Startseite Frameworking memory and serotonergic markers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Frameworking memory and serotonergic markers

  • Alfredo Meneses

    Alfredo Meneses received his PhD in physiological sciences (1996) from UNAM. He completed his postdoctoral stay at the NIA, USA, from 1997 to 1998. Currently, he is a full professor at the Department of Pharmacobiology of CINVESTAV. He was invited as speaker for the Expert Workshop entitled “Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology” (September 23, 2013, Rome). From 2013 to 2014, he completed two books for Elsevier by invitation, and he coedited one for Frontiers in Pharmacology and Frontiers in Neuroscience. He was guest editor for reviews in the Neurosciences and is associate editor for Frontiers in Neuropharmacology, Neurology, Neuroscience, Psychiatry.

    EMAIL logo
Veröffentlicht/Copyright: 27. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract:

The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.

About the author

Alfredo Meneses

Alfredo Meneses received his PhD in physiological sciences (1996) from UNAM. He completed his postdoctoral stay at the NIA, USA, from 1997 to 1998. Currently, he is a full professor at the Department of Pharmacobiology of CINVESTAV. He was invited as speaker for the Expert Workshop entitled “Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology” (September 23, 2013, Rome). From 2013 to 2014, he completed two books for Elsevier by invitation, and he coedited one for Frontiers in Pharmacology and Frontiers in Neuroscience. He was guest editor for reviews in the Neurosciences and is associate editor for Frontiers in Neuropharmacology, Neurology, Neuroscience, Psychiatry.

References

Ahmadi-Mahmoodabadi, N., Nasehi, M., Emam-Ghoreishi, M., and Zarrindast, M.R. (2016). Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: an isobologram analysis. Neuroscience 317, 173–183.10.1016/j.neuroscience.2015.12.010Suche in Google Scholar PubMed

Alabdali, A., Al-Ayadhi, L., and El-Ansary, A. (2014). Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J. Neuroinflammation 11, 4.10.1186/1742-2094-11-4Suche in Google Scholar PubMed PubMed Central

Aldrin-Kirk, P., Heuer, A., Wang, G., Mattsson, B., Lundblad, M., Parmar, M., and Björklund, T. (2016). DREADD modulation of transplanted DA neurons reveals a novel parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron. 90, 955–968.10.1016/j.neuron.2016.04.017Suche in Google Scholar PubMed PubMed Central

Alenina, N. and Klempin, F. (2015). The role of serotonin in adult hippocampal neurogenesis. Behav. Brain Res. 277, 49–57.10.1016/j.bbr.2014.07.038Suche in Google Scholar PubMed

Aloyo, V.J., Berg, K.A., Spampinato, U., Clarke, W.P., and Harvey, J.A. (2009). Current status of inverse agonism at serotonin 2A (5-HT2A) and 5-HT2C receptors. Pharmacol. Ther. 121, 160–173.10.1016/j.pharmthera.2008.10.010Suche in Google Scholar PubMed

Andreetta, F., Carboni, L., Grafton, G., Jeggo, R., Whyment, A.D., van den Top, M., Hoyer, D., Spanswick, D., and Barnes, N.M. (2016). Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated-neurotransmission in vitro and in vivo. Br. J. Pharmacol. 173, 1438–1451.10.1111/bph.13432Suche in Google Scholar PubMed PubMed Central

Anselme, P. (2016). Motivational control of sign-tracking behaviour: a theoretical framework. Neurosci. Biobehav. Rev. 65, 1–20.10.1016/j.neubiorev.2016.03.014Suche in Google Scholar PubMed

Asselot, R., Simon-O’Brien, E., Lebourgeois, S., Nee, G., Delaunay, V., Duchatelle, P., Bouet, V., and Dauphin, F. (2016). Time-dependent impact of glutamatergic modulators on the promnesiant effect of 5-HT6R blockade on mice recognition memory. Pharmacol. Res. pii: S1043-6618(16)30558-8.Suche in Google Scholar

Aubert, Y., Allers, K.A., Sommer, B., de Kloet, E.R., Abbott, D.H., and Datson, N.A. (2013). Brain region-specific transcriptomic markers of serotonin-1A receptor agonist action mediating sexual rejection and aggression in female marmoset monkeys. J. Sex Med. 10, 1461–1475.10.1111/jsm.12131Suche in Google Scholar PubMed

Avlar, B., Kahn, J.B., Jensen, G., Kandel, E.R., Simpson, E.H., and Balsam, P.D. (2015). Improving temporal cognition by enhancing motivation. Behav. Neurosci. 129, 576–588.10.1037/bne0000083Suche in Google Scholar PubMed PubMed Central

Aznar, S. and Hervig, E.M. (2016). The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci. Biobehav. Rev. 64, 63–82.10.1016/j.neubiorev.2016.02.008Suche in Google Scholar PubMed

Baas, J.M. and Heitland, I. (2014). The impact of cue learning, trait anxiety and genetic variation in the serotonin 1A receptor on contextual fear. Int. J. Psychophysiol. 98, 506–514.10.1016/j.ijpsycho.2014.10.016Suche in Google Scholar

Baba, S., Murai, T., Nakako, T., Enomoto, T., Ono, M., Shimizu, I., and Ikeda, K. (2015). The serotonin 5-HT1A receptor agonist tandospirone improves executive function in common marmosets. Behav. Brain Res. 287, 120–126.10.1016/j.bbr.2015.03.025Suche in Google Scholar

Ballaz, S.J., Akil, H., and Watson, S.J. (2007). The 5-HT7 receptor: role in novel object discrimination and relation to novelty-seeking behavior. Neuroscience 149, 192–202.10.1016/j.neuroscience.2007.07.043Suche in Google Scholar

Bailey, C.H., Kandel, E.R., and Harris, K.M. (2015). Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7, 021758.10.1101/cshperspect.a021758Suche in Google Scholar

Baratta, M.V., Kodandaramaiah, S.B., Monahan, P.E., Yao, J., Weber, M.D., Lin, P.A., Gisabella, B., Petrossian, N., Amat, J., Kim, K., et al. (2016). Stress enables reinforcement-elicited serotonergic consolidation of fear memory. Biol. Psychiatry 79, 814–822.10.1016/j.biopsych.2015.06.025Suche in Google Scholar

Barlow, R.L., Alsiö, J., Jupp, B., Rabinovich, R., Shrestha, S., Roberts, A.C., Robbins, T.W., and Dalley, J.W. (2015). Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 40, 1619–1630.10.1038/npp.2014.335Suche in Google Scholar

Barnes, N.M. and Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152.10.1016/S0028-3908(99)00010-6Suche in Google Scholar

Barre, A., Berthoux, C., De Bundel, D., Valjent, E., Bockaert, J., Marin, P., and Bécamel, C. (2016). Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc. Natl. Acad. Sci. USA 113, E1382–E1391.10.1073/pnas.1525586113Suche in Google Scholar PubMed PubMed Central

Barry, D.N., Coogan, A.N., and Commins, S. (2016). The time course of systems consolidation of spatial memory from recent to remote retention: a comparison of the immediate early genes Zif268, c-Fos and Arc. Neurobiol. Learn. Mem. 28, 46–55.10.1016/j.nlm.2015.12.010Suche in Google Scholar PubMed

Baudry, M., Zhu, G., Liu, Y., Wang, Y., Briz, V., and Bi, X. (2015). Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res. 1621, 73–78.10.1016/j.brainres.2014.11.033Suche in Google Scholar PubMed PubMed Central

Bawa, P., Pradeep, P., Kumar, P., Choonara, Y.E., Modi, G., and Pillay, V. (2016). Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today. 21, 1886–1914.10.1016/j.drudis.2016.08.001Suche in Google Scholar

Beaudet, G., Bouet, V., Jozet-Alves, C., Schumann-Bard, P., Dauphin, F., Paizanis, E., Boulouard, M. and Freret, T. (2015). Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors. Front Behav. Neurosci. 8, 448.10.3389/fnbeh.2014.00448Suche in Google Scholar

Beaudet, G., Jozet-Alves, C., Asselot, R., Schumann-Bard, P., Freret, T., Boulouard, M., and Paizanis, E. (2016). Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice. Behav. Brain Res. 320, 179–185.10.1016/j.bbr.2016.12.006Suche in Google Scholar

Becker, G., Streichenberger, N., Billard, T., Newman-Tancredi, A., and Zimmer, L. (2014). A postmortem study to compare agonist and antagonist 5-HT1A receptor-binding sites in Alzheimer’s disease. CNS Neurosci. Ther. 20, 930–934.10.1111/cns.12306Suche in Google Scholar

Beliveau, V., Ganz, M., Feng, L., Ozenne, B., Højgaard, L., Fisher, P.M., Svarer, C., Greve, D.N., and Knudsen, G.M. (2017). A high-resolution in vivo Atlas of the human brain’s serotonin system. J. Neurosci. 37, 120–128.10.1523/JNEUROSCI.2830-16.2016Suche in Google Scholar

Benhamú, B., Martín-Fontecha, M., Vázquez-Villa, H., Pardo, L., and López-Rodríguez, M.L. (2014). Serotonin 5-HT6 receptor antagonists for the treatment of cognitive deficiency in Alzheimer’s disease. J. Med. Chem. 57, 7160–7181.10.1021/jm5003952Suche in Google Scholar

Bernotas, R., Lenicek, S., Antane, S., Zhang, G.M., Smith, D., Coupet, J., Harrison, B., and Schechter, L.E. (2004). 1-(2-Aminoethyl)-3-(arylsulfonyl)-1H-indoles as novel 5-HT6 receptor ligands. Bioorg. Med. Chem. Lett. 14, 5499–5502.10.1016/j.bmcl.2004.09.003Suche in Google Scholar

Berry, J.A., Cervantes-Sandoval, I., Nicholas, E.P., and Davis, R.L. (2014). Dopamine is required for learning and forgetting in Drosophila. Neuron. 74, 530–542.10.1016/j.neuron.2012.04.007Suche in Google Scholar

Bert, B., Voigt, J.P., Kusserow, H., Theuring, F., Rex, A., and Fink, H. (2009). Increasing the number of 5-HT1A receptors in cortex and hippocampus does not induce mnemonic deficits in mice. Pharmacol. Biochem. Behav. 92, 76–81.10.1016/j.pbb.2008.10.014Suche in Google Scholar

Berthoux, C., Hamieh, A.M., Bockaert, J., Marin, P., and Bécamel, C. (2016). Cognitive deficits due to chronic consumption of Δ9-tetrahydrocannabinol during adolescence: role of 5-HT6-mTOR pathway. Eur. Neuropsychopharmacol. 26(Suppl 1), S3–S4.10.1016/S0924-977X(16)70005-8Suche in Google Scholar

Bijlsma, E.Y., Hendriksen, H., Baas, J.M., Millan, M.J., and Groenink, L. (2015). Lifelong disturbance of SERT functioning results in fear learning deficits: reversal by blockade of CRF1 receptors. Eur. Neuropsychopharmacol. 25, 1733–1743.10.1016/j.euroneuro.2015.07.004Suche in Google Scholar PubMed

Blasi, G., Selvaggi, P., Fazio, L., Antonucci, L.A., Taurisano, P., Masellis, R., Romano, R., Mancini, M., Zhang, F., Caforio, G., et al. (2015). Variation in Dopamine D2 and serotonin 5-HT2A receptor genes is associated with working memory processing and response to treatment with antipsychotics. Neuropsychopharmacology 40, 1600–1608.10.1038/npp.2015.5Suche in Google Scholar PubMed PubMed Central

Blenau, W. and Baumann, A., eds. (2015). Serotonin receptor technologies. Neuromethods. 95, 125–149, © Springer Science+Business Media New York.10.1007/978-1-4939-2187-4Suche in Google Scholar

Blokland, A., van Goethem, N., Heckman, P., Schreiber, R., and Prickaerts, J. (2015). Translational issues with the development of cognition enhancing drugs. Front Neurol. 5, 190.10.3389/fneur.2014.00190Suche in Google Scholar PubMed PubMed Central

Bockaert, J. and Marin, P. (2015). mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187.10.1152/physrev.00038.2014Suche in Google Scholar PubMed

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2011). 5-HT4 receptors, a place in the sun: act two. Curr. Opin. Pharmacol. 11, 87–93.10.1016/j.coph.2011.01.012Suche in Google Scholar PubMed

Bocchio, M., Fucsina, G., Oikonomidis, L., McHugh, S.B., Bannerman, D.M., Sharp, T., and Capogna, M. (2015). Increased serotonin transporter expression reduces fear and recruitment of parvalbumin interneurons of the amygdala. Neuropsychopharmacology 40, 3015–3026.10.1038/npp.2015.157Suche in Google Scholar PubMed PubMed Central

Bocchio, M., McHugh, S.B., Bannerman, D.M., Sharp, T., and Capogna, M. (2016). Serotonin, amygdala and fear: assembling the puzzle. Front Neural. Circuits. 10, 24.10.3389/fncir.2016.00024Suche in Google Scholar PubMed PubMed Central

Borg, J. (2008). Molecular imaging of the 5-HT1A receptor in relation to human cognition. Behav. Brain Res. 195, 103–111.10.1016/j.bbr.2008.06.011Suche in Google Scholar PubMed

Borg, J., Henningsson, S., Saijo, T., Inoue, M., Bah, J., Westberg, L., Lundberg, J., Jovanovic, H., Andrée, B., Nordstrom, A.L., et al. (2009). Serotonin transporter genotype is associated with cognitive performance but not regional 5-HT1A receptor binding in humans. Int. J. Neuropsychopharmacol. 12, 783–792.10.1017/S1461145708009759Suche in Google Scholar PubMed

Borroto-Escuela, D.O., Agnati, L.F., Bechter, K., Jansson, A., Tarakanov, A.O., and Fuxe, K. (2015). The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans. R Soc. Lond. B Biol. Sci. 370, pii: 20140183.10.1098/rstb.2014.0183Suche in Google Scholar

Brigman, J.L., Mathur, P., Harvey-White, J., Izquierdo, A., Saksida, L.M., Bussey, T.J., Fox, S., Deneris, E., Murphy, D.L., and Holmes, A. (2010). Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex. 20, 1955–1963.10.1093/cercor/bhp266Suche in Google Scholar

Brown, P.L. and Jenkins, H.M. (1968). Auto-shapingofthepigeon’s key-peck. J. Exp. Anal. Behav. 11, 1–8.10.1901/jeab.1968.11-1Suche in Google Scholar

Buhot, M.C., Wolff, M., Benhassine, N., Costet, P., Hen, R., Segu, L. (2003a). Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learn Mem. 10, 466–477.10.1101/lm.60203Suche in Google Scholar

Buhot, M.C., Wolff, M., Savova, M., Malleret, G., Hen, R., and Segu, L. (2003b). Protective effect of 5-HT1B receptor gene deletion on the age-related decline in spatial learning abilities in mice. Behav. Brain Res. 142, 135–142.10.1016/S0166-4328(02)00400-XSuche in Google Scholar

Buhot, M.C., Wolff, M., Serotonin, S.L. (2003c). Memories are made of these: from messengers to molecules. G. Riedel and B. Platt, eds. (New York, NY: Eurekah.com and Kluwer Academic/Plenum Publishers), pp. 1–19.Suche in Google Scholar

