as a marker of motor neuron degeneration. J. Neuropathol. Exp. Neurol. 69, 1191–1200.10.1097/NEN.0b013e3181fc9aeaSuche in Google Scholar PubMed
Pickart, C.M. and Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1695, 55–72.10.1016/j.bbamcr.2004.09.019Suche in Google Scholar PubMed
Pittenger, L.G., Ray, M., Burcus, N.I., McNulty, P., Basta, B., and Vinik, A.I. (2004). Indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diab. Care 27, 1974–1979.10.2337/diacare.27.8.1974Suche in Google Scholar
Poloni, M., Facchetti, D., Mai, R., Micheli, A., Agnoletti, L., Francolini, G., Mora, G., Camana, C., Mazzini, L., and Bachetti, T. (2000). Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 287, 211–214.10.1016/S0304-3940(00)01177-0Suche in Google Scholar
Powers, C.A., Mathur, M., Raaka, B.M., Ron, D., and Samuels, H.H. (1998). TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors. Mol. Endocrinol. 12, 4–18.10.1210/mend.12.1.0043Suche in Google Scholar
Pronto-laborinho, A.C., Pinto, S., and De Carvalho, M. (2014). Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. Biomed Res. Int. 2014, 24.10.1155/2014/947513Suche in Google Scholar
Provinciali, L., Cangiotti, A., Tulli, D., Carboni, V., and Cinti, S. (1994). Skin abnormalities and autonomic involvement in the early stage of amyotrophic lateral sclerosis. J. Neurol. Sci. 126, 54–61.10.1016/0022-510X(94)90094-9Suche in Google Scholar
Quintá, H.R., Pasquini, J.M., Rabinovich, G.A., and Pasquini, L.A. (2014). Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Cell Death Differ. 21, 941–955.10.1038/cdd.2014.14Suche in Google Scholar
Rabinovich, G.A., Sotomayor, C.E., Riera, C.M., Bianco, I., and Correa, S.G. (2000). Evidence of a role for galectin-1 in acute inflammation. Eur. J. Immunol. 30, 1331–1339.10.1002/(SICI)1521-4141(200005)30:5<1331::AID-IMMU1331>3.0.CO;2-HSuche in Google Scholar
Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T., and Iacobelli, S. (2002). Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320.10.1016/S1471-4906(02)02232-9Suche in Google Scholar
Rabouille, C., Levine, T.P., Peters, J.M., and Warren, G. (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914.10.1016/0092-8674(95)90270-8Suche in Google Scholar
Ramadan, K., Bruderer, R., Spiga, F.M., Popp, O., Baur, T., Gotta, M., and Meyer, H.H. (2007). Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262.10.1038/nature06388Suche in Google Scholar
Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.10.1016/j.neuron.2011.09.010Suche in Google Scholar
Ritson, G.P., Custer, S.K., Freibaum, B.D., Guinto, J.B., Geffel, D., Moore, J., Tang, W., Winton, M.J., Neumann, M., Trojanowski, J.Q., et al. (2010). TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci. 30, 7729–7739.10.1523/JNEUROSCI.5894-09.2010Suche in Google Scholar
Robberecht, W. and Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264.10.1038/nrn3430Suche in Google Scholar
Rosen, E.M., Goldberg, I.D., Kacinski, B.M., Buckholz, T., and Vinter, D.W. (1989). Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell. Dev. Biol. 25, 163–173.10.1007/BF02626174Suche in Google Scholar
Rosenstein, J.M., Krum, J.M., and Ruhrberg, C. (2010). VEGF in the nervous system. Organogenesis 6, 107–114.10.1007/978-0-387-78632-2_8Suche in Google Scholar
Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786.10.1038/nature05291Suche in Google Scholar
Russo, V.C., Gluckman, P.D., Feldman, E.L., and Werther, G.A. (2005). The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 26, 916–943.10.1210/er.2004-0024Suche in Google Scholar
Sadowski, T., Dietrich, S., Koschinsky, F., and Sedlacek, R. (2003). Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol. Biol. Cell 14, 4569–4580.10.1091/mbc.e03-01-0009Suche in Google Scholar
