Abstract
Here, we provide a review of behavioural, cognitive, and neural studies of the thalamus, including its role in attention, consciousness, sleep, and motor processes. We further discuss neuropsychological and brain disorders associated with thalamus function, including Parkinson’s disease, Alzheimer’s disease, Korsakoff’s syndrome, and sleep disorders. Importantly, we highlight how thalamus-related processes and disorders can be explained by the role of the thalamus as a relay station.
References
Ab Aziz, C.B. and Ahmad, A.H. (2006). The role of the thalamus in modulating pain. Malays. J. Med. Sci. 13, 11–18.Search in Google Scholar
Ackermans, L., Temel, Y., Cath, D., van der Linden, C., Bruggeman, R., Kleijer, M., Nederveen, P., Schruers, K., Colle, H., Tijssen, M.A., et al. (2006). Deep brain stimulation in Tourette’s syndrome: two targets? Mov. Disord. 21, 709–713.10.1002/mds.20816Search in Google Scholar
Aggleton, J.P. and Brown, M.W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425–444.10.1017/S0140525X99002034Search in Google Scholar
Alkire, M.T., Hudetz, A.G., and Tononi, G. (2008). Consciousness and anesthesia. Science 322, 876–880.10.1126/science.1149213Search in Google Scholar
Aupée, A.M., Desgranges, B., Eustache, F., Lalevée, C., de la Sayette, V., Viader, F., and Baron, J.C. (2001). Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. Neuroimage 13, 1164–1173.10.1006/nimg.2001.0762Search in Google Scholar
Baars, B.J. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53.10.1016/S0079-6123(05)50004-9Search in Google Scholar
Bassetti, C., Mathis, J., Gugger, M., Lovblad, K.O., and Hess, C.W. (1996). Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann. Neurol. 39, 471–480.10.1002/ana.410390409Search in Google Scholar PubMed
Baxter, M.G. (2013). Mediodorsal thalamus and cognition in non-human primates. Front. Syst. Neurosci. 7, 38.10.3389/fnsys.2013.00038Search in Google Scholar PubMed PubMed Central
Bayne, T. (2007). Conscious states and conscious creatures: explanation in the scientific study of consciousness. Philos. Perspect. 21, 1–22.10.1111/j.1520-8583.2007.00118.xSearch in Google Scholar
Benabid, A.L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., Payen, I., Benazzouz, A., and Benazzouz, A. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214.10.3171/jns.1996.84.2.0203Search in Google Scholar PubMed
Bloch, M.H., Leckman, J.F., Zhu, H., and Peterson, B.S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology 65, 1253–1258.10.1212/01.wnl.0000180957.98702.69Search in Google Scholar PubMed PubMed Central
Block, N. (1995). On a confusion about a function of consciousness. Behav. Brain Sci. 18, 227–247.10.7551/mitpress/2111.003.0012Search in Google Scholar
Bohsali, A.A., Triplett, W., Sudhyadhom, A., Gullett, J.M., McGregor, K., FitzGerald, D.B., Mareci, T., White, K., and Crosson, B. (2015). Broca’s area-thalamic connectivity. Brain Lang. 141, 80–88.10.1016/j.bandl.2014.12.001Search in Google Scholar PubMed
Boly, M., Seth, A.K., Wilke, M., Ingmundson, P., Baars, B., Laureys, S., Edelman, D.B., and Tsuchiya, N. (2013). Consciousness in humans and non-human animals: recent advances and future directions. Front. Psychol. 4..10.3389/fpsyg.2013.00625Search in Google Scholar PubMed PubMed Central
Bosch-Bouju, C., Hyland, B.I., and Parr-Brownlie, L.C. (2013). Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front. Comput. Neurosci. 7, 163.10.3389/fncom.2013.00163Search in Google Scholar PubMed PubMed Central
Braak, H. and Braak, E. (1991a). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.10.1007/BF00308809Search in Google Scholar PubMed
Braak, H. and Braak, E. (1991b). Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol. 81, 261–268.10.1007/BF00305867Search in Google Scholar PubMed