Busceti, C.L., Pietro, P.D., Riozzi, B., Nicoletti, F., and Bruno, V. (2015). 5-HT2C receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors mice. Pharmacol. Res. 99, 258–268.10.1016/j.phrs.2015.06.017Suche in Google Scholar PubMed

Bussey, T.J., Holmes, A., Lyon, L., Mar, A.C., McAllister, K.A., Nithianantharajah, J., Oomen, C.A., and Saksida, L.M. (2012). New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacol 62, 1191–1203.10.1016/j.neuropharm.2011.04.011Suche in Google Scholar PubMed PubMed Central

Bussey, T.J., Barch, D.M., and Baxter, M.G. (2013). Testing long-term memory in animal models of schizophrenia: suggestions from CNTRICS. Neurosci. Biobehav. Rev. 37(9 Pt B), 2141–2148.10.1016/j.neubiorev.2013.06.005Suche in Google Scholar PubMed

Cassel, J.C. (2010). Experimental studies on the role(s) of serotonin in learning and memory functions. Handbook of the Behavioral Neurobiology of Serotonin. C.P. Muller and B.L. Jacobs, eds. (Amsterdam: Academic Press), vol. 21.Suche in Google Scholar

Carli, M., Balducci, C., and Samanin, R. (2001). Stimulation of 5-HT1A receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology (Berl), 158, 39–47.10.1007/s002130100837Suche in Google Scholar PubMed

Carvalho, M.A., Couch, F.J., and Monteiro, A.N. (2007). Functional assays for BRCA1 and BRCA2. Int. J. Biochem. Cell Biol. 39, 298–310.10.1016/j.biocel.2006.08.002Suche in Google Scholar PubMed PubMed Central

Cavallaro, S. (2008). Genomic analysis of serotonin receptors in learning and memory. Behav. Brain Res. 195, 2–6.10.1016/j.bbr.2007.12.003Suche in Google Scholar PubMed

Cavedo, E., Lista, S., Khachaturian, Z., Aisen, P., Amouyel, P., Herholz, K., Jack, C.R. Jr, Sperling, R., Cummings, J., Blennow, K., et al. (2014). The road ahead to cure Alzheimer’s disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations. J. Prev. Alzheimers Dis. 1, 181–202.Suche in Google Scholar

Chagraoui, A., Thibaut, F., Skiba, M., Thuillez, C., and Bourin, M. (2016). 5-HT2C receptors in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 120–135.10.1016/j.pnpbp.2015.12.006Suche in Google Scholar PubMed

Chen, K.H., Reese, E.A., Kim, H.W., Rapoport, S.I., and Rao, J.S. (2011). Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J. Alzheimers Dis. 26, 755–766.10.3233/JAD-2011-110002Suche in Google Scholar PubMed PubMed Central

Chen, C.P., Alder, J.T., Bowen, D.M., Esiri, M.M., McDonald, B., Hope, T., Jobst, K.A., and Francis, P.T. (1996). Presynaptic serotonergic markers in community-acquired cases of Alzheimer’s disease: correlations with depression and neuroleptic medication. J. Neurochem. 66, 1592–1598.10.1046/j.1471-4159.1996.66041592.xSuche in Google Scholar PubMed

Chen, S., Cai, D., Pearce, K., Sun, P.Y., Roberts, A.C., and Glanzman, D.L. (2014). Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in aplysia. Elife 3, e03896.10.7554/eLife.03896.017Suche in Google Scholar

Cho, J., Yu, N.K., Choi, J.H., Sim, S.E., Kang, S.J., Kwak, C., Lee, S.W., Kim, J.I., Choi, D.I., Kim, V.N., et al. (2015). Multiple repressive mechanisms in the hippocampus during memory formation. Science 350, 82–87.10.1126/science.aac7368Suche in Google Scholar PubMed

Ciranna, L. and Catania, M.V. (2014). 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Front Cell Neurosci. 8, 250.10.3389/fncel.2014.00250Suche in Google Scholar PubMed PubMed Central

Claeysen, S., Bockaert, J., and Giannoni, P. (2015). Serotonin: a new hope in Alzheimer’s disease? ACS Chem. Neurosci. 6, 940–943.Suche in Google Scholar

Cloëz-Tayarani, I., Cardona, A., Rousselle, J.C., Massot, O., Edelman, L., and Fillion, G. (1997). Autoradiographic characterization of [3H]-5-HT-moduline binding sites in rodent brain and their relationship to 5-HT1B receptors. Proc. Natl. Acad. Sci. USA 94, 9899–9904.10.1073/pnas.94.18.9899Suche in Google Scholar PubMed PubMed Central

Colagiuri, B., Schenk, L.A., Kessler, M.D., Dorsey, S.G., and Colloca, L. (2015). The placebo effect: from concepts to genes. Neuroscience 307, 171–190.10.1016/j.neuroscience.2015.08.017Suche in Google Scholar PubMed PubMed Central

Colvonen, P.J., Glassman, L.H., Crocker, L.D., Buttner, M.M., Orff, H., Schiehser, D.M., Norman, S.B., and Afari, N. (2017). Pretreatment biomarkers predicting PTSD psychotherapy outcomes: a systematic review. Neurosci. Biobehav. Rev. 75, 140–156.10.1016/j.neubiorev.2017.01.027Suche in Google Scholar PubMed

Cooper, C.M., Whiting, D.A., Cowen, P.J., and Harmer, C.J. (2015). Tianeptine in an experimental medicine model of antidepressant action. J. Psychopharmacol. 29, 582–590.10.1177/0269881115573810Suche in Google Scholar PubMed

Costa, L., Spatuzza, M., D’Antoni, S., Bonaccorso, C.M., Trovato, C., Musumeci, S.A., Leopoldo, M., Lacivita, E., Catania, M.V., and Ciranna, L. (2012). Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol. Psychia. 72, 924–933.10.1016/j.biopsych.2012.06.008Suche in Google Scholar PubMed

Costall, B. and Naylor, R.J. (1992). Astra Award Lecture. The psychopharmacology of 5-HT3 receptors. Pharmacol. Toxicol. 71, 401–415.10.1111/j.1600-0773.1992.tb00570.xSuche in Google Scholar PubMed

Da Silva Costa-Aze, V, Quiedeville, A., Boulouard, M., and Dauphin, F. (2012). 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology (Berl) 222, 99–115.10.1007/s00213-011-2627-3Suche in Google Scholar PubMed

Darcet, F., Gardier, A.M., David, D.J., and Guilloux, J.P. (2016). Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. Neurosci. Lett. 616, 197–203.10.1016/j.neulet.2016.01.055Suche in Google Scholar PubMed

Davis, R. (2010). Rac in the act of forgetting. Cell 140, 456–458.10.1016/j.cell.2010.02.004Suche in Google Scholar PubMed

David, V., Polis, I., McDonald, J., and Gold, L.H. (2001). Intravenous self-administration of heroin/cocaine combinations (speedball) using nose-poke or lever-press operant responding in mice. Behav. Pharmacol. 12, 25–34.10.1097/00008877-200102000-00003Suche in Google Scholar PubMed

Davis, H.P. and Squire, L.R. (1984). Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559.10.1037/0033-2909.96.3.518Suche in Google Scholar

Dayer, A.G., Jacobshagen, M., Chaumont-Dubel, S., and Marin, P. (2015). 5-HT6 receptor: a new player controlling the development of neural circuits. ACS Chem. Neurosci. 6, 951–960.10.1021/cn500326zSuche in Google Scholar PubMed

De Bruin, N.M. and Kruse, C.G. (2015). 5-HT6 receptor antagonists: potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr. Pharm. Des. 21, 3739–3759.10.2174/1381612821666150605112105Suche in Google Scholar PubMed

De Filippis, B., Chiodi, V., Adriani, W., Lacivita, E., Mallozzi, C., Leopoldo, M., Domenici, M.R., Fuso, A., and Laviola, G. (2015). Long-1 lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Frontiers Behav. Neurosci. 9, 86.10.3389/fnbeh.2015.00086Suche in Google Scholar

Delotterie, D.F., Mathis, C., Cassel, J.C., Rosenbrock, H., Dorner-Ciossek, C., and Marti, A. (2015). Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiol. Learn. Mem. 120, 16–27.10.1016/j.nlm.2015.02.007Suche in Google Scholar

Di Giovanni, G. and De Deurwaerdère, P. (2016). New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol. Ther. 157, 125–162.10.1016/j.pharmthera.2015.11.009Suche in Google Scholar

Di Pilato, P., Niso, M., Adriani, W., Romano, E., Travaglini, D., Berardi, F., Colabufo, N.A., Perrone, R., Laviola, G., et al. (2014). Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview. Rev. Neurosci. 25, 401–415.10.1515/revneuro-2014-0009Suche in Google Scholar

Drago, A., Alboni, S., Brunello, N., De Ronchi, D., and Serretti, A. (2010). HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur. J. Clin. Pharmacol. 66, 5–27. Erratum in: Eur. J. Clin. Pharmacol. 66, 105.10.1007/s00228-009-0724-6Suche in Google Scholar

Dudai, Y. (2012). The restless engram: consolidations never end. Annu. Rev. Neurosci. 35, 227–247.10.1146/annurev-neuro-062111-150500Suche in Google Scholar

Dudai, Y., Karni, A., and Born, J. (2015). The consolidation and transformation of memory. Neuron 88, 20–32.10.1016/j.neuron.2015.09.004Suche in Google Scholar

Eglen, R.M., Wong, E.H., Dumuis, A., and Bockaert, J. (1995). Central 5-HT4 receptors. Trends Pharmacol. Sci. 16, 391–398.10.1016/S0165-6147(00)89081-1Suche in Google Scholar

Eichenbaum, H. (2013). What, H.M. taught us. J. Cogn. Neurosci. 25, 14–21.10.1162/jocn_a_00285Suche in Google Scholar PubMed

Engidawork, E., Aradska, J., and Lubec, G. (2016). Neurotransmitter receptor complexes: methods for bioanalysis, their potentials and limitations. Rev. Neurosci. 27, 111–133.10.1515/revneuro-2015-0034Suche in Google Scholar PubMed

Epp, J.R., Silva Mera, R., Köhler, S., Josselyn, S.A., and Frankland, P.W. (2016). Neurogenesis-mediated forgetting minimizes proactive interference. Nat. Commun. 7, 10838.10.1038/ncomms10838Suche in Google Scholar PubMed PubMed Central

Eriksson, T.M., Madjid, N., Elvander-Tottie, E., Stiedl, O., Svenningsson, P., and Ogren, S.O. (2008). Blockade of 5-HT1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology 54, 1041–1050.10.1016/j.neuropharm.2008.02.007Suche in Google Scholar PubMed

Eriksson, T.M., Holst, S., Stan, T.L., Hager, T., Sjögren, B., Ogren, S.Ö., Svenningsson, P., and Stiedl, O. (2012). 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology 63, 1150–1160.10.1016/j.neuropharm.2012.06.061Suche in Google Scholar PubMed

Eriksson, T.M., Alvarsson, A., Stan, T.L., Zhang, X., Hascup, K.N., Hascup, E.R., Kehr, J., Gerhardt, G.A., Warner-Schmidt, J., Arango-Lievano, M., et al. (2013). Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol. Psychia. 18, 1096–1105.10.1038/mp.2012.130Suche in Google Scholar PubMed PubMed Central

Eshkoor, S.A., Hamid, T.A., Mun, C.Y., and Ng, C.K. (2015). Mild cognitive impairment and its management in older people. Clin. Interv. Aging. 10, 687–693.10.2147/CIA.S73922Suche in Google Scholar PubMed PubMed Central

Euston, D.R., Gruber, A.J., and McNaughton, B.L. The role of medial prefrontal cortex in memory and decision making. Neuron 76, 1057–1070.10.1016/j.neuron.2012.12.002Suche in Google Scholar PubMed PubMed Central

Eskenazi, D., Brodsky, M., and Neumaier, J.F. (2015). Deconstructing 5-HT6 receptor effects on striatal circuit function. Neuroscience 299, 97–106.10.1016/j.neuroscience.2015.04.046Suche in Google Scholar PubMed PubMed Central

Fakhfouri, G., Mousavizadeh, K., Mehr, S.E., Dehpour, A.R., Zirak, M.R., Ghia, J.E., and Rahimian, R. (2015). From chemotherapy-induced emesis to neuroprotection: therapeutic opportunities for 5-HT3 receptor antagonists. Mol. Neurobiol. 52, 1670–1679.10.1007/s12035-014-8957-5Suche in Google Scholar PubMed

Fernandez, S.P., Muzerelle, A., Scotto-Lomassese, S., Barik, J., Gruart, A., Delgado-García, J.M., and Gaspar, P. (2017). Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42, 512–523.10.1038/npp.2016.134Suche in Google Scholar PubMed PubMed Central

Ferrero, H., Solas, M., Francis, P.T., and Ramirez, M.J. (2017). Serotonin 5-HT6 receptor antagonists in Alzheimer’s disease: therapeutic rationale and current development status. CNS Drugs. 31, 19–32.10.1007/s40263-016-0399-3Suche in Google Scholar PubMed

Fink, K.B. and Göthert, M. (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 59, 360–417.10.1124/pr.59.07103Suche in Google Scholar

Fink, L.H., Anastasio, N.C., Fox, R.G., Rice, K.C., Moeller, F.G., and Cunningham, K.A. (2015). Individual differences in impulsive action reflect variation in the cortical serotonin 5-HT2A receptor system. Neuropsychopharmacology 40, 1957–1968.10.1038/npp.2015.46Suche in Google Scholar

Fioravanti, M. and Di Cesare, F. (1992). Forgetting curves in long-term memory: evidence for a multistage model of retention. Brain Cogn. 18, 116–124.10.1016/0278-2626(92)90073-USuche in Google Scholar

Fitzpatrick, C.J., Gopalakrishnan, S., Cogan, E.S., Yager, L.M., Meyer, P.J., Lovic, V., Saunders, B.T., Parker, C.C., Gonzales, N.M., Aryee, E., et al. (2013). Variation in the form of Pavlovian conditioned approach behavior among outbred male Sprague-Dawley rats from different vendors and colonies: sign-tracking vs. goal-tracking. PLoS One 8, e75042.10.1371/journal.pone.0075042Suche in Google Scholar PubMed PubMed Central

Flagel, S.B., Watson, S.J., Robinson, T.E., and Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacol (Berl), 191, 599–607.10.1007/s00213-006-0535-8Suche in Google Scholar PubMed

Flagel, S.B., Cameron, C.M., Pickup, K.N., Watson, S.J., Akil, H., and Robinson, T.E. (2011). A food predictive cue must be attributed with incentive salience for it to induce c-Fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience 196, 80–96.10.1016/j.neuroscience.2011.09.004Suche in Google Scholar PubMed PubMed Central

Foilb, A.R. and Christianson, J.P. (2016). Serotonin 2C receptor antagonist improves fear discrimination and subsequent safety signal recall. Prog. Neuropsychopharmacol. Biol. Psychiatry 65, 78–84.10.1016/j.pnpbp.2015.08.017Suche in Google Scholar PubMed PubMed Central

Frampton, J.E. (2016). Vortioxetine: a review in cognitive dysfunction in depression. Drugs. 76, 1675–2168.10.1007/s40265-016-0655-3Suche in Google Scholar PubMed