Sako, W. and Ishimoto, S. (2014). Can cystatin C in cerebrospinal fluid be a biomarker for amyotrophic lateral sclerosis? A lesson from previous studies. Neurol. Clin. Neurosci. 2, 72–75.10.1111/ncn3.82Suche in Google Scholar
Sasaki, M., Kleinman, H.K., Huber, H., Deutzmann, R., and Yamada, Y. (1988). Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J. Biol. Chem. 263, 16536–16544.10.1016/S0021-9258(18)37424-6Suche in Google Scholar
Satoh, J., Yamamoto, Y., and Kitano, S. (2014). Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. J. Cent. Nerv. Syst. Dis. 6, 69–78.10.4137/JCNSD.S18103Suche in Google Scholar
Seidal, T., Balaton, A.J., and Battifora, H. (2001). Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 25, 1204–1207.10.1097/00000478-200109000-00013Suche in Google Scholar
Sekizawa, T., Openshaw, H., Ohbo, K., Sugamura, K., Itoyama, Y., and Niland, J.C. (1998). Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J. Neurol. Sci. 154, 194–199.10.1016/S0022-510X(97)00228-1Suche in Google Scholar
Semenova, E., Koegel, H., Hasse, S., Klatte, J.E., Slonimsky, E., Bilbao, D., Paus, R., Werner, S., and Rosenthal, N. (2008). Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Am. J. Pathol. 173, 1295–1310.10.2353/ajpath.2008.071177Suche in Google Scholar PubMed PubMed Central
Shen, S., Alt, A., Wertheimer, E., Gartsbein, M., Kuroki, T., Ohba, M., Braiman, L., Sampson, S.R., and Tennenbaum, T. (2001). PKCdelta activation: a divergence point in the signaling of insulin and IGF-1-induced proliferation of skin keratinocytes. Diabetes 50, 255–264.10.2337/diabetes.50.2.255Suche in Google Scholar PubMed
Sherratt, M.J. (2009). Tissue elasticity and the ageing elastic fibre. Age (Omaha) 31, 305–325.10.1007/s11357-009-9103-6Suche in Google Scholar PubMed PubMed Central
Skorupa, A., King, M.A., Aparicio, I.M., Dussmann, H., Coughlan, K., Breen, B., Kieran, D., Concannon, C.G., Marin, P., and Prehn, J.H.M. (2012). Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J. Neurosci. 32, 5024–5038.10.1523/JNEUROSCI.6366-11.2012Suche in Google Scholar PubMed PubMed Central
Sleegers, K., Brouwers, N., Maurer-Stroh, S., Van Es, M.A., Van Damme, P., Van Vught, P.W.J., van der Zee, J., Serneels, S., De Pooter, T, Van den Broeck, M., et al. (2008). Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71, 253–259.10.1212/01.wnl.0000289191.54852.75Suche in Google Scholar PubMed
Sloane, J.A., Batt, C., Ma, Y., Harris, Z.M., Trapp, B., and Vartanian, T. (2010). Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. USA 107, 11555–11560.10.1073/pnas.1006496107Suche in Google Scholar PubMed PubMed Central
Sondell, M., Lundborg, G., and Kanje, M. (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740.10.1523/JNEUROSCI.19-14-05731.1999Suche in Google Scholar
Starcher, B. and Percival, S. (1985). Elastin turnover in the rat uterus. Connect. Tissue Res. 13, 207–215.10.3109/03008208509152400Suche in Google Scholar PubMed
Stoker, M., Gherardi, E., Perryman, M., and Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327, 239–242.10.1038/327239a0Suche in Google Scholar PubMed
Stolz, A., Hilt, W., Buchberger, A., and Wolf, D.H. (2011). Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523.10.1016/j.tibs.2011.06.001Suche in Google Scholar PubMed
Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.-P., Appelmans, S., Oh, H., Van Damme, P., Rutten, B., Man, W.Y., De Mol, M., et al. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8, 85–92.10.1038/nn1360Suche in Google Scholar PubMed
Stratton, M.S., Yang, X., Sreejayan, N., and Ren, J. (2007). Impact of insulin-like growth factor-I on migration, proliferation and Akt-ERK signaling in early and late-passages of vascular smooth muscle cells. Cardiovasc. Toxicol. 7, 273–281.10.1007/s12012-007-9006-7Suche in Google Scholar PubMed