Bradfield, L.A., Hart, G., and Balleine, B.W. (2013). The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front. Syst. Neurosci. 7, 51.10.3389/fnsys.2013.00051Search in Google Scholar PubMed PubMed Central
Bruya, B. (2010). Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action (Cambridge, MA: MIT Press).10.7551/mitpress/9780262013840.001.0001Search in Google Scholar
Bushnell, M.C. and Duncan, G.H. (1989). Sensory and affective aspects of pain perception: is medial thalamus restricted to emotional issues? Exp. Brain Res. 78, 415–418.10.1007/BF00228914Search in Google Scholar PubMed
Caretti, V., Stoffers, D., Winogrodzka, A., Isaias, I.U., Costantino, G., Pezzoli, G., Ferrarese, C., Antonini, A., Wolters, E.C., and Booij, J. (2008). Loss of thalamic serotonin transporters in early drug-naïve Parkinson’s disease patients is associated with tremor: an [(123)I]β-CIT SPECT study. J. Neural Transm. 115, 721–729.10.1007/s00702-007-0015-2Search in Google Scholar PubMed PubMed Central
Constantinidis, C., Franowicz, M.N., and Goldman-Rakic, P.S. (2001). The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 4, 311–316.10.1038/85179Search in Google Scholar
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586–4590.10.1073/pnas.81.14.4586Search in Google Scholar
Crick, F. and Koch, C. (2003). A framework for consciousness. Nat. Neurosci. 6, 119–126.10.1038/nn0203-119Search in Google Scholar
De Gennaro, L. and Ferrara, M. (2003). Sleep spindles: an overview. Sleep Med. Rev. 7, 423–440.10.1053/smrv.2002.0252Search in Google Scholar
de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J.J., Westendorp, R.G.J., Bollen, E.L.E.M., de Bruin, P.W., Middelkoop, H.A.M., van Buchem M.A., and van der Grond, J. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131, 3277–3285.10.1093/brain/awn278Search in Google Scholar
de Leon, M.J., Golomb, J., Convit, A., DeSanti, S., McRae, T.D., and George, A.E. (1993). Measurement of medial temporal lobe atrophy in diagnosis of Alzheimer’s disease. Lancet 341, 125–126.10.1016/0140-6736(93)92610-6Search in Google Scholar
Dehaene, S. and Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37.10.1016/S0010-0277(00)00123-2Search in Google Scholar
Edelman, G.M. (2003). Naturalizing consciousness: a theoretical framework. Proc. Natl. Acad. Sci. USA 100, 5520–5524.10.1073/pnas.0931349100Search in Google Scholar PubMed PubMed Central
Etemadifar, M., Abtahi, S.H., Abtahi, S.M., Mirdamadi, M., Sajjadi, S., Golabbakhsh, A., Savoj, M.-R., Fereidan-Esfahani, M., Nasr, Z., and Tabrizi, N. (2012). Hemiballismus, hyperphagia, and behavioral changes following subthalamic infarct. Case. Rep. Med. 2012, 768580.10.1155/2012/768580Search in Google Scholar PubMed PubMed Central
Fama, R., Pitel, A.-L. and Sullivan, E.V. (2012). Anterograde episodic memory in Korsakoff syndrome. Neuropsychol. Rev. 22, 93–104.10.1007/s11065-012-9207-0Search in Google Scholar PubMed PubMed Central
Ford, A.A., Triplett, W., Sudhyadhom, A., Gullett, J., McGregor, K., FitzGerald, D.B., Mareci, T., White, K., and Crosson, B. (2013). Broca’s area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front. Neuroanat. 7, 8.10.3389/fnana.2013.00008Search in Google Scholar
Funahashi, S. (2013). Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex. Front. Syst. Neurosci. 7, 36.10.3389/fnsys.2013.00036Search in Google Scholar
García-Cabezas, M.Á., Martínez-Sánchez, P., Sánchez-González, M.Á., Garzón, M., and Cavada, C. (2009). Dopamine innervation in the thalamus: monkey versus rat. Cereb. Cortex (New York, NY) 19, 424–434.10.1093/cercor/bhn093Search in Google Scholar