Fraser, K.M., Haight, J.L., Gardner, E.L., and Flagel, S.B. (2016). Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Behav. Brain. Res. 305, 87–99.10.1016/j.bbr.2016.02.022Suche in Google Scholar PubMed PubMed Central

Gallagher, D.T., Hadjiefthyvoulou, F., Fisk, J.E., Montgomery, C., Robinson, S.J., and Judge, J. (2014). Prospective memory deficits in illicit polydrug users are associated with the average long-term typical dose of ecstasy typically consumed in a single session. Neuropsychology 28, 43–54.10.1037/neu0000004Suche in Google Scholar PubMed

Gallistel, C.R., Balci, F., Freestone, D., Kheifets, A., and King, A. (2014). Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction. J. Vis. Exp. e51047.10.3791/51047Suche in Google Scholar PubMed PubMed Central

Garay, R.P., Bourin, M., de Paillette, E., Samalin, L., Hameg, A., and Llorca, P.M. (2015). Potential serotonergic agents for the treatment of schizophrenia. Expert Opin. Investig. Drugs. 25, 1–12.10.1517/13543784.2016.1121995Suche in Google Scholar PubMed

Garcia-Alloza, M., Hirst, W.D., Chen, C.P., Lasheras, B., Francis, P.T., and Ramírez, M.J. (2004). Differential involvement of 5-HT1B/1D and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology 29, 410–416.10.1038/sj.npp.1300330Suche in Google Scholar PubMed

Gasbarri, A., Cifariello, A., Pompili, A., and Meneses, A. (2008). Effect of 5-HT7 antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav. Brain Res. 195, 164–170.10.1016/j.bbr.2007.12.020Suche in Google Scholar PubMed

Gasbarri, A. and Pompili, A. (2014). Serotonergic 5-HT7 receptors and cognition. Rev. Neurosci. 25, 311–323.10.1515/revneuro-2013-0066Suche in Google Scholar PubMed

Glikmann-Johnston, Y., Saling, M.M., Chen, J., O’Keefe, G., Gong, S., Tochon-Danguy, H., Mulligan, R. and Reutens, D.C. (2015). Hippocampal 5-HT1A receptor binding is related to object-location memory in humans. Brain Struct. Funct. 220, 559–570.10.1007/s00429-013-0675-7Suche in Google Scholar PubMed

Gong, W.G., Wang, Y.J., Zhou, H., Li, X.L., Bai, F., Ren, Q.G., and Zhang, Z.J. (2016). Citalopram ameliorates synaptic plasticity deficits in different cognition-associated brain regions induced by social isolation in middle-aged rats. Mol Neurobiol. 54, 1927–1938.10.1007/s12035-016-9781-xSuche in Google Scholar PubMed

Gonzalez, R., Chávez-Pascacio, K., and Meneses, A. (2013). Role of 5-HT5A receptors in the consolidation of memory. Behav. Brain Res. 252, 246–251.10.1016/j.bbr.2013.05.051Suche in Google Scholar PubMed

Graig, G.R. and Ogilvie, D.M. (1974). Alteration of t-maze performance in mice exposed to DDT during pregnancy and lactation. Environ. Physiol. Biochem. 4, 189–199.Suche in Google Scholar

Gruart, A., Leal-Campanario, R., López-Ramos, J.C., and Delgado-García, J.M. (2015). Functional basis of associative learning and their relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals. Neurobiol. Learn Mem. 124, 3–18.10.1016/j.nlm.2015.04.006Suche in Google Scholar PubMed

Guerram, M., Zhang, L.Y., and Jiang, Z.Z. (2016). G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem. Int. 101, 1–14.10.1016/j.neuint.2016.09.005Suche in Google Scholar PubMed

Guglielmi, V., Bizzarro, A., Valenza, A., Lauria, A., Tiziano, F., Lomastro, R., and Masullo, C. (2015). A functional 5HT2A receptor polymorphism (HIS452TYR) and memory performances in Alzheimer’s disease. Int. J. Neurosci. 22, 1–16.10.3109/00207454.2015.1045976Suche in Google Scholar PubMed

Guo, K., Yin, G., Zi, X.H., Zhu, H.X., and Pan, Q. (2016). Effect of selective serotonin reuptake inhibitors on expression of 5-HT1AR and neurotransmitters in rats with vascular dementia. Genet. Mol. Res. 15. doi: 10.4238/gmr15049031.10.4238/gmr15049031Suche in Google Scholar PubMed

Guseva, D., Wirth, A., and Ponimaskin, E. (2014). Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav. Neurosci. 8, 306.10.3389/fnbeh.2014.00306Suche in Google Scholar PubMed PubMed Central

Gyertyán, I. (2017). Cognitive ‘omics’: Pattern-based validation of potential drug targets. Trends Pharmacol. Sci. 38, 113–126.10.1016/j.tips.2016.10.010Suche in Google Scholar PubMed

Gyurko, M.D., Stetak, A., Soti, C., and Csermely, P. (2015). Multitarget network strategies to influence memory and forgetting: the Ras/MAPK pathway as a novel option. Mini. Rev. Med. Chem. 15, 696–704.10.2174/1389557515666150219144336Suche in Google Scholar PubMed

Ha, C.M., Park, D., Kim, Y., Na, M., Panda, S., Won, S., Kim, H., Ryu, H., Park, Z.Y., Rasenick, M.M., et al. (2015). SNX14 is a bifunctional negative regulator for neuronal 5-HT6 receptor signaling. J. Cell Sci. 128, 1848–1861.10.1242/jcs.169581Suche in Google Scholar PubMed PubMed Central

Haahr, M.E., Fisher, P., Holst, K., Madsen, K., Jensen, C.G., Marner, L., Lehel, S., Baaré, W., Knudsen, G., and Hasselbalch, S. (2013). The 5-HT4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum. Brain Mapp. 34, 3066–3074.10.1002/hbm.22123Suche in Google Scholar PubMed PubMed Central

Hagena, H. and Manahan-Vaughan, D. (2016). The serotonergic 5-HT4 receptor: a unique modulator of hippocampal synaptic information processing and cognition. Neurobiol. Learn. Mem. 26, 875–891.10.1016/j.nlm.2016.06.014Suche in Google Scholar PubMed

Halldorsdottir, T. and Binder, E.B. (2017). Gene×environment interactions: from molecular mechanisms to behavior. Annual Rev. Psychol. 68, 215–241.10.1146/annurev-psych-010416-044053Suche in Google Scholar PubMed

Haq, Ru, Anderson, M.L., Hollnagel, J.O., Worschech, F., Sherkheli, M.A., Behrens, C.J., and Heinemann, U. (2016). Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 101, 188–203.10.1016/j.neuropharm.2015.09.026Suche in Google Scholar PubMed

Hardt, O., Nader, K., and Nadel, L. (2013). Decay happens: the role of active forgetting in memory. Trends Cogn. Sci. 17, 111–120.10.1016/j.tics.2013.01.001Suche in Google Scholar PubMed

Hashimoto, K. (2015). Tropisetron and its targets in Alzheimer’s disease. Expert Opin. Ther. Targets. 19, 1–5.10.1517/14728222.2014.983901Suche in Google Scholar PubMed

Hautzel, H., Müller, H.W., Herzog, H., and Grandt, R. (2011). Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F] altanserin. Neuroimage 58, 905–911.10.1016/j.neuroimage.2011.06.009Suche in Google Scholar PubMed

Hedden, T., Schultz, A.P., Rieckmann, A., Mormino, E.C., Johnson, K.A., Sperling, R.A., and Buckner, R.L. (2016). Multiple brain markers are linked to age-related variation in cognition. Cereb. Cortex. 26, 1388–1400.10.1093/cercor/bhu238Suche in Google Scholar PubMed PubMed Central

Helboe, L., Egebjerg, J., and de Jong, I.E. (2015). Distribution of serotonin receptor 5-HT6 mRNA in rat neuronal subpopulations: a double in situ hybridization study. Neuroscience 310, 442–454.10.1016/j.neuroscience.2015.09.064Suche in Google Scholar PubMed

Hensler, J.G. (2006). Serotonergic modulation of the limbic system. Neurosci. Biobehav. Rev. 30, 203–214.10.1016/j.neubiorev.2005.06.007Suche in Google Scholar PubMed

Heo, S., Jung, G., Beuk, T., Höger, H., and Lubec, G. (2012). Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct. Funct. 217, 363–378.10.1007/s00429-011-0362-5Suche in Google Scholar PubMed

Herrmann, N., Black, S.E., Chow, T., Cappell, J., Tang-Wai, D.F., and Lanctôt, K.L. (2012). Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am. J. Geriatr. Psychiatry. 20, 789–797.10.1097/JGP.0b013e31823033f3Suche in Google Scholar PubMed

Holland, P.C., Asem, J.S., Galvin, C.P., Keeney, C.H., Hsu, M., Miller, A., Zhou, V. (2014). Blocking in autoshaped lever-pressing procedures with rats. Learn Behav. 42, 1–21.10.3758/s13420-013-0120-zSuche in Google Scholar PubMed PubMed Central

Hong, E., Orozco, G., Meneses, A., Fillion, G. (1999). Effect of 5-HT-moduline, an endogenous peptide, in associative learning. 42nd Annual Meeting of the Western-Pharmacology-Society. Maui, Hi, USA.Suche in Google Scholar

Horisawa, T., Nishikawa, H., Toma, S., Ikeda, A., Horiguchi, M., Ono, M., Ishiyama, T., and Taiji, M. (2013). The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone. Behav. Brain Res. 244, 66–69.10.1016/j.bbr.2013.01.026Suche in Google Scholar PubMed

Horner, A.E., Heath, C.J., Hvoslef-Eide, M., Kent, B.A., Kim, C.H., Nilsson, S.R., Alsiö, J., Oomen, C.A., Holmes, A., Saksida, L.M., et al. (2013). The touchscreen operant platform for testing learning and memory in rats and mice. Nat. Protoc. 8, 1961–1984.10.1038/nprot.2013.122Suche in Google Scholar

Hostetler, G., Dunn, D., McKenna, B.A., Kopec, K., and Chatterjee, S. (2014). In search of potent 5-HT6 receptor inverse agonists. Chem. Biol. Drug. Design. 83, 666–669.10.1111/cbdd.12279Suche in Google Scholar

Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig, P.R., Martin, G.R., Mylecharane, E.J., Saxena, P.R., and Humphrey, P.P. (1994). International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203.Suche in Google Scholar

Hu, Z., Yang, Y., Gao, K., Rudd, J.A., and Fang, M. (2016). Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer’s disease. Exp. Ther. Med. 11, 89–97.10.3892/etm.2015.2868Suche in Google Scholar

Huang, Y., Yoon, K., Ko, H., Jiao, S., Ito, W., Wu, J.Y., Yung, W.H., Lu, B., and Morozov, A. (2016). 5-HT3a receptors modulate hippocampal gamma oscillations by regulating synchrony of parvalbumin-positive interneurons. Cereb. Cortex. 26, 576–585.10.1093/cercor/bhu209Suche in Google Scholar

Huerta-Rivas, A., Pérez-García, G., González-Espinosa, C., and Meneses, A. (2010). Time-course of 5-HT6 receptor mRNA expression during memory consolidation and amnesia. Neurobiol. Learn Mem. 93, 99–110.10.1016/j.nlm.2009.08.009Suche in Google Scholar

Hupbach, A. (2013). When forgetting preserves memory. Front Psychol. 4, 32.10.3389/fpsyg.2013.00032Suche in Google Scholar

Izquierdo, I. (2015). The Art of Forgetting (London: Springer).10.1007/978-3-319-06716-2Suche in Google Scholar

Izquierdo, I., Medina, J.H., Vianna, M.R., Izquierdo, L.A., and Barros, D.M. (1999). Separate mechanisms for short- and long-term memory. Behav. Brain Res. 103, 1–11.10.1016/S0166-4328(99)00036-4Suche in Google Scholar

Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota, M. (2006). Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505.10.1016/j.tins.2006.07.005Suche in Google Scholar PubMed

Izquierdo, A., Brigman, J.L., Radke, A.K., Rudebeck, P.H., and Holmes, A. (2017). The neural basis of reversal learning: an updated perspective. Neurosci, 345, 12–26.10.1016/j.neuroscience.2016.03.021Suche in Google Scholar PubMed PubMed Central

Jacobs, B.L. and Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229.10.1152/physrev.1992.72.1.165Suche in Google Scholar PubMed

Janak, P.H. and Tye, K.M. (2015). From circuits to behaviour in the amygdala. Nature 517, 284–292.10.1038/nature14188Suche in Google Scholar PubMed PubMed Central

Jayarajan, P., Nirogi, R., Shinde, A., Goura, V., Babu, V.A., Yathavakilla, S., and Bhyrapuneni, G. (2015). 5-HT6 receptor antagonist attenuates the memory deficits associated with neuropathic pain and improves the efficacy of gabapentinoids. Pharmacol. Rep. 67, 934–942.10.1016/j.pharep.2015.03.013Suche in Google Scholar PubMed

Jenkins, T.A., Nguyen, J.C., Polglaze, K.E., and Bertrand, P.P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 20, 8.10.3390/nu8010056Suche in Google Scholar PubMed PubMed Central

Ji, G., Zhang, W., Mahimainathan, L., Narasimhan, M., Kiritoshi, T., Fan, X., Wang, J., Green, T.A., and Neugebauer, V. (2016). 5-HT2C receptor knockdown in the amygdala inhibits neuropathic pain related plasticity and behaviors. J. Neurosci. 37, 1378–1393.10.1523/JNEUROSCI.2468-16.2016Suche in Google Scholar PubMed PubMed Central

Josselyn, S.A., Köhler, S., and Frankland, P.W. (2015). Finding the engram. Nat. Rev. Neurosci. 16, 521–534.10.1038/nrn4000Suche in Google Scholar PubMed

Kaku, M., Yamada, K., and Ichitani, Y. (2013). Can rats control previously acquired spatial information? evidence of “directed forgetting” phenomenon in delay-interposed radial maze behavior. Behav. Brain Res. 248, 1–6.10.1016/j.bbr.2013.03.030Suche in Google Scholar PubMed

Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.10.1126/science.1067020Suche in Google Scholar PubMed

Kapadia, M., Xu, J., and Sakic, B. (2016). The water maze paradigm in experimental studies of chronic cognitive disorders: theory, protocols, analysis, and inference. Neurosci. Biobehav. Rev. 68, 195–217.10.1016/j.neubiorev.2016.05.016Suche in Google Scholar PubMed

Karimi, B., Hafidzi, M.N., Panandam, J.M., and Fuzina, N.H. (2013). Comparison of effect of sex hormone manipulation during neonatal period, on mRNA expression of Slc9a4, Nr3c2, Htr5b and Mas1 in hippocampus and frontal cortex of male and female rats. J. Biol. Regul. Homeost. Agents. 27, 869–874.Suche in Google Scholar

Katz, I.K. and Lamprecht, R. (2015). Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala. J. Neurochem. 132, 313–326.10.1111/jnc.12983Suche in Google Scholar PubMed

Kenakin, T. (2016). New modalities in drug therapy: modifying ongoing chemical conversations in the brain. ACS Chem. Neurosci. 7, 1472–1473.10.1021/acschemneuro.6b00330Suche in Google Scholar PubMed