Subramanian, V., Crabtree, B., and Acharya, K.R. (2008). Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum. Mol. Genet. 17, 130–149.10.1093/hmg/ddm290Suche in Google Scholar PubMed
Suh, H.-S., Zhao, M.-L., Derico, L., Choi, N., and Lee, S.C. (2013). Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J. Neuroinflamm. 10, 37.10.1186/1742-2094-10-37Suche in Google Scholar PubMed PubMed Central
Sun, W., Funakoshi, H., and Nakamura, T. (2002). Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J. Neurosci. 22, 6537–6548.10.1523/JNEUROSCI.22-15-06537.2002Suche in Google Scholar
Suzuki, M., Watanabe, T., Mikami, H., Nomura, M., Yamazaki, T., Irie, T., Ishikawa, H., Yasui, K., and Ono, S. (2009). Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 285, 125–129.10.1016/j.jns.2009.06.021Suche in Google Scholar PubMed
Suzuki, M., Mikami, H., Watanabe, T., Yamano, T., Yamazaki, T., Nomura, M., Yasui, K., Ishikawa, H., and Ono, S. (2010). Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol. Scand. 122, 367–372.10.1111/j.1600-0404.2010.01321.xSuche in Google Scholar PubMed
Swardfager, W., Lanctt, K., Rothenburg, L., Wong, A., Cappell, J., and Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry 68, 930–941.10.1016/j.biopsych.2010.06.012Suche in Google Scholar
Swarup, V., Phaneuf, D., Dupré, N., Petri, S., Strong, M., Kriz, J., and Julien, J.-P. (2011). Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447.10.1084/jem.20111313Suche in Google Scholar
Tan, A.Y., and Manley, J.L. (2009). The TET family of proteins: functions and roles in disease. J. Mol. Cell Biol. 1, 82–92.10.1093/jmcb/mjp025Suche in Google Scholar
Tan, C.F., Eguchi, H., Tagawa, A., Onodera, O., Iwasaki, T., Tsujino, A., Nishizawa, M., Kakita, A., and Takahashi, H. (2007). TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol. 113, 535–542.10.1007/s00401-007-0206-9Suche in Google Scholar
Tandan, R. and Bradley, W.G. (1985). Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18, 271–280.10.1002/ana.410180302Suche in Google Scholar
Terrado, J., Monnier, D., Perrelet, D., Vesin, D., Jemelin, S., Buurman, W.A., Mattenberger, L., King, B., Kato, A.C., and Garcia, I. (2000). Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS. Eur. J. Neurosci. 12, 3443–3447.10.1046/j.1460-9568.2000.00240.xSuche in Google Scholar
Tewari, M., and Dixit, V.M. (1996). Recent advances in tumor necrosis factor and CD40 signaling. Curr. Opin. Genet. Dev. 6, 39–44.10.1016/S0959-437X(96)90008-8Suche in Google Scholar
Tresse, E., Salomons, F.A., Vesa, J., Bott, L.C., Kimonis, V., Yao, T.P., Dantuma, N.P., and Taylor, J.P. (2010). VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 9, 217–227.10.4161/auto.6.2.11014Suche in Google Scholar PubMed PubMed Central
Truini, A., Biasiotta, A., Onesti, E., Di Stefano, G., Ceccanti, M., La Cesa, S., Pepe, A., Giordano, C., Cruccu, G., Inghilleri, M., et al. (2015). Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J. Neurol. 262, 1014–1018.10.1007/s00415-015-7672-0Suche in Google Scholar PubMed
Tsuji-Akimoto, S., Yabe, I., Niino, M., Kikuchi, S., and Sasaki, H. (2009). Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci. Lett. 452, 52–55.10.1016/j.neulet.2009.01.026Suche in Google Scholar PubMed
Tsukie, T., Masaki, H., Yoshida, S., Fujikura, M., and Ono, S. (2014). Decreased amount of collagen in the skin of amyotrophic lateral sclerosis in the Kii Peninsula of Japan. Acta Neurol. Taiwan 23, 82–89.10.1016/j.jns.2013.07.1523Suche in Google Scholar
Van Damme, P., Van Hoecke, A., Lambrechts, D., Vanacker, P., Bogaert, E., Van Swieten, J., Carmeliet, P., Van Den Bosch, L., and Robberecht, W. (2008). Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41.10.1083/jcb.200712039Suche in Google Scholar