Gelb, D.J., Oliver, E., and Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Arch. Neurol. 56, 33–39.10.1001/archneur.56.1.33Search in Google Scholar
Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron 14, 477–485.10.1016/0896-6273(95)90304-6Search in Google Scholar
Guilleminault, C., Quera-Salva, M.-A., and Goldberg, M.P. (1993). Pseudo-hypersomnia and pre-sleep behaviour with bilateral paramedian thalamic lesions. Brain 116, 1549–1563.10.1093/brain/116.6.1549Search in Google Scholar
Guillery, R.W. (1995). Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J. Anat. 187, 583–592.Search in Google Scholar
Guillery, R.W. and Sherman, S.M. (2002a). Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163–175.10.1016/S0896-6273(01)00582-7Search in Google Scholar
Guillery, R.W. and Sherman, S.M. (2002b). The thalamus as a monitor of motor outputs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1809–1821.10.1098/rstb.2002.1171Search in Google Scholar
Habib, M.R., Ganea, D.A., Katz, I.K., and Lamprecht, R. (2013). ABL1 in thalamus is associated with safety but not fear learning. Front. Syst. Neurosci. 7, 5.10.3389/fnsys.2013.00005Search in Google Scholar
Halliday, G.M. (2009). Thalamic changes in Parkinson’s disease. Parkinsonism Relat. Disord. 15, S152–S155.10.1016/S1353-8020(09)70804-1Search in Google Scholar
Handley, A., Medcalf, P., Hellier, K., and Dutta, D. (2009). Movement disorders after stroke. Age Ageing 38, 260–266.10.1093/ageing/afp020Search in Google Scholar
Harding, A., Halliday, G., Caine, D., and Kril, J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123, 141–154.10.1093/brain/123.1.141Search in Google Scholar
Helmich, R.C., Hallett, M., Deuschl, G., Toni, I., and Bloem, B.R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135, 3206–3226.10.1093/brain/aws023Search in Google Scholar
Henderson, J.M., Carpenter, K., Cartwright, H., and Halliday, G.M. (2000). Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123, 1410–1421.10.1093/brain/123.7.1410Search in Google Scholar
Hendry, S.H.C., Jones, E.G., and Graham, J. (1979). Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J. Comp. Neurol. 185, 679–713.10.1002/cne.901850406Search in Google Scholar
Horinek, D., Varjassyova, A., and Hort, J. (2007). Magnetic resonance analysis of amygdalar volume in Alzheimer’s disease. Curr. Opin. Psychiatry 20, 273–277.10.1097/YCO.0b013e3280ebb613Search in Google Scholar
Houk, J.C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P.J., Roy, S.A., and Simo, L.S. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1573–1583.10.1017/CBO9780511731525.014Search in Google Scholar
Hubel, D.H. (1995). Eye, Brain, and Vision (New York: Scientific American Library).Search in Google Scholar
Hyde, T.M., Stacey, M.E., Coppola, R., Handel, S.F., Rickler, K.C., and Weinberger, D.R. (1995). Cerebral morphometric abnormalities in Tourette’s syndrome: a quantitative MRI study of monozygotic twins. Neurology 45, 1176–1182.10.1212/WNL.45.6.1176Search in Google Scholar
Jankowski, M.M., Ronnqvist, K.C., Tsanov, M., Vann, S.D., Wright, N.F., Erichsen, J.T., Aggleton, J.P., and O’Mara, S.M. (2013). The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front. Syst. Neurosci. 7, 45.10.3389/fnsys.2013.00045Search in Google Scholar
Kassubek, J., Juengling, F.D., Hellwig, B., Spreer, J., and Lucking, C.H. (2002). Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci. Lett. 323, 29–32.10.1016/S0304-3940(02)00111-8Search in Google Scholar
Kastner, S., Schneider, K.A., and Wunderlich, K. (2006). Beyond a relay nucleus: neuroimaging views on the human LGN. Prog. Brain Res. 155, 125–143.10.1016/S0079-6123(06)55008-3Search in Google Scholar