Kennedy, M.B. (2013). Synaptic signaling in learning and memory. Cold Spring Harb. Perspect. Biol. 8, a016824.10.1101/cshperspect.a016824Suche in Google Scholar PubMed PubMed Central

Khalaf, O. and Gräff, J. (2016). Structural, synaptic, and epigenetic dynamics of enduring memories. Neural. Plast. 3425908.10.1155/2016/3425908Suche in Google Scholar PubMed PubMed Central

Khodayar, E., Oryan, S., Nasehi, M., and Zarrindast, M.R. (2016). Effect of nucleus accumbens shell 5-HT4 receptors on the impairment of ACPA-induced emotional memory consolidation in male Wistar rats. Behav. Pharmacol. 27, 12–21.10.1097/FBP.0000000000000174Suche in Google Scholar PubMed

King, M.V., Marsden, C.A., and Fone, K.C. (2008). A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci. 29, 482–492.10.1016/j.tips.2008.07.001Suche in Google Scholar PubMed

Kitamura, S., Yasuno, F., Inoue, M., Kosaka, J., Kiuchi, K., Matsuoka, K., Kishimoto, T., and Suhara, T. (2014). Increased binding of 5-HT1A receptors in a dissociative amnesic patient after the recovery process. Psychiatry Res. 224, 67–71.10.1016/j.pscychresns.2014.07.001Suche in Google Scholar PubMed

Klaassens, B.L., Rombouts, S.A., Winkler, A.M., van Gorsel, H.C., van der Grond, J., and van Gerven, J.M. (2017). Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation. Hum. Brain Mapp. 38, 308–325.10.1002/hbm.23362Suche in Google Scholar PubMed PubMed Central

Kneussel, M. and Hausrat, T.J. (2016). Postsynaptic neurotransmitter receptor reserve pools for synaptic potentiation. Trends Neurosci. 39, 170–182.10.1016/j.tins.2016.01.002Suche in Google Scholar PubMed

Kobe, F., Guseva, D., Jensen, T.P., Wirth, A., Renner, U., Hess, D., Müller, M., Medrihan, L., Zhang, W., Zhang, M., et al. (2012). 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci. 32, 2915–2930.10.1523/JNEUROSCI.2765-11.2012Suche in Google Scholar PubMed PubMed Central

Kondo, M., Nakamura, Y., Ishida, Y., and Shimada, S. (2014). The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Molecular Psychiatry. 20, 1428–1437.10.1038/mp.2014.153Suche in Google Scholar PubMed

Korte, M. and Schmitz, D. (2016). Cellular and system biology of memory: timing, molecules, and beyond. Physiol. Rev. 96, 647–693.10.1152/physrev.00010.2015Suche in Google Scholar PubMed

Kostić, M., Munjiza, A., Pesic, D., Peljto, A., Novakovic, I., Dobricic, V., Tosevski, D.L., and Mijajlovic, M. (2016). A pilot study on predictors of brainstem raphe abnormality in patients with major depressive disorder. J. Affect. Disord. 209, 66–70.10.1016/j.jad.2016.11.034Suche in Google Scholar PubMed

Kozuska, J.L., Paulsen, I.M., Belfield, W.J., Martin, I.L., Cole, D.J., Holt, A., and Dunn, S.M. (2014). Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors. Br. J. Pharmacol. 171, 1617–1628.10.1111/bph.12536Suche in Google Scholar PubMed PubMed Central

Krantic, S. (2017). From current diagnostic tools and therapeutic for Alzheimer’s disease towards earlier diagnostic markers and treatment. Curr. Alzheimer Res. 14, 2–5.10.2174/156720501401161201104858Suche in Google Scholar PubMed

Krynetskiy, E., Krynetskaia, N., Rihawi, D., Wieczerzak, K., Ciummo, V., and Walker, E. (2013). Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment. Life Sci. 93, 605–610.10.1016/j.lfs.2013.03.013Suche in Google Scholar PubMed PubMed Central

Kuo, H.I., Paulus, W., Batsikadze, G., Jamil, A., Kuo, M.F., and Nitsche, M.A. (2016). Chronic enhancement of serotonin facilitates excitatory transcranial direct current. Stimulation-induced neuroplasticity. Neuropsychopharmacology 41, 1223–1230.10.1038/npp.2015.270Suche in Google Scholar PubMed PubMed Central

Kusek, M., Sowa, J., Tokarski, K., and Hess, G. (2015a). Impaired effect of activation of rat hippocampal 5-HT7 receptors, induced by treatment with the 5-HT7 receptor antagonist SB 269970. J. Physiol. Pharmacol. 66, 301–308.Suche in Google Scholar

Kusek, M., Sowa, J., Kamińska, K., Gołembiowska, K., Tokarski, K., and Hess, G. (2015b). 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin. Front. Cell Neurosci. 9, 324.10.3389/fncel.2015.00324Suche in Google Scholar PubMed PubMed Central

Lau, T., Proissl, V., Ziegler, J., and Schloss, P. (2015). Visualization of neurotransmitter uptake and release in serotonergic neurons. J. Neurosci. Methods. 241, 10–17.10.1016/j.jneumeth.2014.12.009Suche in Google Scholar PubMed

Lecoutey, C., Hedou, D., Freret, T., Giannoni, P., Gaven, F., Since, M., Bouet, V., Ballandonne, C., Corvaisier, S., Malzert Fréon, A., et al. (2014). Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease treatment. Proc. Natl. Acad. Sci. USA 111, E3825–E3830.10.1073/pnas.1410315111Suche in Google Scholar PubMed PubMed Central

Leger, M., Paizanis, E., Dzahini, K., Quiedeville, A., Bouet, V., Cassel, J.C., Freret, T., Schumann-Bard, P., and Boulouard, M. (2015). Environmental enrichment duration differentially affects behavior and neuroplasticity in adult mice. Cereb. Cortex. 25, 4048–4061.10.1093/cercor/bhu119Suche in Google Scholar PubMed

Leiser, S.C., Li, Y., Pehrson, A.L., Dale, E., Smagin, G., and Sanchez, C. (2015). Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptors exemplified by the multimodal antidepressant vortioxetine. ACS Chem. Neurosci. 21, 143–161.10.1021/cn500340jSuche in Google Scholar PubMed

Lesaint, F., Sigaud, O., Flagel, S.B., Robinson, T.E., and Khamassi, M. (2014). Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations. PLoS Comput. Biol. 10, e1003466.10.1371/journal.pcbi.1003466Suche in Google Scholar PubMed PubMed Central

Li, S. and Richardson, R. (2013). Traces of memory: reacquisition of fear following forgetting is NMDAr-independent. Learn Mem. 20, 174–182.10.1101/lm.029504.112Suche in Google Scholar PubMed

Li, S., Callaghan, B.L., and Richardson, R. (2014). Infantile amnesia: forgotten but not gone. Learn Mem. 21, 135.10.1101/lm.031096.113Suche in Google Scholar PubMed PubMed Central

Li, L.B., Zhang, L., Sun, Y.N., Han, L.N., Wu, Z.H., Zhang, Q.J., and Liu, J. (2015a). Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology 91, 23–33.10.1016/j.neuropharm.2014.11.025Suche in Google Scholar PubMed

Li, H.J., Peng, R.Y., Wang, C.Z., Qiao, S.M., Yong, Z., Gao, Y.B., Xu, X.P., Wang, S.X., Dong, J., Zuo, H.Y., et al. (2015b). Alterations of cognitive function and 5-HT system in rats after long term microwave exposure. Physiol. Behav. 140, 236–246.10.1016/j.physbeh.2014.12.039Suche in Google Scholar PubMed

Li, Y., Abdourahman, A., Tamm, J.A., Pehrson, A.L., Sánchez, C., and Gulinello, M. (2015c). Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol. Biochem. Behav. 135, 70–82.10.1016/j.pbb.2015.05.013Suche in Google Scholar PubMed

Lieben, C.K., Blokland, A., Sik, A., Sung, E., van Nieuwenhuizen, P., and Schreiber, R. (2005). The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 30, 2169–2179.10.1038/sj.npp.1300777Suche in Google Scholar PubMed

Lim, C.S., Hoang, E.T., Viar, K.E., Stornetta, R.L., Scott, M.M., and Zhu, J.J. (2014). Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev. 28, 273–289.10.1101/gad.232470.113Suche in Google Scholar PubMed PubMed Central

Lindner, M.D., Hodges. D.B. Jr, Hogan, J.B., Orie, A.F., Corsa, J.A., Barten, D.M., Polson, C., Robertson, B.J., Guss, V.L., Gillman, K.W., et al. (2003). An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning. J. Pharmacol. Exp. Ther. 307, 682–691.10.1124/jpet.103.056002Suche in Google Scholar PubMed

Line, S.J., Barkus, C., Rawlings, N., Jennings, K., McHugh, S., Sharp, T., and Bannerman, D.M. (2014). Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur. J. Neurosci. 40, 3735–3745.10.1111/ejn.12744Suche in Google Scholar PubMed PubMed Central

Lipford, M.C., Ramar, K., Liang, Y.J., Lin, C.W., Chao, Y.T., An, J., Chiu, C.H., Tsai, Y.J., Shu, C.H., Lee, F.P., et al. (2015). Serotonin as a possible biomarker in obstructive sleep apnea. Sleep Med. Rev. 28, 121–128.Suche in Google Scholar

Liu, K.C., Li, J.Y., Xie, W., Li, L.B., Zhang, J., Du, C.X., Zhang, Y.M., Tan, H.H., Wang, H.S., and Zhang, L. (2016). Activation and blockade of serotonin6 receptors in the dorsal hippocampus enhance T maze and hole-board performance in a unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. 1650, 184–195.10.1016/j.brainres.2016.09.009Suche in Google Scholar PubMed

Lochner, M. and Thompson, A.J. (2016). The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors. Neuropharmacology 108, 220–228.10.1016/j.neuropharm.2016.04.027Suche in Google Scholar PubMed PubMed Central

Loiseau, F., Dekeyne, A., and Millan, M.J. (2008). Pro-cognitive effects of 5-HT6 receptor antagonists in the social recognition procedure in rats: implication of the frontal cortex. Psychopharmacology (Berl), 196, 93–104.10.1007/s00213-007-0934-5Suche in Google Scholar PubMed

Lorke, D.E., Lu, G., Cho, E., and Yew, D.T. (2006). Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci. 7, 36.10.1186/1471-2202-7-36Suche in Google Scholar PubMed PubMed Central

Ludowiq, E., Möller, J., Bien, C., MünteT, Elger, C., and Rosburg, T. (2010). Active suppression in the mediotemporal lobe during directed forgetting. Neurobiol. Learn Mem. 93, 352–361.10.1016/j.nlm.2009.12.001Suche in Google Scholar PubMed

Luine, V. (2015). Recognition memory tasks in neuroendocrine research. Behav. Brain Res. 285, 158–164.10.1016/j.bbr.2014.04.032Suche in Google Scholar PubMed PubMed Central

Luo, M., Li, Y., and Zhong, W. (2016). Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol. Learn Mem. 135, 40–49.Suche in Google Scholar

Luna-Munguía, H., Manuel-Apolinar, L., Rocha, L., and Meneses, A. (2005). 5-HT1A receptor expression during memory formation. Psychopharmacology (Berl), 181, 309–318.10.1007/s00213-005-2240-4Suche in Google Scholar PubMed

Lynch, M. A. (2004). Long term potentiation. Physiol. Rev. 84, 87–136.10.1152/physrev.00014.2003Suche in Google Scholar PubMed

Madsen, K., Neumann, W.J., Holst, K., Marner, L., Haahr, M.T., Lehel, S., Knudsen, G.M., and Hasselbalch, S.G. (2011). Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer’s disease. J. Alzheimers Dis. 26, 457–466.10.3233/JAD-2011-110056Suche in Google Scholar PubMed

Maffei, A. (2016). Fifty shades of inhibition. Curr. Opin. Neurobiol. 43, 43–47.10.1016/j.conb.2016.12.003Suche in Google Scholar PubMed PubMed Central

Magierski, R. and Sobow, T. (2016). Serotonergic drugs for the treatment of neuropsychiatric symptoms in dementia. Expert. Rev. Neurother. 16, 375–387.10.1586/14737175.2016.1155453Suche in Google Scholar PubMed

Mahgoub, M.A., Sara, Y., Kavalali, E.T., and Monteggia, L.M. (2006). Reciprocal interaction of serotonin and neuronal activity in regulation of cAMP-responsive element-dependent gene expression. J. Pharmacol. Exp. Ther. 317, 88–96.10.1124/jpet.105.097097Suche in Google Scholar PubMed

Mansuy, I.M. (2005). Forgetting: theories and potential mechanisms. Med. Sci. (Paris), 21, 83–88.10.1051/medsci/200521183Suche in Google Scholar PubMed

Manuel-Apolinar, L., Rocha, L., Pascoe, D., Castillo, E., Castillo, C., and Meneses, A. (2005). Modifications of 5-HT4 receptor expression in rat brain during memory consolidation. Brain Res. 1042,73–81.10.1016/j.brainres.2005.02.020Suche in Google Scholar PubMed

Marchetti, E., Jacquet, M., Escoffier, G., Miglioratti, M., Dumuis, A., Bockaert, J., and Roman, F.S. (2011). Enhancement of reference memory in aged rats by specific activation of 5-HT(4) receptors using an olfactory associative discrimination task. Brain Res. 1405, 49–56.10.1016/j.brainres.2011.06.020Suche in Google Scholar PubMed

Marcos, B., García-Alloza, M., Gil-Bea, F.J., Chuang, T.T., Francis, P.T., Chen, C.P., Tsang, S.W., Lai, M.K., and Ramirez, M.J. (2008). Involvement of an altered 5-HT6 receptor functions in behavioral symptoms of Alzheimer’s disease. J. Alzheimers Dis. 14, 43–50.10.3233/JAD-2008-14104Suche in Google Scholar

Margoob, M.A. and Mushtaq, D. (2011) Serotonin transporter gene polymorphism and psychiatric disorders: Is there a link? Ind. J. Psychiatry 53, 289–299.10.4103/0019-5545.91901Suche in Google Scholar PubMed PubMed Central

Marin, P., Becamel, C., Dumuis, A., and Bockaert, J. (2012). 5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders? J. Curr. Drug. Targets. 13, 28–52.10.2174/138945012798868498Suche in Google Scholar PubMed

Marín-Garcia, E. and Ruiz-Vargas, J.M. (2008). [Transient global amnesia: a review. I. Clinical aspects]. Rev. Neurol. 46, 53–60.Suche in Google Scholar

Markou, A., Salamone, J.D., Bussey, T.J., Mar, A.C., Brunner, D., Gilmour, G., and Balsam, P. (2013). Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci. Biobehav. Rev. 37, 2149–2165.10.1016/j.neubiorev.2013.08.007Suche in Google Scholar PubMed PubMed Central

Martel, J.C., Ormiere, A.M., Leduc, N., Assie, M.B., Cussac, D., and Newman-Tancredi, A. (2007). Native rat hippocampal 5-HT1A receptors show constitutive activity. Mol. Pharmacol. 71, 638–643.10.1124/mol.106.029769Suche in Google Scholar