van der Zee, J., Gijselinck, I., Dillen, L., Van Langenhove, T., Theuns, J., Engelborghs, S., Philtjens, S., Vandenbulcke, M., Sleegers, K., Sieben, A., et al. (2013). A Pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum. Mutat. 34, 363–373.10.1002/humu.22244Suche in Google Scholar
Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211.10.1126/science.1165942Suche in Google Scholar
Vande Velde, C. and Cleveland, D.W. (2005). VEGF: multitasking in ALS. Nat. Neurosci. 8, 5–7.10.1038/nn0105-5Suche in Google Scholar
Vaz, B., Halder, S., and Ramadan, K. (2013). Role of p97/VCP (Cdc48) in genome stability. Front. Genet. 4, 60.10.3389/fgene.2013.00060Suche in Google Scholar
Visse, R. and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839.10.1161/01.RES.0000070112.80711.3DSuche in Google Scholar
Viviani, B., Bartesaghi, S., Corsini, E., Galli, C.L., and Marinovich, M. (2004). Cytokines role in neurodegenerative events. Toxicol. Lett. 149, 85–89.10.1016/j.toxlet.2003.12.022Suche in Google Scholar
Wada, M., Ono, S., Kadoya, T., Kawanami, T., Kurita, K., and Kato, T. (2003). Decreased galectin-1 immunoreactivity of the skin in amyotrophic lateral sclerosis. J. Neurol. Sci. 208, 67–70.10.1016/S0022-510X(02)00424-0Suche in Google Scholar
Wagner, J.A. (1996). Is IL-6 both a cytokine and a neurotrophic factor? J. Exp. Med. 183, 2417–2419.10.1084/jem.183.6.2417Suche in Google Scholar PubMed PubMed Central
Waite, A.J., Bäumer, D., East, S., Neal, J., Morris, H.R., Ansorge, O., and Blake, D.J. (2014). Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging 35, 1779.e5–1779.e13.10.1016/j.neurobiolaging.2014.01.016Suche in Google Scholar
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65.10.1038/sj.cdd.4401189Suche in Google Scholar
Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P., Rosenfeld, M.G., Glass, C.K., and Kurokawa, R. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130.10.1038/nature06992Suche in Google Scholar
Watanabe, S., Yamada, K., Ono, S., and Ishibashi, Y. (1987). Skin changes in patients with amyotrophic lateral sclerosis: light and electron microscopic observations. J. Am. Acad. Dermatol. 17, 1006–1012.10.1016/S0190-9622(87)70290-4Suche in Google Scholar
Watanabe, T., Okeda, Y., Yamano, T., and Ono, S. (2010). An immunohistochemical study of ubiquitin in the skin of sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 298, 52–56.10.1016/j.jns.2010.08.026Suche in Google Scholar PubMed
Watanabe, S., Hayakawa, T., Wakasugi, K., and Yamanaka, K. (2014). Cystatin C protects neuronal cells against mutant copper-zinc superoxide dismutase-mediated toxicity. Cell Death Dis 5, e1497.10.1038/cddis.2014.459Suche in Google Scholar PubMed PubMed Central
Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M., and Baloh, R.H. (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 106, 18809–18814.10.1073/pnas.0908767106Suche in Google Scholar PubMed PubMed Central
Weis, J., Katona, I., Müller-Newen, G., Sommer, C., Necula, G., Hendrich, C., Ludolph, A.C., and Sperfeld, A.D. (2011). Small-fiber neuropathy in patients with ALS. Neurology 76, 2024–2029.10.1212/WNL.0b013e31821e553aSuche in Google Scholar PubMed
Wiksten, M., Vaananen, A., and Liesi, P. (2007). Selective overexpression of c1 laminin in astrocytes in amyotrophic lateral sclerosis indicates an involvement in ALS pathology Markus. J. Neurosci. Res. 85, 2045–2058.10.1002/jnr.21314Suche in Google Scholar PubMed
Wilson, M.E., Boumaza, I., Lacomis, D., and Bowser, R. (2010). Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 5, e15133. doi:10.1371/journal.pone.0015133.10.1371/journal.pone.0015133Suche in Google Scholar PubMed PubMed Central