Klostermann, F., Krugel, L.K., and Ehlen, F. (2013). Functional roles of the thalamus for language capacities. Front. Syst. Neurosci. 7, 32.10.3389/fnsys.2013.00032Search in Google Scholar
Kopelman, M.D. (1995). The Korsakoff syndrome. Br. J. Psychiatry 166, 154–173.10.1192/bjp.166.2.154Search in Google Scholar
Kriegel, U. (2015). The Varieties of Consciousness (New York, NY: Oxford University Press).10.1093/acprof:oso/9780199846122.001.0001Search in Google Scholar
Kulisevsky, J., Berthier, M.L., and Pujol, J. (1993). Hemiballismus and secondary mania following a right thalamic infarction. Neurology 43, 1422–1424.10.1212/WNL.43.7.1422Search in Google Scholar
LaBerge, D. (1997). Attention, awareness, and the triangular circuit. Conscious. Cogn. 6, 149–181.10.1006/ccog.1997.0305Search in Google Scholar
LaBerge, D. (2001). Attention, consciousness, and electrical wave activity within the cortical column. Int. J. Psychophysiol. 43, 5–24.10.1016/S0167-8760(01)00176-3Search in Google Scholar
Leckman, J.F., Bloch, M.H., Smith, M.E., Larabi, D., and Hampson, M. (2010). Neurobiological substrates of Tourette’s disorder. J. Child Adolesc. Psychopharmacol. 20, 237–247.10.1089/cap.2009.0118Search in Google Scholar PubMed PubMed Central
Lee, C.C., Chou, I.C., Tsai, C.H., Wang, T.R., Li, T.C., and Tsai, F.J. (2005). Dopamine receptor D2 gene polymorphisms are associated in Taiwanese children with Tourette syndrome. Pediatr. Neurol. 33, 272–276.10.1016/j.pediatrneurol.2005.05.005Search in Google Scholar PubMed
León-Domínguez, U., Vela-Bueno, A., Froufé-Torres, M., and León-Carrión, J. (2013). A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes. Neuropsychologia 51, 1336–1349.10.1016/j.neuropsychologia.2013.03.012Search in Google Scholar PubMed
Liu, X., Lauer, K.K., Ward, B.D., Li, S.-J., and Hudetz, A.G. (2013). Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems a functional magnetic resonance imaging study. Anesthesiology 118, 59–69.10.1097/ALN.0b013e318277a801Search in Google Scholar
Llinás, R., Ribary, U., Contreras, D., and Pedroarena, C. (1998). The neuronal basis for consciousness. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 1841–1849.10.1098/rstb.1998.0336Search in Google Scholar
Mair, W.G., Warrington, E.K., and Weiskrantz, L. (1979). Memory disorder in Korsakoff’s psychosis: a neuropathological and neuropsychological investigation of two cases. Brain 102, 749–783.10.1093/brain/102.4.749Search in Google Scholar
Mashour, G.A. and Alkire, M.T. (2013a). Consciousness, anesthesia, and the thalamocortical system. Anesthesiology 118, 13–15.10.1097/ALN.0b013e318277a9c6Search in Google Scholar
Mashour, G.A. and Alkire, M.T. (2013b). Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia. Proc. Natl. Acad. Sci. USA 110, 10357–10364.10.1073/pnas.1301188110Search in Google Scholar
Matsumoto, N., Minamimoto, T., Graybiel, A.M., and Kimura, M. (2001). Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976.10.1152/jn.2001.85.2.960Search in Google Scholar
Mayes, A.R., Meudell, P.R., Mann, D., and Pickering, A. (1988). Location of lesions in Korsakoff’s syndrome: neuropsychological and neuropathological data on two patients. Cortex 24, 367–388.10.1016/S0010-9452(88)80001-7Search in Google Scholar
McAlonan, K., Cavanaugh, J., and Wurtz, R.H. (2006). Attentional modulation of thalamic reticular neurons. J. Neurosci. 26, 4444–4450.10.1523/JNEUROSCI.5602-05.2006Search in Google Scholar
McKeown, M.J., Uthama, A., Abugharbieh, R., Palmer, S., Lewis, M., and Huang, X. (2008). Shape (but not volume) changes in the thalami in Parkinson disease. BMC Neurol. 8, 1–8.10.1186/1471-2377-8-8Search in Google Scholar
Middleton, F.A. and Strick, P.L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev. 31, 236–250.10.1016/S0165-0173(99)00040-5Search in Google Scholar