Mavrogiorgou, P., Enzi, B., Klimm, A.K., Köhler, E., Roser, P., Norra, C., and Juckel, G. (2017). Serotonergic modulation of orbitofrontal activity and its relevance for decision making and impulsivity. Hum. Brain Mapp. 38, 1507–1517.10.1002/hbm.23468Suche in Google Scholar

McConathy, J. and Sheline, Y.I. (2015). Imaging biomarkers associated with cognitive decline: a review. Biol. Psychiatry. 77, 685–692.10.1016/j.biopsych.2014.08.024Suche in Google Scholar

McCorvy, J.D. and Roth, B.L. (2015). Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 150, 129–142.10.1016/j.pharmthera.2015.01.009Suche in Google Scholar

McEwen, B.S., Chattarji, S., Diamond, D.M., Jay, T.M., Reagan, L.P., Svenningsson, P., and Fuchs, E. (2010). The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol. Psychiatry. 15, 237–249.10.1038/mp.2009.80Suche in Google Scholar

McGaugh, J.L. (1989). Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res. Bull. 23, 339–345.10.1016/0361-9230(89)90220-7Suche in Google Scholar

McGaugh, J.L. (2013). Making lasting memories: remembering the significant. Proc. Natl. Acad. Sci. USA 110, 10402–10407.10.1073/pnas.1301209110Suche in Google Scholar PubMed PubMed Central

McHugh, S.B., Barkus, C., Lima, J., Glover, L.R., Sharp, T., and Bannerman, D.M. (2015). SERT and uncertainty: serotonin transporter expression influences information processing biases for ambiguous aversive cues in mice. Genes Brain Behav. 14, 330–336.10.1111/gbb.12215Suche in Google Scholar PubMed PubMed Central

Ménard, C. and Quirion, R. (2012). Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, Homer 1 proteins and downstream signaling pathways. PLoS One 7, e28666.10.1371/journal.pone.0028666Suche in Google Scholar PubMed PubMed Central

Ménard, C., Gaudreau, P., and Quirion, R. (2015). Signaling pathways relevant to cognition-enhancing drug targets. Cognitive Enhancement, Handbook of Experimental Pharmacology. K.M. Kantak and J.G. Wettstein, eds. (Cham, Heidelberg, New York, Dordrecht, London: Springer), vol. 228, pp. 59–98.10.1007/978-3-319-16522-6_3Suche in Google Scholar PubMed

Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23, 1111–1125.10.1016/S0149-7634(99)00067-6Suche in Google Scholar

Meneses, A. (2001). Could the 5-HT1B receptor inverse agonism affect learning consolidation? Neurosci. Biobehav. Rev. 25, 193–201.10.1016/S0149-7634(01)00007-0Suche in Google Scholar

Meneses, A. (2002). Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task. Neurosci. Biobehav. Rev. 26, 309–319.10.1016/S0149-7634(02)00005-2Suche in Google Scholar

Meneses, A. (2003). A pharmacological analysis of an associative learning task: 5-HT1 to 5-HT7 receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem. 10, 363–372.10.1101/lm.60503Suche in Google Scholar PubMed PubMed Central

Meneses, A. (2013). 5-HT systems: emergent targets for memory formation and memory alterations. Rev. Neurosci. 24, 629–664.10.1515/revneuro-2013-0026Suche in Google Scholar PubMed

Meneses, A. (2014a). 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front Behav. Neurosci. 8, 207.10.3389/fnbeh.2014.00207Suche in Google Scholar PubMed PubMed Central

Meneses, A. (2014b). The role of 5-HT systems on memory and dysfunctional memory: emergent targets for memory formation and memory (Oxford: Academic Press of Elsevier).10.1515/revneuro-2013-0026Suche in Google Scholar

Meneses, A. (2015). Serotonin, neural markers, and memory. Front Pharmacol. 6, 143.10.3389/fphar.2015.00143Suche in Google Scholar PubMed PubMed Central

Meneses, A. (2016). Neural activity, memory and dementias: serotonergic markers. Behav. Pharmacol. 2016. In press. [Epub ahead of print] PMID: 27926574.10.1097/FBP.0000000000000279Suche in Google Scholar PubMed

Meneses, A., and Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory. Rev. Neurosci. 23, 543–553.10.1515/revneuro-2012-0060Suche in Google Scholar PubMed

Meneses, A. and Perez-Garcia, G. (2007). 5-HT1A receptors and memory. Neurosci. Biobehav. Rev. 31, 705–727.10.1016/j.neubiorev.2007.02.001Suche in Google Scholar PubMed

Meneses, A., Manuel-Apolinar, L., Castillo, C., and Castillo, E. (2007). Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study. Behav. Brain Res. 178, 53–61.10.1016/j.bbr.2006.11.048Suche in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Liy-Salmeron, G., Ponce-López, T., Lacivita, E., and Leopoldo, M. (2015). 5-HT7 receptor activation: procognitive and antiamnesic effects. Psychopharmacol (Berl), 232, 595–603.10.1007/s00213-014-3693-0Suche in Google Scholar PubMed

Meneses, A., Pérez-García, G., Ponce-Lopez, T., and Castillo, C. (2011a). 5-HT6 receptor memory and amnesia: behavioral pharmacology–learning and memory processes. Int. Rev. Neurobiol. 96, 27–47.10.1016/B978-0-12-385902-0.00002-4Suche in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., Tellez, R., and Castillo, C. (2011b). Serotonin transporter and memory. Neuropharmacology 61, 355–363.10.1016/j.neuropharm.2011.01.018Suche in Google Scholar PubMed

Meneses, A. and Tellez, R. (2015). Autoshaping memory formation and retention loss: are serotonin and other neurotransmitters involved? In: W. Blenau and A. Baumann, eds. Neuromethods (New York: Springer Protocols), vol 95, pp. 125–150.10.1007/978-1-4939-2187-4_7Suche in Google Scholar

Meunier, C.N., Chameau, P., and Fossier, P.M. (2017). Modulation of synaptic plasticity in the cortex needs to understand all the players. Front Synaptic Neurosci. 9, 2.10.3389/fnsyn.2017.00002Suche in Google Scholar PubMed PubMed Central

Meyer, J.M., Loebel, A.D., and Schweizer, E. (2009). Lurasidone: a new drug in development for schizophrenia. Expert. Opin. Investig. Drugs. 18, 1715–1726.10.1517/13543780903286388Suche in Google Scholar PubMed

Meyer-Lindenberg, A., Murphy, D., Rolls, E., Saletu, B., Spedding, M., Sweeney, J., Whittington, M., and Young, L.J. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 1, 141–168.Suche in Google Scholar

Middei, S., Ammassari-Teule, M., and Marie, H. (2014). Synaptic plasticity under learning challenge. Neurobiol. Learn Mem. 115, 108–115.10.1016/j.nlm.2014.08.001Suche in Google Scholar PubMed

Millan, M.J., Agid, Y., Brune, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R., Davis, S., Deakin, B., DeRubeis, R.J., et al. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug. Discov. 11, 141–168.10.1038/nrd3628Suche in Google Scholar PubMed

Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R., Davis, S., Deakin, B., DeRubeis, R.J., et al. (2014). The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement. 10, 808–817.10.1016/j.jalz.2014.03.003Suche in Google Scholar PubMed

Mitchell, E.S., Sexton, T., and Neumaier, J.F. (2007). Increased expression of 5-HT6 receptors in the rat dorsomedial striatum impairs instrumental learning. Neuropsychopharmacology 32, 1520–1530.10.1038/sj.npp.1301284Suche in Google Scholar PubMed

Mo, C., Hannan, A.J., and Renoir, T. (2015). Environmental factors as modulators of neurodegeneration: insights from gene-environment interactions in Huntington’s disease. Neurosci. Biobehav. Rev. 52, 178–192.10.1016/j.neubiorev.2015.03.003Suche in Google Scholar PubMed

Monje, F.J., Divisch, I., Demit, M., Lubec, G., and Pollak, D.D. (2013). Flotillin-1 Is an evolutionary-conserved memory-related protein up-regulated in implicit and explicit learning paradigms. Ann. Med. 45, 301–307.10.3109/07853890.2013.770637Suche in Google Scholar PubMed PubMed Central

Mora, F. (2013). Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin. Neurosci. 15, 45–52.10.31887/DCNS.2013.15.1/fmoraSuche in Google Scholar

Morici, J.F., Ciccia, L., Malleret, G., Gingrich, J.A., Bekinschtein, P., and Weisstaub, N.V. (2015). Serotonin2a receptor and serotonin1a receptor interact within the medial prefrontal cortex during recognition memory in mice. Front. Pharmacol. 6, 298.10.3389/fphar.2015.00298Suche in Google Scholar PubMed PubMed Central

Morris, L.S., Kundu, P., Baek, K., Irvine, M.A., Mechelmans, D.J., Wood, J., Harrison, N.A., Robbins, T.W., Bullmore, E.T., and Voon, V. (2016). Jumping the gun: mapping neural correlates of waiting impulsivity and relevance across alcohol misuse. Biol. Psychiatry. 79, 499–507.10.1016/j.biopsych.2015.06.009Suche in Google Scholar PubMed PubMed Central

Morton, R.A., Baptista-Hon, D.T., Hales, T.G., and Lovinger, D.M. (2015). Agonist- and antagonist-induced up-regulation of surface 5-HT3A receptors. Br. J. Pharmacol. 172, 4066–4077.10.1111/bph.13197Suche in Google Scholar PubMed PubMed Central

Muenchhoff, J., Poljak, A., Song, F., Raftery, M., Brodaty, H., Duncan, M., McEvoy, M., Attia, J., Schofield, P.W., and Sachdev, P.S. (2015). Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J. Alzheimers Dis. 43, 1355–1373.10.3233/JAD-141266Suche in Google Scholar PubMed

Müller. C.P. and Homberg, J.R. (2015). The role of serotonin in drug use and addiction. Behav. Brain Res. 277, 146–192.10.1016/j.bbr.2014.04.007Suche in Google Scholar PubMed

Myer, J.S. and Hull, J.H. (1974). Autoshaping and instrumental learning in the rat. J. Comp. Physiol. Psychol. 86, 724–729.10.1037/h0036165Suche in Google Scholar

Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res. Rev. 41, 268–228.10.1016/S0165-0173(02)00268-0Suche in Google Scholar

Nasehi, M., Jamshidi-Mehr, M., Khakpai, F., and Zarrindast, M.R. (2014a). Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol. Biochem. Behav. 125, 70–77.10.1016/j.pbb.2014.08.007Suche in Google Scholar PubMed

Nasehi, M., Tabatabaie, M., Khakpai, F., and Zarrindast, M. (2014b). The effects of CA1 5HT4 receptors in MK801-induced amnesia and hyperlocomotion. Neurosci. Lett. 587C, 73–78.10.1016/j.neulet.2014.12.019Suche in Google Scholar PubMed

Naumenko, V.S., Popova, N.K., Lacivita, E., Leopoldo, M., and Ponimaskin, E.G. (2014). Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther. 20, 582–590.10.1111/cns.12247Suche in Google Scholar PubMed PubMed Central

Nelson, N. (1998). The family of Na+/Cl− neurotransmitter transporters. J. Neurochem. 71, 1785–1803.10.1046/j.1471-4159.1998.71051785.xSuche in Google Scholar PubMed

Nikiforuk, A. (2014). The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia. Rev. Neurosci. 25, 367–382.10.1515/revneuro-2014-0005Suche in Google Scholar PubMed

Nikiforuk, A. (2015). Targeting the serotonin 5-HT7 receptor in the search for treatments for CNS disorders: rationale and progress to date. CNS Drugs. 29, 265–275.10.1007/s40263-015-0236-0Suche in Google Scholar PubMed PubMed Central

Nikiforuk, A., Hołuj, M., Kos, T., and Popik, P. (2016). The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacology 105, 351–360.10.1016/j.neuropharm.2016.01.035Suche in Google Scholar PubMed

Nithianantharajah, J., McKechanie, A.G., Stewart, T.J., Johnstone, M., Blackwood, D.H., St Clair, D., Grant, S.G., Bussey, T.J., and Saksida, L.M. (2015). Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Sci. Rep. 5, 14613.10.1038/srep14613Suche in Google Scholar PubMed PubMed Central

Nonkes, L.J. and Homberg, J.R. (2013). Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats. Neurobiol. Learn. Mem. 100, 48–55.10.1016/j.nlm.2012.12.004Suche in Google Scholar

Ogren, S.O., Eriksson, T.M., Elvander-Tottie, E., D’Addario, C., Ekström, J.C., Svenningsson, P., Meister, B., Kehr, J., and Stiedl, O. (2008). The role of 5-HT1A receptors in learning and memory. Behav. Brain Res. 195, 54–77.10.1016/j.bbr.2008.02.023Suche in Google Scholar

Ortiz-Pérez, A., Espinosa-Raya, J., and Picazo, O. (2016). An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn. Process. 17, 15–25.10.1007/s10339-015-0746-1Suche in Google Scholar

Oscos, A., Martinez, J.L. Jr., and McGaugh, J.L. (1988). Effects of post-training d-amphetamine on acquisition of an appetitive autoshaped lever press response in rats. Psychopharmacology (Berl.) 95, 132–134.10.1007/BF00212781Suche in Google Scholar

Packard, M.G. and Knowlton, B.J. (2002). Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593.10.1146/annurev.neuro.25.112701.142937Suche in Google Scholar

Papenberg, G., Bäckman, L., Nagel, I.E., Nietfeld, W., Schröder, J., Bertram, L., Heekeren, H.R., Lindenberger, U., and Li, S.C. (2013). Dopaminergic gene polymorphisms affect long-term forgetting in old age: further support for the magnification hypothesis. J. Cogn. Neurosci. 25, 571–579.10.1162/jocn_a_00359Suche in Google Scholar

Parrott, A.C. (2013). MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational ‘Ecstasy’ users. Neurosci. Biobehav. Rev. 37, 1466–1484.10.1016/j.neubiorev.2013.04.016Suche in Google Scholar

Pattij, T., Broersen, L.M., van der Linde, J., Groenink, L., van der Gugten, J., Maes, R.A., and Olivier, B. (2003). Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behav. Brain Res. 141, 137–145.10.1016/S0166-4328(02)00345-5Suche in Google Scholar

Pennington, J.G. and Guina, J. (2017). Serotonergic synergy in the pharmacotherapy of acute posttraumatic stress disorder exacerbation: a case report. Mil. Med. 182, e1673–e1677.10.7205/MILMED-D-15-00572Suche in Google Scholar

Peele, D.B. and Vincent, A. (1989). Strategies for assessing learning and memory. 1978–1987: a comparison of behavioral toxicology, psychopharmacology, and neurobiology. Neurosci. Biobehav. Rev. 13, 317–322.10.1016/S0149-7634(89)80068-5Suche in Google Scholar

Pellegrino, L., Hoxha, E., Speranza, L., Volpicelli, F., Ferraro, A., Leopoldo, M., Lacivita, E., Perrone-Capano, C., Tempia, F., and Miniaci, M.C. (2016). The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKCMAPK. Neuropharmacology 101, 426–438.10.1016/j.neuropharm.2015.10.019Suche in Google Scholar PubMed