Wilson, M.E., Boumaza, I., and Bowser, R. (2013). Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 10, 15.10.1186/2045-8118-10-15Suche in Google Scholar
Woodroofe, M.N., Sarna, G.S., Wadhwa, M., Hayes, G.M., Loughlin, A.J., Tinker, A., and Cuzner, M.L. (1991). Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236.10.1016/0165-5728(91)90110-SSuche in Google Scholar
Wu, D., Yu, W., Kishikawa, H., Folkerth, R.D., Iafrate, A.J., Shen, Y., Xin, W., Sims, K., and Hu, G. (2007a). Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617.10.1002/ana.21221Suche in Google Scholar
Wu, D., Yu, W., Kishikawa, H., Folkerth, R.D., Iafrate, A.J., Shen, Y., Xin, W., Sims, K., and Hu, G.F. (2007b). Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617.10.1002/ana.21221Suche in Google Scholar
Yamanaka, K., Sasagawa, Y., and Ogura, T. (2012). Recent advances in p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta Mol. Cell Res. 1823, 130–137.10.1016/j.bbamcr.2011.07.001Suche in Google Scholar
Yamaoka, K., Ohno, S., Kawasaki, H., and Suzuki, K. (1991). Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem. Biophys. Res. Commun. 179, 272–279.10.1016/0006-291X(91)91365-JSuche in Google Scholar
Yamashita, S., Kimura, E., Tawara, N., Sakaguchi, H., Nakama, T., Maeda, Y., Hirano, T., Uchino, M., and Ando, Y. (2013). Optineurin is potentially associated with TDP-43 and involved in the pathogenesis of inclusion body myositis. Neuropathol. Appl. Neurobiol. 39, 406–416.10.1111/j.1365-2990.2012.01297.xSuche in Google Scholar
Yamauchi, M., London, R.E., Guenat, C., Hashimoto, F., and Mechanic, G.L. (1987). Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen. J. Biol. Chem. 262, 11428–11434.10.1016/S0021-9258(18)60824-5Suche in Google Scholar
Yasui, K., Oketa, Y., Higashida, K., Fukazawa, H., and Ono, S. (2011). Increased progranulin in the skin of amyotrophic lateral sclerosis: an immunohistochemical study. J. Neurol. Sci. 309, 110–114.10.1016/j.jns.2011.07.003Suche in Google Scholar PubMed
Yokoseki, A., Shiga, A., Tan, C.-F., Tagawa, A., Kaneko, H., Koyama, A., Eguchi, H., Tsujino, A., Ikeuchi, T., Kakita, A., et al. (2008). TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann. Neurol. 63, 538–542.10.1002/ana.21392Suche in Google Scholar PubMed
Zeeuwen, P.L., van Vlijmen-Willems, I.M., Egami, H., and Schalkwijk, J. (2002). Cystatin M/E expression in inflammatory and neoplastic skin disorders. Br. J. Dermatol. 147, 87–94.10.1046/j.1365-2133.2002.04785.xSuche in Google Scholar PubMed
Zhang, D., Iyer, L.M., He, F., and Aravind, L. (2012). Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front. Genet. 3, 1–10.10.3389/fgene.2012.00283Suche in Google Scholar PubMed PubMed Central
Zu, T., Liu, Y., Banez-Coronel, M., Reid, T., Pletnikova, O., Lewis, J., Miller, T.M., Harms, M.B., Falchook, A.E., and Subramony, S.H. (2013). RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl. Acad. Sci. USA 110, E4968–E4977.10.1073/pnas.1315438110Suche in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Frameworking memory and serotonergic markers
- Peripheral levels of BDNF and opiate-use disorder: literature review and update
- Neurotransmission systems in Parkinson’s disease
- Semicircular canal modeling in human perception
- Potential skin involvement in ALS: revisiting Charcot’s observation – a review of skin abnormalities in ALS
Artikel in diesem Heft
- Frontmatter
- Frameworking memory and serotonergic markers
- Peripheral levels of BDNF and opiate-use disorder: literature review and update
- Neurotransmission systems in Parkinson’s disease
- Semicircular canal modeling in human perception
- Potential skin involvement in ALS: revisiting Charcot’s observation – a review of skin abnormalities in ALS