Miller, A.M., Bansal, R., Hao, X., Sanchez-Pena, J.P., Sobel, L.J., Liu, J., Xu, D., Zhu, H., Chakravarty, M.M., Durkin, K., et al. (2010). Enlargement of thalamic nuclei in Tourette syndrome. Arch. Gen. Psychiatry 67, 955–964.10.1001/archgenpsychiatry.2010.102Search in Google Scholar
Minamimoto, T., Hori, Y., Yamanaka, K., and Kimura, M. (2014). Neural signal for counteracting pre-action bias in the centromedian thalamic nucleus. Front. Syst. Neurosci. 8, 3.10.3389/fnsys.2014.00003Search in Google Scholar
Mitchell, A.S. and Chakraborty, S. (2013). What does the mediodorsal thalamus do? Front. Syst. Neurosci. 7, 37.10.3389/fnsys.2013.00037Search in Google Scholar
Mitchell, A.S. and Gaffan, D. (2008). The magnocellular mediodorsal thalamus is necessary for memory acquisition, but not retrieval. J. Neurosci. 28, 258–263.10.1523/JNEUROSCI.4922-07.2008Search in Google Scholar
Mure, H., Hirano, S., Tang, C.C., Isaias, I.U., Antonini, A., Ma, Y., Dhawan, V., and Eidelberg, D. (2011). Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54, 1244–1253.10.1016/j.neuroimage.2010.09.028Search in Google Scholar
Newman, J., Baars, B.J., and Cho, S.-B. (1997). A neural global workspace model for conscious attention. Neural Netw. 10, 1195–1206.10.1016/S0893-6080(97)00060-9Search in Google Scholar
Ohye, C., Higuchi, Y., Shibazaki, T., Hashimoto, T., Koyama, T., Hirai, T., Matsuda, S., Serizawa, T., Hori, T., Hayashi, M., et al. (2012). Gamma knife thalamotomy for Parkinson disease and essential tremor: a prospective multicenter study. Neurosurgery 70, 526–535; discussion 535–526.10.1227/NEU.0b013e3182350893Search in Google Scholar PubMed
Ostendorf, F., Liebermann, D., and Ploner, C.J. (2013). A role of the human thalamus in predicting the perceptual consequences of eye movements. Front. Syst. Neurosci. 7, 10.10.3389/fnsys.2013.00010Search in Google Scholar PubMed PubMed Central
Ostlund, S.B. and Balleine, B.W. (2008). Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection. J. Neurosci. 28, 4398–4405.10.1523/JNEUROSCI.5472-07.2008Search in Google Scholar PubMed PubMed Central
Pessoa, L. and Adolphs, R. (2010). Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783.10.1038/nrn2920Search in Google Scholar PubMed PubMed Central
Peterson, B.S., Thomas, P., Kane, M.J., Scahill, L., Zhang, H., Bronen, R., King, R.A., Leckman, J.F., and Staib, L. (2003). Basal ganglia volumes in patients with Gilles de la Tourette syndrome. Arch. Gen. Psychiatry 60, 415–424.10.1001/archpsyc.60.4.415Search in Google Scholar
Poulet, J.F., Fernandez, L.M., Crochet, S., and Petersen, C.C. (2012). Thalamic control of cortical states. Nat. Neurosci. 15, 370–372.10.1038/nn.3035Search in Google Scholar
Prevosto, V. and Sommer, M.A. (2013). Cognitive control of movement via the cerebellar-recipient thalamus. Front. Syst. Neurosci. 7, 56.10.3389/fnsys.2013.00056Search in Google Scholar
Probst-Cousin, S., Druschky, A., and Neundorfer, B. (2003). Disappearance of resting tremor after “stereotaxic” thalamic stroke. Neurology 61, 1013–1014.10.1212/01.WNL.0000086810.14643.FCSearch in Google Scholar
Purushothaman, G., Marion, R., Li, K., and Casagrande, V.A. (2012). Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 15, 905–912.10.1038/nn.3106Search in Google Scholar
Ranganath, C. and D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31, 865–873.10.1016/S0896-6273(01)00411-1Search in Google Scholar
Reed, L.J., Lasserson, D., Marsden, P., Stanhope, N., Stevens, T., Bello, F., Kingsley, D., Colchester, A., and Kopelman, M.D. (2003). FDG-PET findings in the Wernicke-Korsakoff syndrome. Cortex 39, 1027–1045.10.1016/S0010-9452(08)70876-1Search in Google Scholar