Pelrine, E., Pasik, S.D., Bayat, L., Goldschmiedt, D., and Bauer, E.P. (2016). 5-HT2C receptors in the BNST are necessary for the enhancement of fear learning by selective serotonin reuptake inhibitors. Neurobiol. Learn. Mem. 136, 189–195.10.1016/j.nlm.2016.10.008Suche in Google Scholar PubMed PubMed Central

Peñas-Cazorla, R. and Vilaró, M.T. (2015). Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations. Brain Struct. Funct. 220, 3413–3434.10.1007/s00429-014-0864-zSuche in Google Scholar PubMed

Pereira, M., Martynhak, B.J., Andreatini, R., and Svenningsson, P. (2015). 5-HT6 receptor agonism facilitates emotional learning. Front. Pharmacol. 6, 20.10.3389/fphar.2015.00200Suche in Google Scholar PubMed PubMed Central

Pérez-García, G. and Meneses, A. (2008a). Ex-vivo study of 5-HT1A and 5-HT7 receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behav. Brain Res. 195, 139–146.10.1016/j.bbr.2008.07.033Suche in Google Scholar PubMed

Perez-Garcia, G. and Meneses, A. (2008b). Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav. Brain Res. 195, 17–29.10.1016/j.bbr.2007.11.027Suche in Google Scholar PubMed

Perez-Garcia, G. and Meneses, A. (2009). Memory time-course: mRNA 5-HT1A and 5-HT7 receptors. Behav. Brain Res. 202, 102–113.10.1016/j.bbr.2009.03.027Suche in Google Scholar PubMed

Pérez-García, G., González-Espinosa, C., and Meneses, A. (2006). An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav. Brain Res. 169, 83–92.10.1016/j.bbr.2005.12.013Suche in Google Scholar PubMed

Penttilä, J., Hirvonenb, J., Tuominenc, L., Lummed, V., lonend T, Någrenc, K., and Hietalac, J. (2016). Verbal memory and 5-HT1A receptors in healthy volunteers – a PET study with [carbonyl-11C] WAY-100635. Eur. Neuropsychopharmacol. 26, 570–577.10.1016/j.euroneuro.2015.12.028Suche in Google Scholar PubMed

Pittalà, V., Siracusa, M.A., Salerno, L., Romeo, G., Modica, M.N., Madjid, N., and Ogren, S.O. (2016). Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands. Eur. J. Neuropsychopharmacol. 26, 570–577.10.1016/j.euroneuro.2015.04.017Suche in Google Scholar PubMed

Pitychoutis, P.M., Belmer, A., Moutkine, I., Adrien, J., and Maroteaux, L. (2015). Mice lacking the serotonin Htr2B receptor gene present an antipsychotic-sensitive schizophrenic-like phenotype. Neuropsychopharmacology 40, 2764–2773.10.1038/npp.2015.126Suche in Google Scholar

Preller, K.H., Pokornya, T., Hockb, A., Kraehenmanna, R., Stämpflic, P., Seifritzc, E., Scheideggera, M., and Vollenweider, F.X. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Natl. Acad. Sci. USA 113, 5119–5124.10.1073/pnas.1524187113Suche in Google Scholar

Puig, M.V. and Gulledge, A.T. (2011). Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464.10.1007/s12035-011-8214-0Suche in Google Scholar

Pujol, C., Séveno, M., Bockaert, J., Marin, P., and Chaumont-Dubel, S. (2016). GPRIN1, a new 5-HT6 receptor partner involved in its constitutive activity and receptor-induced neuronal differentiation. Eur. Neuropsychopharmacol. 26(Suppl 1), S16–S17.10.1016/S0924-977X(16)70019-8Suche in Google Scholar

Quiedeville, A., Boulouard, M., Da Silva Costa-Aze, V., Dauphin, F., Bouet, V., and Freret, T. (2014). 5-HT6 receptor antagonists as treatment for age-related cognitive decline. Rev. Neurosci. 25, 417–427.10.1515/revneuro-2014-0013Suche in Google Scholar PubMed

Quiedeville, A., Boulouard, M., Hamidouche, K., Da Silva Costa-Aze, V., Nee, G., Rochais, C., Dallemagne, P., Fabis, F., Freret, T., and Bouet, V. (2015). Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances. Behav. Brain Res. 293, 10–17.10.1016/j.bbr.2015.07.020Suche in Google Scholar PubMed

Quillfeldt, J.A. (2016). Behavioral Methods to Study Learning and Memory in Rats. In Rodent Model as Tools in Ethical Biomedical Research (London: Springer), pp. 271–311.10.1007/978-3-319-11578-8_17Suche in Google Scholar

Rajagopal, L., Burgdorf, J.S., Moskal, J.R., and Meltzer, H.Y. (2016). GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice. Behav. Brain Res. 299, 105–110.10.1016/j.bbr.2015.10.060Suche in Google Scholar PubMed PubMed Central

Rajan, K.E., Singh, H.K., Parkavi, A., and Charles, P.D. (2011). Attenuation of 1-(m-chlorophenyl)-biguanide induced hippocampus-dependent memory impairment by a standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res. 36, 2136–2144.10.1007/s11064-011-0538-7Suche in Google Scholar PubMed

Ramirez, M.J., Lai, M.K., Tordera, R.M., and Francis, P.T. (2014). Serotonergic therapies for cognitive symptoms in Alzheimer’s disease: rationale and current status. Drugs 74, 729–736.10.1007/s40265-014-0217-5Suche in Google Scholar PubMed

Règue, M., Poilbout, C., Lanfumey, l., and Mongeau, R. (2016). PTSD-like behavioral profile of mice with full 5-HT2C receptor editing: response to paroxetine treatment. Soc Neurosci Abstract 456.04. San Diego, USA. Nov 12–16.Suche in Google Scholar

Reichel, C.M., Ramsey, L.A., Schwendt, M., McGinty, J.F., and See, R.E. (2012). Methamphetamine-induced changes in the object recognition memory circuit. Neuropharmacology 62, 1119–1126.10.1016/j.neuropharm.2011.11.003Suche in Google Scholar PubMed PubMed Central

Reis, H.J., Guatimosim, C., Paquet, M., Santos, M., Ribeiro, F.M., Kummer, A., Schenatto, G., Salgado, J.V., Vieira, L.B., Teixeira, A.L., et al. (2009). Neuro-transmitters in the central nervous system & their implication in learning and memory processes. Curr. Med. Chem. 16, 796–840.10.2174/092986709787549271Suche in Google Scholar PubMed

Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Fröhlich, M., et al. (2012). Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signaling and trafficking. J. Cell Sci. 125 (Pt 10), 2486–2499.Suche in Google Scholar

Rescorla, R.A. (1967). Pavlovian conditioning and its proper control procedures. Psychol. Rev. 74, 71–80.10.1037/h0024109Suche in Google Scholar PubMed

Rescorla, R.A. (1988). Behavioral studies of Pavlovian conditioning. Annu. Rev. Neurosci. 11, 329–352.10.1146/annurev.ne.11.030188.001553Suche in Google Scholar PubMed

Restivo, L., Roman, F., Dumuis, A., Bockaert, J., Marchetti, E., and Ammassari-Teule, M. (2008). The promnesic effect of G-protein-coupled 5-HT4 receptors activation is mediated by a potentiation of learning-induced spine growth in the mouse hippocampus. Neuropsychopharmacology 33, 2427–2434.10.1038/sj.npp.1301644Suche in Google Scholar PubMed

Rincón-Cortés, M., Barr, G.A., Mouly, A.M., Shionoya, K., Nuñez, B.S., and Sullivan, R.M. (2015). Enduring good memories of infant trauma: rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction. Proc. Natl. Acad. Sci. USA 112, 881–886.10.1073/pnas.1416065112Suche in Google Scholar PubMed PubMed Central

Rodriguez, J.S., Boctor, S.Y., Phelix, C.F., and Martinez, J.L. Jr. (2008). Differences in performance between Sprague-Dawley and Fischer344 rats in positive reinforcement tasks. Pharmacol. Biochem. Behav. 89, 17–22.10.1016/j.pbb.2007.10.017Suche in Google Scholar PubMed PubMed Central

Rodríguez, J.J., Noristani, H.N., and Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol. 99, 15–41.10.1016/j.pneurobio.2012.06.010Suche in Google Scholar PubMed

Roesler, R. and Schröder, N. (2011). Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol. Biochem. Behav. 99, 155–163.10.1016/j.pbb.2010.12.028Suche in Google Scholar PubMed

Rogers, J., Churilov, L., Hannan, A.J., and Renoir, T. (2017). Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation. Neurobiol. Learn. Mem. 139, 37–49.10.1016/j.nlm.2016.12.007Suche in Google Scholar PubMed

Rojas, P.S., Neira, D., Muñoz, M., Lavandero, S., and Fiedler, J.L. (2014). Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons. J. Neurosci. Res. 92, 1000–1009.10.1002/jnr.23390Suche in Google Scholar

Romero, G., Sánchez, E., Pujol, M., Pérez, P., Codony, X., Holenz, J., Buschmann, H., and Pauwels, P.J. (2006a). Efficacy of selective 5-HT6 receptor ligands determined by monitoring 5-HT6 receptor-mediated cAMP signaling pathways. Br. J. Pharmacol. 148, 1133–1143.10.1038/sj.bjp.0706827Suche in Google Scholar

Romero, G., Pujol, M., and Pauwels, P.J. (2006b). Reanalysis of constitutively active rat and human 5-HT7(a) receptors in HEK-293F cells demonstrates lack of silent properties for reported neutral antagonists. Naunyn Schmiedebergs Arch. Pharmacol. 374, 31–39.10.1007/s00210-006-0093-ySuche in Google Scholar

Ruocco, L.A., Treno, C., Gironi Carnevale, U.A., Arra, C., Boatto, G., Nieddu, M., Pagano, C., Illiano, P., Barbato, F., Tino, A., et al. (2014). Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface. PLoS One 9, e83003.10.1371/journal.pone.0083003Suche in Google Scholar

Said, N., Lakehayli, S., El Khachibi, M., El Ouahli, M., Nadifi, S., Hakkou, F., and Tazi, A. (2015). Effect of prenatal stress on memory, nicotine withdrawal and 5HT1A expression in raphe nuclei of adult rats. Int. J. Devl. Neuroscience. 43, 92–98.10.1016/j.ijdevneu.2015.04.008Suche in Google Scholar

Saitoh, Y. and Inokuchi, K. (2000). A triphasic curve characterizes the retention of lever-pressing behavior rewarded by lateral hypothalamic stimulation during the immediate-post-trial period in rats: implications for a transient-intermediate stage between short- and long-term memory. Neurosci. Res. 37, 211–219.10.1016/S0168-0102(00)00119-XSuche in Google Scholar

Sałat, K., Podkowa, A., Mogilski, S., Zaręba, P., Kulig, K., Sałat, R., Malikowska, N., and Filipek, B. (2015). The effect of GABA transporter 1 (GAT1) inhibitor, tiagabine, on scopolamine-induced memory impairments in mice. Pharmacol. Rep. 67, 1155–1162.10.1016/j.pharep.2015.04.018Suche in Google Scholar PubMed

Samarajeewa, A., Goldemann, L., Vasefi, M.S., Ahmed, N., Gondora, N., Khanderia, C., Mielke, J.G., and Beazely, M.A. (2014). 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation. Front. Behav. Neurosci. 8, 391.10.3389/fnbeh.2014.00391Suche in Google Scholar PubMed PubMed Central

Sanders, J. and Mayford, M. (2016). Chronic fluoxetine dissociates contextual from auditory fear memory. Neurosci. Lett. 632, 152–156.10.1016/j.neulet.2016.08.057Suche in Google Scholar PubMed PubMed Central

Sari, Y. (2004). Serotonin1B receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 28, 565–582.10.1016/j.neubiorev.2004.08.008Suche in Google Scholar PubMed

Sarnyai, Z., Sibille, E.L., Pavlides, C., Fenster, R.J., McEwen, B.S., and Toth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc. Natl. Acad. Sci. USA 97, 14731–14736.10.1073/pnas.97.26.14731Suche in Google Scholar

Saroja, S.R., Kim, E.J., Shanmugasundaram, B., Höger, H., and Lubec, G. (2014). Hippocampal monoamine receptor complex levels linked to spatial memory decline in the aging C57BL/6J. Behav. Brain Res. 264, 1–8.10.1016/j.bbr.2014.01.042Suche in Google Scholar

Sase, S., Stork, O., Lubec, G., and Li, L. (2015). Contextual fear conditioning modulates hippocampal AMPA-, GluN1- and serotonin receptor 5-HT1A-containing receptor complexes. Behav. Brain Res. 278C, 44–54.10.1016/j.bbr.2014.09.035Suche in Google Scholar

Saulin, A., Savli, M., and Lanzenberger, R. (2012). Serotonin and molecular neuroimaging in humans using PET. Amino Acids. 42, 2039–2057.10.1007/s00726-011-1078-9Suche in Google Scholar

Scarr, E., Millan, M.J., Bahn, S., Bertolino, A., Turck, C.W., Kapur, S., Möller, H.J., and Dean, B. (2015). Biomarkers for psychiatry: the journey from fantasy to fact, a report of the 2013 CINP Think Tank. Int. J. Neuropsychopharmacol. 18, pyv042.10.1093/ijnp/pyv042Suche in Google Scholar

Schechter, L.E., Smith, D.L., Rosenzweig-Lipson, S., Sukoff, S.J., Dawson, L.A., Marquis, K., Jones, D., Piesla, M., Andree, T., Nawoschik, S., et al. (2005). Lecozotan (SRA-333): a selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Pharmacol. Exp. Ther. 314, 1274–1289.10.1124/jpet.105.086363Suche in Google Scholar

Schifani, C. (2016). Robustness of a neurodevelopmental animal model of schizophrenia: combining immune stimulation with glutamatergic insult. Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences, http://www.ub.uni-heidelberg.de/archiv/20683.Suche in Google Scholar

Schmidt, S.D., Furini, C.R., Zinn, C.G., Cavalcante, L.E., Ferreira, F.F., Behling, J.A., Myskiw, J.C., and Izquierdo, I. (2016). Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus. Neurobiol. Learn. Mem. pii: S1074-7427(16)30422-1.10.1016/j.nlm.2016.12.017Suche in Google Scholar

Schmitt, U. and Hiemke, C. (2002). Tiagabine, a gamma-amino-butyric acid transporter inhibitor impairs spatial learning of rats in the Morris water-maze. Behav. Brain Res. 133, 391–394.10.1016/S0166-4328(02)00008-6Suche in Google Scholar

Scholl, J., Kolling, N., Nelissen, N., Browning, M., Rushworth, M.F., and Harmer, C.J. (2017). Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLoS Biol. 15, e2000756.10.1371/journal.pbio.2000756Suche in Google Scholar PubMed PubMed Central

Schreiber, R. and Newman-Tancredi, A. (2014). Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation. Neurobiol. Learn. Mem. 110, 72–80.10.1016/j.nlm.2013.12.015Suche in Google Scholar PubMed

Segu, L., Lecomte, M.J., Wolff, M., Santamaria, J., Hen, R., Dumuis, A., Berrard, S., Bockaert, J., Buhot, M.C., and Compan, V. (2010). Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice. PLoS One 5, e9529.10.1371/journal.pone.0009529Suche in Google Scholar PubMed PubMed Central

Selinger, L., Zarnowiec, K., Via, M., Clemente, I.C., and Escera, C. (2016). Involvement of the serotonin transporter gene in accurate subcortical speech encoding. J. Neurosci. 36, 10782–10790.10.1523/JNEUROSCI.1595-16.2016Suche in Google Scholar PubMed PubMed Central

Seo, J. and Tsai, L.H. (2014). Neuronal differentiation: 5-HT6R can do it alone. Nat. Chem. Biol. 10, 488–489.10.1038/nchembio.1557Suche in Google Scholar PubMed

Seyedabadi, M., Fakhfouri, G., Ramezani, V., Mehr, S.E., and Rahimian, R. (2014). The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp. Brain Res. 232, 723–738.10.1007/s00221-013-3818-4Suche in Google Scholar PubMed

Shafia, S., Vafaei, A.A., Samaei, S.A., Bandegi, A.R., Rafiei, A., Valadan, R., Hosseini-Khah, Z., Mohammadkhani, R., and Rashidy-Pour, A. (2017). Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis-related proteins in a rat model of post-traumatic stress disorder. Neurobiol. Learn. Mem. 139, 165–178.10.1016/j.nlm.2017.01.009Suche in Google Scholar PubMed

Sheline, Y.I., West, T., Yarasheski, K., Swarm, R., Jasielec, M.S., Fisher, J.R., Ficker, W.D., Yan, P., Xiong, C., Frederiksen, C., et al. (2014a). An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci. Transl. Med. 6, 236re4.10.1126/scitranslmed.3008169Suche in Google Scholar PubMed PubMed Central

Sheline, Y.I., West, T., Yarasheski, K., Jasielec, M.S., Hettinger, J.C., Tripoli, D.L., Xiong, C., Frederiksen, C., Grzelak, M.V., Bateman, R.J., et al. (2014b). Reply to comment on “An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice.” Sci. Transl. Med. 6, 268lr4.10.1126/scitranslmed.3010609Suche in Google Scholar PubMed PubMed Central

Shi, J., Cai, Y., Liu, G., Gong, N., Liu, Z., Xu, T., Wang, Z., and Fei, J. (2012). Enhanced learning and memory in GAT1 heterozygous mice. Acta Biochim. Biophys. Sin. (Shanghai) 44, 359–356.10.1093/abbs/gms005Suche in Google Scholar PubMed

Shimizu, S., Mizuguchi, Y., and Ohno, Y. (2013). Improving the treatment of schizophrenia: role of 5-HT receptors in modulating cognitive and extrapyramidal motor functions. CNS Neurol. Disord. Drug. Targets 12, 861–869.10.2174/18715273113129990088Suche in Google Scholar PubMed

Shivarama, S.M. and Sajikumar, S. (2017). ‘Tagging’ along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res. Rev. 35, 22–35.10.1016/j.arr.2016.12.008Suche in Google Scholar PubMed

Silverman, J.L., Gastrell, P.T., Karras, M.N., Solomon, J., and Crawley, J.N. (2015). Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb. Cortex 25, 1133–1142.10.1093/cercor/bht293Suche in Google Scholar

Šimić, G., Leko, M.B., Wray, S., Harrington, C., Delalle, I., Jovanov-Milošević, N., Bažadona D, Buée, L., Silva, R., Giovanni, G.D., et al. (2016). Monoaminergic neuropathology in Alzheimer’s disease. Prog. Neurobiol. pii: S0301-0082(15)30089–7.10.1016/j.pneurobio.2016.04.001Suche in Google Scholar

Singewald, N., Schmuckermair, C., Whittle, N., Holmes, A., and Ressler, K.J. (2015). Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol. Ther. 149, 150–190.10.1016/j.pharmthera.2014.12.004Suche in Google Scholar

Solodkin, A. and van Hoesen, G. (1997). Neuropathology and functional anatomy of Alzheimer’s disease. Pharmacological Treatment of Alzheimer’s disease. J. Brioni and M. Decker, eds. (New York, NY: Wiley-Liss), pp. 151–177.Suche in Google Scholar

Somerville, L.H. (2016). Searching for signatures of brain maturity: what are we searching for? Neuron 92, 1164–1167.10.1016/j.neuron.2016.10.059Suche in Google Scholar

Sprouse, J.S. and Aghajanian, G.K. (1986). (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur. J. Pharmacol. 128, 295–298.10.1016/0014-2999(86)90782-XSuche in Google Scholar

Squire, L.R. and Dede, A.J. (2015). Conscious and unconscious memory systems. Cold Spring Harb. Perspect. Biol. 27, a021667.10.1101/cshperspect.a021667Suche in Google Scholar

Squire, L.R. and Zola, S.M. (1996). Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. USA 93, 13515–13522.10.1073/pnas.93.24.13515Suche in Google Scholar

Stahl, S.M. (2015). Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin’s downstream effects on glutamate and GABA (gamma amino butyric acid) release. CNS Spectr. 20, 331–336.10.1017/S1092852915000334Suche in Google Scholar

Steinbusch, H.W., Verhofstad, A.A., and Joosten, H.W. (1978). Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neurosci 3, 811–819.10.1016/0306-4522(78)90033-7Suche in Google Scholar

Stenbaeck, D.S., Fisher, P.M., Ozenne, B., Andersen, E., Hjordt, L.V., McMahon, B., Hasselbalch, S.G., Frokjaer, V.G., and Knudsen, G.M. (2017). Brain serotonin 4 receptor binding is inversely associated with verbal memory recall. Brain Behav. doi: 10.1002/brb3.674.10.1002/brb3.674Suche in Google Scholar PubMed PubMed Central

Stiedl, O., Pappa, E., Konradsson-Geuken, Å., and Ögren, S.O. (2015). The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front. Pharmacol. 6, 162.10.3389/fphar.2015.00162Suche in Google Scholar PubMed PubMed Central

Strac, D.S., Muck-Seler, D., and Pivac, N. (2015). Neurotransmitter measures in the cerebrospinal fluid of patients with Alzheimer’s disease: a review. Psychiatr. Danub. 27, 14–24.Suche in Google Scholar

Strac, D.S., Muck-Seler, D., and Pivac, N. (2016). The serotonergic system and cognitive function. Transl. Neurosci. 7, 3549.Suche in Google Scholar

Stroth, N., Niso, M., Colabufo, N.A., Perrone, R., Svenningsson, P., Lacivita, E., and Leopoldo, M. (2015). Arylpiperazine Agonists of the serotonin 5-HT1A receptor preferentially activate cAMP signaling versus recruitment of β-Arrestin-2. Bioorg. Med. Chem. 23, 4824–4830.10.1016/j.bmc.2015.05.042Suche in Google Scholar PubMed

Subramaniyan, S., Heo, S., Patil, S., Li, L., Hoger, H., Pollak, A., and Lubec, G. (2014). A hippocampal nicotinic acetylcholine alpha 7-containing receptor complex is linked to memory retrieval in the multiple-T-maze in C57BL/6j mice. Behav. Brain Res. 270, 137–145.10.1016/j.bbr.2014.05.012Suche in Google Scholar PubMed

Subramaniyan, S., Hajali, V., Scherf, T., Sase, S.J., Sialana, F.J., Gröger, M., Bennett, K.L., Pollak, A., Li, L., Korz, V., et al. (2015). Hippocampal receptor complexes paralleling LTP reinforcement in the spatial memory holeboard test in the rat. Behav. Brain Res. 283C, 162–174.10.1016/j.bbr.2015.01.036Suche in Google Scholar PubMed

Sumiyoshi, T., Bubenikova-Valesova, V., Horacek, J., and Bert, B. (2008). Serotonin1A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics. Adv. Ther. 25, 1037–1056.10.1007/s12325-008-0102-2Suche in Google Scholar PubMed

Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L.J., Schnitzer, M.J., and Tonegawa, S. (2015a). Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proc. Natl. Acad. Sci. USA 112, 9466–9471.10.1073/pnas.1511668112Suche in Google Scholar PubMed PubMed Central

Sun, M.K., Nelson, T.J., and Alkon, D.L. (2015b). Towards universal therapeutics for memory disorders. Trends Pharmacol. Sci. 36, 384–394.10.1016/j.tips.2015.04.004Suche in Google Scholar PubMed

Suzuki, H. and Lucas, L.R. (2015). Neurochemical correlates of accumbal dopamine D2 and amygdaloid 5-HT 1B receptor densities on observational learning of aggression. Cogn. Affect Behav. Neurosci. 15, 460–474.10.3758/s13415-015-0337-8Suche in Google Scholar PubMed PubMed Central

Szegedi, V., Juhász, G., Zhang, X., Barkóczi, B., Qi, H., Madeira, A., Kapus, G., Svenningsson, P., Spedding, M., and Penke, B. (2011). Tianeptine potentiates AMPA receptors by activating CaMKII and PKA via the p38, p42/44 MAPK and JNK pathways. Neurochem. Inter. 59, 1109–1122.10.1016/j.neuint.2011.10.008Suche in Google Scholar PubMed

Taber, K.H. and Hurley, R.A. (2014). Volume transmission in the brain: beyond the synapse. J. Neuropsychiatry Clin. Neurosci. 26:iv, 1–4.10.1176/appi.neuropsych.13110351Suche in Google Scholar PubMed

Tajiri, M., Hayata-Takano, A., Seiriki, K., Ogata, K., Hazama, K., Shintani, N., Baba, A., and Hashimoto, H. (2012). Serotonin 5-HT7 receptor blockade reverses behavioral abnormalities in PACAP-deficient mice and receptor activation promotes neurite extension in primary embryonic hippocampal neurons: therapeutic implications for psychiatric disorders. J. Mol. Neurosci. 48, 473–481.10.1007/s12031-012-9861-ySuche in Google Scholar PubMed

Takeda, K., Tsuji, M., Miyagawa, K., and Takeda, H. (2017). 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase. Neurosci. Lett. 638, 69–75.10.1016/j.neulet.2016.11.065Suche in Google Scholar PubMed

Talpos, J. and Shoaib, M. (2015). Executive function. Handb. Exp. Pharmacol. 228, 191–213.10.1007/978-3-319-16522-6_6Suche in Google Scholar PubMed

Talpos, J.C., Aerts, N., Fellini, L., and Steckler, T. (2014). A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol. Biochem. Behav. 122, 97–106.10.1016/j.pbb.2014.03.014Suche in Google Scholar PubMed

Tellez, R., Rocha, L., Castillo, C., and Meneses, A. (2010). Autoradiographic study of serotonin transporter during memory formation. Behav. Brain Res. 12, 12–26.10.1016/j.bbr.2010.03.015Suche in Google Scholar PubMed

Tellez, R., Gómez-Víquez, L., and Meneses, A. (2012a). GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol. Learn. Mem. 97, 189–201.10.1016/j.nlm.2011.12.002Suche in Google Scholar PubMed

Tellez, R., Gómez-Viquez, L., Liy-Salmeron, G., and Meneses, A. (2012b). GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol. Learn. Mem. 98, 66–77.10.1016/j.nlm.2012.05.001Suche in Google Scholar PubMed

Thomasius, R., Zapletalova, P., Petersen, K., Buchert, R., Andresen, B., Wartberg, L., Nebeling, B., and Schmoldt, A. (2006). Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective. J. Psychopharmacol. 20, 211–225.10.1177/0269881106059486Suche in Google Scholar PubMed

Thompson, A.J. (2013). Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol. Sci. 34, 100–109.10.1016/j.tips.2012.12.002Suche in Google Scholar PubMed

Thompson, A.J., Verheij, M.H., Verbeek, J., Windhorst, A.D., de Esch, I.J., and Lummis, S.C. (2014). The binding characteristics and orientation of a novel radioligand with distinct properties at 5-HT3A and 5-HT3A/3B receptors. Neuropharmacology 86, 378–388.10.1016/j.neuropharm.2014.08.008Suche in Google Scholar PubMed PubMed Central

Thur, K.E., Nelson, A.J., and Cassaday, H.J. (2014). Ro 04-6790-induced cognitive enhancement: no effect in trace conditioning and novel object recognition procedures in adult male Wistar rats. Pharmacol. Biochem. Behav. 127, 42–48.10.1016/j.pbb.2014.10.006Suche in Google Scholar

Tomie, A., Di Poce, J., Aguado, A., Janes, A., Benjamin, D., and Pohorecky, L. (2003). Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain. Brain Res. 975, 167–178.10.1016/S0006-8993(03)02631-3Suche in Google Scholar

Tomie, A., Lincks, M., Nadarajah, S.D., Pohorecky, L.A., and Yu, L. (2012). Pairings of lever and food induce Pavlovian conditioned approach of sign-tracking and goal-tracking in C57BL/6 mice. Behav. Brain Res. 226, 571–578.10.1016/j.bbr.2011.10.021Suche in Google Scholar

Tonegawa, S., Pignatelli, M., Roy, D.S., and Ryan, T.J. (2015). Memory engram storage and retrieval. Curr. Opin. Neurobiol. 35, 101–109.10.1016/j.conb.2015.07.009Suche in Google Scholar

Twarkowski, H., Hagena, H., and Manahan-Vaughan, D. (2016). The 5-hydroxytryptamine4 (5-HT4) receptor enables differentiation of informational content and encoding in the hippocampus. Hippocampus 26, 875–891.10.1002/hipo.22569Suche in Google Scholar

Uphouse, L. (1997). Multiple serotonin receptors: too many, not enough, or just the right number. Neurosci. Biobehav Rev. 21, 679–698.10.1016/S0149-7634(96)00022-XSuche in Google Scholar

Van Goethem, N.P., Schreiber, R., Newman-Tancredi, A., Varney, M., and Prickaerts, J. (2015). Divergent effects of the “biased”, 5-HT1A receptor agonists F15599 and F13714 in a novel object pattern separation task. Br. J. Pharmacol. 172, 2532–2543.10.1111/bph.13071Suche in Google Scholar PubMed PubMed Central

Vanover, K.E., Harvey, S.C., Son, T., Bradley, S.R., Kold, H., Makhay, M., Veinbergs, I., Spalding, T.A., Weiner, D.M., Andersson, C.M., et al. (2004). Pharmacological characterization of AC-90179 [2-(4-methoxyphenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride]: a selective serotonin 2A receptor inverse agonist. J. Pharmacol. Exp. Ther. 310, 943–951.10.1124/jpet.104.066688Suche in Google Scholar PubMed

Vardy, E. and Kenakin, T. (2014). The tail wags the dog: possible mechanism for reverse allosteric control of ligand-activated channels. Br. J. Pharmacol. 171, 1614–1616.10.1111/bph.12550Suche in Google Scholar PubMed PubMed Central

Varrone, A., Svenningsson, P., Marklund, P., Fatouros-Bergman, H., Forsberg, A., Halldin, C., Nilsson, L.G., and Farde, L. (2015). 5-HT1B receptor imaging and cognition: a positron emission tomography study in control subjects and Parkinson’s disease patients. Synapse 69, 365–374.10.1002/syn.21823Suche in Google Scholar PubMed

Verdurand, M., Chauveau, F., Daoust, A., Morel, A.L., Bonnefoi, F., Liger, F., Bérod, A., and Zimmer, L. (2016). Differential effects of amyloid-beta 1–40 and 1–42 fibrils on 5-HT1A serotonin receptors in rat brain. Neurobiol. Aging. 40, 11–21.10.1016/j.neurobiolaging.2015.12.008Suche in Google Scholar