Roessner, V., Overlack, S., Schmidt-Samoa, C., Baudewig, J., Dechent, P., Rothenberger, A., and Helms, G. (2011). Increased putamen and callosal motor subregion in treatment-naive boys with Tourette syndrome indicates changes in the bihemispheric motor network. J. Child Psychol. Psychiatry 52, 306–314.10.1111/j.1469-7610.2010.02324.xSearch in Google Scholar
Rosenthal, D.M. (2002). How many kinds of consciousness? Conscious. Cogn. 11, 653–665.10.1016/S1053-8100(02)00017-XSearch in Google Scholar
Rotsides, J. and Mammis, A. (2013). The use of deep brain stimulation in Tourette’s syndrome. Neurosurg. Focus 35, E4. Doi: 10.3171/2013.8.FOCUS13292.Search in Google Scholar PubMed
Saalmann, Y.B. (2014). Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front. Syst. Neurosci. 8, 83. Doi: 10.3389/fnsys.2014.00083.Search in Google Scholar PubMed PubMed Central
Saalmann, Y.B. and Kastner, S. (2011). Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209–223.10.1016/j.neuron.2011.06.027Search in Google Scholar PubMed PubMed Central
Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X., and Kastner, S. (2012). Pulvinar regulates information transmission between cortical areas based on attention demand(s). Science (New York, NY) 337, 753–756.10.1126/science.1223082Search in Google Scholar PubMed PubMed Central
Sánchez-González, M.Á., García-Cabezas, M.Á., Rico, B., and Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083.10.1523/JNEUROSCI.0968-05.2005Search in Google Scholar PubMed PubMed Central
Santamaria, J., Pujol, M., Orteu, N., Solanas, A., Cardenal, C., Santacruz, P., Chimeno, E., and Moon, P. (2000). Unilateral thalamic stroke does not decrease ipsilateral sleep spindles. Sleep 23, 333–339.10.1093/sleep/23.3.1Search in Google Scholar
Savage, L.M., Hall, J.M., and Resende, L.S. (2012). Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol. Rev. 22, 195–209.10.1007/s11065-012-9194-1Search in Google Scholar PubMed PubMed Central
Schmahmann, J.D. (2003). Vascular syndromes of the thalamus. Stroke 34, 2264–2278.10.1161/01.STR.0000087786.38997.9ESearch in Google Scholar PubMed
Seth, A.K., Baars, B.J., and Edelman, D.B. (2005). Criteria for consciousness in humans and other mammals. Conscious. Cogn. 14, 119–139.10.1016/j.concog.2004.08.006Search in Google Scholar PubMed
Sherman, S.M. and Guillery, R.W. (2002). The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1695–1708.10.1098/rstb.2002.1161Search in Google Scholar PubMed PubMed Central
Sherman, S.M. and Guillery, R.W. (2006). Exploring the Thalamus and its Role in Cortical Function (Cambridge, MA: MIT Press).10.7551/mitpress/2940.001.0001Search in Google Scholar
Shimamura, A., Jernigan, T., and Squire, L. (1988). Korsakoff’s syndrome: radiological (CT) findings and neuropsychological correlates. J. Neurosci. 8, 4400–4410.10.1523/JNEUROSCI.08-11-04400.1988Search in Google Scholar
Speakman, T.J. (1963). Results of thalamotomy for Parkinson’s disease. Can. Med. Assoc. J. 89, 652–656.Search in Google Scholar
Spering, M. and Carrasco, M. (2015). Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci. 38, 247–258.10.1016/j.tins.2015.02.002Search in Google Scholar
Stein, T., Moritz, C., Quigley, M., Cordes, D., Haughton, V., and Meyerand, E. (2000). Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. Am. J. Neuroradiol. 21, 1397–1401.Search in Google Scholar
Steriade, M. and Llinás, R.R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649–742.10.1152/physrev.1988.68.3.649Search in Google Scholar
Steriade, M., McCormick, D.A., and Sejnowski, T.J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685.10.1126/science.8235588Search in Google Scholar