Vergé, D. and Calas, A. (2000). Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches. J. Chem. Neuroanat. 18, 41–56.10.1016/S0891-0618(99)00050-2Suche in Google Scholar

Vernimmen, T. (2016). Demystifying BOLD fMRI Data. The Scientist Magazine, February 17. http://www.the-scientist.com/.Suche in Google Scholar

Vidal, B., Sebti, J., Verdurand, M., Fieux, S., Billard, T., Streichenberger, N., Troakes, C., Newman-Tancredi, A., and Zimmer, L. (2016). Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer’s disease: a post-mortem study with PET radiopharmaceuticals. Neuropharmacology 109, 88–95.10.1016/j.neuropharm.2016.05.009Suche in Google Scholar

Villain, H., Benkahoul, A., Drougard, A., Lafragette, M., Muzotte, E., Pech, S., Bui, E., Brunet, A., Birmes, P., and Roullet, P. (2016). Effects of propranolol, a β-noradrenergic antagonist, on memory consolidation and reconsolidation in mice. Front. Behav. Neurosci. 10, 49.10.3389/fnbeh.2016.00049Suche in Google Scholar

Villemagne, V.L. and Okamura, N. (2016). Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr. Opin. Neurobiol. 36, 43–51.10.1016/j.conb.2015.09.002Suche in Google Scholar

Vimala, P.V., Bhutada, P.S., and Patel, F.R. (2014). Therapeutic potential of agomelatine in epilepsy and epileptic complications. Med. Hypotheses. 82, 105–110.10.1016/j.mehy.2013.11.017Suche in Google Scholar

Viñals, X., Moreno, E., Lanfumey, L., Cordomí, A., Pastor, A., de La Torre, R., Gasperini, P., Navarro, G., Howell, L.A., Pardo, L., et al. (2015). cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A Receptors. PLoS Biol. 13, e1002194.10.1371/journal.pbio.1002194Suche in Google Scholar

Volpicelli, F., Speranza, L., di Porzio, U., Crispino, M., and Perrone-Capano, C. (2014). The serotonin receptor 7 and the structural plasticity of brain circuits. Front. Behav. Neurosci. 8, 318.10.3389/fnbeh.2014.00318Suche in Google Scholar

Waeber, C., Sebben, M., Bockaert, J., and Dumuis, A. (1996). Regional distribution and ontogeny of 5-HT4 binding sites in rat brain. Behav. Brain Res. 73, 259–262.10.1016/0166-4328(96)00108-8Suche in Google Scholar

Wagner, A. and Davachi, L. (2001). Cognitive neuroscience: forgetting of things past. Curr. Biol. 11, R964–R967.10.1016/S0960-9822(01)00575-9Suche in Google Scholar

Wallace, A., Pehrson, A.L., Sánchez, C., and Morilak, D.A. (2014). Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int. J. Neuropsychopharmacol. 17, 1695–1706.10.1017/S1461145714000571Suche in Google Scholar PubMed PubMed Central

Waller, J.A., Tamm, J.A., Abdourahman, A., Pehrson, A.L., Li, Y., Cajina, M., and Sánchez, C. (2017). Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers. Eur. Neuropsychopharmacol. 27, 192–203.10.1016/j.euroneuro.2016.11.014Suche in Google Scholar PubMed

Walker, E.A. and Foley, J.J. (2010). Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav. Pharmacol. 21, 83–89.10.1097/FBP.0b013e328337bde7Suche in Google Scholar PubMed PubMed Central

Walker, E.A., Foley, J.J., Clark-Vetri, R., and Raffa, R.B. (2011). Effects of repeated administration of chemotherapeutic agent tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice. Psychopharmacology (Berl.) 217, 539–548.10.1007/s00213-011-2310-8Suche in Google Scholar PubMed PubMed Central

Waltz, J.A. (2017). The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neurosci. 345, 203–217.10.1016/j.neuroscience.2016.06.005Suche in Google Scholar PubMed PubMed Central

Wasserman, E.A. (1981). Response evocation in autoshaping: Contribution of cognitive and comparative-evolutionary analysis to an understanding of directed action. Autoshaping and Conditioning Theory. C.M. Locurto, H.S. Terrace and J. Gibbon, eds. (New York: Academic Press), pp. 21–54.Suche in Google Scholar

Waters, K.A., Stean, T.O., Hammond, B., Virley, D.J., Upton, N., Kew, J.N., and Hussain, I. (2012). Effects of the selective 5-HT7 receptor antagonist SB-269970 in animal models of psychosis and cognition. Behav. Brain Res. 228, 211–218.10.1016/j.bbr.2011.12.009Suche in Google Scholar PubMed

Weber, T., Vogt, M.A., Gartside, S.E., Berger, S.M., Lujan, R., Lau, T., Herrmann, E., Sprengel, R., Bartsch, D., and Gass, P. (2015). Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity. Neuropsychopharmacology 40, 1471–1484.10.1038/npp.2014.332Suche in Google Scholar PubMed PubMed Central

Wellman, C.L., Izquierdo, A., Garrett, J.E., Martin, K.P., Carroll, J., Millstein, R., Lesch, K.P., Murphy, D.L., and Holmes, A. (2007). Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J. Neurosci. 27, 684–691.10.1523/JNEUROSCI.4595-06.2007Suche in Google Scholar PubMed PubMed Central

Werner, F.M. and Coveñas, R. (2016). Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer’s disease. Curr. Pharm. Des. 22, 2064–2071.10.2174/1381612822666160127113524Suche in Google Scholar PubMed

Wesnes, K.A., Hopkins, S.C., Brooker, H.J., and Koblan, K.S. (2016). Differences in memory function between 5-HT1A receptor genotypes in patients with major depressive disorder. CNS Spectrums. 21, 379–384.10.1017/S1092852915000802Suche in Google Scholar PubMed

Westrich, L., Haddjeri, N., Dkhissi-Benyahya, O., and Sanchez, C. (2015). Involvement of 5-HT7 receptors in vortioxetine’s modulation of circadian rhythms and episodic memory in rodents. Neuropharmacology 89, 382–390.10.1016/j.neuropharm.2014.10.015Suche in Google Scholar

White, N.M. and McDonald, R.J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiol. Learn. Mem. 77, 125–184.10.1006/nlme.2001.4008Suche in Google Scholar

Wicke, K., Haupt, A., and Bespalov, A. (2015). Investigational drugs targeting 5-HT6 receptors for the treatment of Alzheimer’s disease. Expert. Opin. Investig. Drugs 24, 1515–1528.10.1517/13543784.2015.1102884Suche in Google Scholar

Więckowska, A., Kołaczkowski, M., Bucki, A., Godyń, J., Marcinkowska, M., Więckowski, K., Zaręba, P., Siwek, A., Kazek, G., Głuch-Lutwin, M., et al. (2016). Novel multi-target-directed ligands for Alzheimer’s disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur. J. Med. Chem. 124, 63–81.10.1016/j.ejmech.2016.08.016Suche in Google Scholar

Wilcove, W.G. and Miller, J.C. (1974). CS-UCS presentations and a lever: human autoshaping. J. Exp. Psycho. 103, 868–877.10.1037/h0037388Suche in Google Scholar

Wilker, S., Elbert, T., and Kolassa, I.T. (2014). The downside of strong emotional memories: how human memory-related genes influence the risk for posttraumatic stress disorder – a selective review. Neurobiol. Learn. Mem. 112, 75–86.10.1016/j.nlm.2013.08.015Suche in Google Scholar

Wilkinson, D., Windfeld, K., and Colding-Jørgensen, E. (2014). Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 13, 1092–1099.10.1016/S1474-4422(14)70198-XSuche in Google Scholar

Wirth, A., Holst, K., and Ponimaskin, E. (2016). How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. pii: S0301-0082(15)30087–3.10.1016/j.pneurobio.2016.03.007Suche in Google Scholar PubMed

Wixted, J.T. (2004). The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55, 235–269.10.1146/annurev.psych.55.090902.141555Suche in Google Scholar PubMed

Woehrle, N.S., Klenotich, S.J., Jamnia, N., Ho, E.V., and Dulawa, S.C. (2013). Effects of chronic fluoxetine treatment on serotonin 1B receptor-induced deficits in delayed alternation. Psychopharmacology (Berl.), 227, 545–551.10.1007/s00213-013-2985-0Suche in Google Scholar PubMed

Woldemichael, B.T. and Mansuy, I.M. (2016). Micro-RNAs in cognition and cognitive disorders: potential for novel biomarkers and therapeutics. Biochem. Pharmacol. 104, 1–7.10.1016/j.bcp.2015.11.021Suche in Google Scholar

Wolf, J.E., Urbano, C.M., Ruprecht, C.M., and Leising, K.J. (2014). Need to train your rat? There is an App for that: a touchscreen behavioral evaluation system. Behav. Res Meth. 46, 206–214.10.3758/s13428-013-0366-6Suche in Google Scholar

Wolff, M., Savova, M., Malleret, G., Hen, R., Segu, L., and Buhot, M.C. (2003). Serotonin 1B knockout mice exhibit a task-dependent selective learning facilitation. Neurosci. Lett. 338, 1–4.10.1016/S0304-3940(02)01339-3Suche in Google Scholar

Woods, S., Clarke, N., Layfield, R., and Fone, K. (2012). 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br. J. Pharmacol. 167, 436–449.10.1111/j.1476-5381.2012.02022.xSuche in Google Scholar PubMed PubMed Central

Wu, Z.M., Zheng, C.H., Zhu, Z.H., Wu, F.T., Ni, G.L., and Liang, Y. (2016a). SiRNA-mediated serotonin transporter knockdown in the dorsal raphe nucleus rescues single prolonged stress-induced hippocampal autophagy in rats. J. Neurol. Sci. 360, 133–140.10.1016/j.jns.2015.11.056Suche in Google Scholar PubMed

Wu, Z.M., Yang, L.H., Cui, R., Ni, G.L., Wu, F.T., and Liang, Y. (2016b). Contribution of hippocampal 5-HT3 receptors in hippocampal autophagy and extinction of conditioned fear responses after a single prolonged stress exposure in rats. Cell Mol. Neurobiol. [Epub ahead of print]. PMID: 27324798.10.1007/s10571-016-0395-7Suche in Google Scholar PubMed

Wylie, G., Foxe, J., and Taylor, T. (2008). Forgetting as an active process: an fMRI investigation of item-method-directed forgetting. Cereb. Cortex 18, 670–682,10.1093/cercor/bhm101Suche in Google Scholar PubMed

Yahiaoui, S., Hamidouche, K., Ballandonne, C., Davis, A., de Oliveira Santos, J.S., Freret, T., Boulouard, M., Rochais, C., and Dallemagne, P. (2016). Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 121, 283–293.10.1016/j.ejmech.2016.05.048Suche in Google Scholar PubMed

Yamazaki, M., Harada, K., Yamamoto, N., Yarimizu, J., Okabe, M., Shimada, T., Ni, K., and Matsuoka, N. (2014). ASP5736, a novel 5-HT5A receptor antagonist, ameliorates positive symptoms and cognitive impairment in animal models of schizophrenia. Eur. Neuropsychopharmacol. 24, 1698–1708.10.1016/j.euroneuro.2014.07.009Suche in Google Scholar PubMed

Yamazaki, M., Okabe, M., Yamamoto, N., Yarimizu, J., and Harada, K. (2015). Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats. J. Pharmacol. Sci. 127, 362–369.10.1016/j.jphs.2015.02.006Suche in Google Scholar PubMed

Yang, P., Cai, G., Cai, Y., Fei, J., and Liu, G. (2013). Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder. Acta Biochim. Biophys. Sin. (Shanghai) 45, 578–585.10.1093/abbs/gmt043Suche in Google Scholar PubMed

Yoshimi, N., Fujita, Y., Ohgi, Y., Futamura, T., Kikuchi, T., and Hashimoto, K. (2014). Effects of brexpiprazole, a novel serotonin-dopamine activity modulator, on phencyclidine-induced cognitive deficits in mice: a role for serotonin 5-HT1A receptors. Pharmacol. Biochem. Behav. 124, 245–249.10.1016/j.pbb.2014.06.008Suche in Google Scholar PubMed

Yun, H.M., Park, K.R., Kim, E.C., Kim, S., and Hong, J.T. (2015). Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget. 6, 26716–26728.10.18632/oncotarget.5777Suche in Google Scholar PubMed PubMed Central

Yu, H., Chen, T., Zhou, L., and Tang, J. (2017). Effect of Selective 5-HT6r agonist on expression of 5-HT receptor and neurotransmitter in vascular dementia rats. Med. Sci. Monit. 23, 818–825.10.12659/MSM.899067Suche in Google Scholar

Zareifopoulos, N. and Papatheodoropoulos, C. (2016). Effects of 5-HT7 receptor ligands on memory and cognition. Neurobiol. Learn. Mem. 136, 204–209.10.1016/j.nlm.2016.10.011Suche in Google Scholar PubMed

Zaldivar, A. and Krichmar, J.L. (2013). Interactions between the neuromodulatory systems and the amygdala: exploratory survey using the Allen Mouse Brain Atlas. Brain Struct. Funct. 218, 1513–1530.10.1007/s00429-012-0473-7Suche in Google Scholar PubMed PubMed Central

Zhang, G. and Stackman, R.W. Jr. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 6, 225.10.3389/fphar.2015.00225Suche in Google Scholar PubMed PubMed Central

Zhang, G., Cinalli, D., Cohen, S.J., Knapp, K.D., Rios, L.M., Martínez-Hernández, J., Luján, R., and Stackman, R.W.Jr. (2016). Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice. Neuropharmacology 109, 332–340.10.1016/j.neuropharm.2016.04.033Suche in Google Scholar PubMed

Zhang, G., Cinalli, D., and Stackman, R.W. Jr. (2017). Effect of a hallucinogenic serotonin 5-HT2B receptor agonist on visually-guided, hippocampal-dependent spatial cognition in C57BL/6J Mice. Hippocampus doi: 10.1002/hipo.22712.10.1002/hipo.22712Suche in Google Scholar PubMed

Zheutlin, A.B., Viehman, R.W., Fortgang, R., Borg, J., Smith, D.J., Suvisaari, J., Therman, S., Hultman, C.M., and Cannon, T.D. (2016). Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia. Neuropsychology 30, 40–52.10.1037/neu0000244Suche in Google Scholar PubMed PubMed Central

Zilles, K., Bacha-Trams, M., Palomero-Gallagher, N., Amunts, K., and Friederici, A.D. (2015). Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63, 79–89.10.1016/j.cortex.2014.07.007Suche in Google Scholar PubMed PubMed Central

Zoellner, L.A., Pruitt, L.D., Farach, F.J., and Jun, J.J. (2014). Understanding heterogeneity in PTSD: fear, dysphoria, and distress. Depress. Anxiety 31, 97–106.10.1002/da.22133Suche in Google Scholar PubMed PubMed Central

Zola-Morgan, S. and Squire, L.R. (1993). Neuroanatomy of memory. Annu. Rev. Neurosci. 16, 547–563.10.1146/annurev.ne.16.030193.002555Suche in Google Scholar PubMed

Received: 2016-11-28
Accepted: 2017-1-16
Published Online: 2017-3-27
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0079/html?lang=de
Button zum nach oben scrollen