Sunwoo, M.K., Cho, K.H., Hong, J.Y., Lee, J.E., Sohn, Y.H., and Lee, P.H. (2013). Thalamic volume and related visual recognition are associated with freezing of gait in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 19, 1106–1109.10.1016/j.parkreldis.2013.07.023Search in Google Scholar
Tamietto, M. and de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709.10.1038/nrn2889Search in Google Scholar
Tasker, R.R., Siqueira, J., Hawrylyshyn, P., and Organ, L.W. (1983). What happened to VIM thalamotomy for Parkinson’s disease? Appl. Neurophysiol. 46, 68–83.10.1159/000101245Search in Google Scholar
Temel, Y., van Lankveld, J.J., Boon, P., Spincemaille, G.H., van der Linden, C., and Visser-Vandewalle, V. (2004). Deep brain stimulation of the thalamus can influence penile erection. Int. J. Impot. Res. 16, 91–94.10.1038/sj.ijir.3901098Search in Google Scholar
Tham, W.W.P., Stevenson, R.J., and Miller, L.A. (2009). The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62, 109–126.10.1016/j.brainresrev.2009.09.007Search in Google Scholar
Theyel, B.B., Llano, D.A., and Sherman, S.M. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88.10.1038/nn.2449Search in Google Scholar
Tinuper, P., Montagna, P., Medori, R., Cortelli, P., Zucconi, M., Baruzzi, A., and Lugaresi, E. (1989). The thalamus participates in the regulation of the sleep-waking cycle. A clinico-pathological study in fatal familial thalamic degeneration. Electroencephalogr. Clin. Neurophysiol. 73, 117–123.10.1016/0013-4694(89)90190-9Search in Google Scholar
Tononi, G. (2004). An information integration theory of consciousness. BMC Neurosci. 5, 42.10.1002/9780470751466.ch23Search in Google Scholar
Tononi, G. and Edelman, G.M. (1998). Consciousness and the integration of information in the brain. Adv. Neurol. 77, 245–280.10.1016/S0079-6123(05)50009-8Search in Google Scholar
Urakami, Y. (2008). Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording. J. Clin. Neurophysiol. 25, 13–24.10.1097/WNP.0b013e318162a8a4Search in Google Scholar
Van der Werf, Y.D., Witter, M.P., Uylings, H.B., and Jolles, J. (2000). Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38, 613–627.10.1016/S0028-3932(99)00104-9Search in Google Scholar
Vandewalle, V., van der Linden, C., Groenewegen, H.J., and Caemaert, J. (1999). Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet 353, 724.10.1016/S0140-6736(98)05964-9Search in Google Scholar
Victor, M., Adams, R.D., and Collins, G.H. (1971). The Wernicke-Korsakoff Syndrome (Philadelphia, PA: FA Davis Company).Search in Google Scholar
Victor, M., Adams, R., and Collins, G. (1989). The Wernicke-Korsakoff Syndrome and Related Neurologic Disorders due to Alcoholism and Malnutrion (Philadelphia, PA: FA Davis Company).Search in Google Scholar
Visser, P.J., Krabbendam, L., Verhey, F.R.J., Hofman, P.A.M., Verhoeven, W.M.A., Tuinier, S., Wester, A., Den Berg, Y.W.M.M.V., Goessens, L., Werf, Y., and Jolles, J. (1999). Brain correlates of memory dysfunction in alcoholic Korsakoff’s syndrome. J. Neurol. Neurosurg. Psychiatry 67, 774–778.10.1136/jnnp.67.6.774Search in Google Scholar PubMed PubMed Central
Ward, L.M. (2011). The thalamic dynamic core theory of conscious experience. Conscious. Cogn. 20, 464–486.10.1016/j.concog.2011.01.007Search in Google Scholar PubMed
Ward, L.M. (2013). The thalamus: gateway to the mind. Wiley Interdiscip. Rev. Cognitive Sci. 4, 609–622.10.1002/wcs.1256Search in Google Scholar PubMed
Weinberger, M., Hutchison, W.D., Lozano, A.M., Hodaie, M., and Dostrovsky, J.O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J. Neurophysiol. 101, 789–802.10.1152/jn.90837.2008Search in Google Scholar PubMed
Wickens, J. (1997). Basal ganglia: structure and computations. Netw. Comput. Neural Syst. 8, R77–R109.10.1088/0954-898X_8_4_001Search in Google Scholar
Wilke, M., Turchi, J., Smith, K., Mishkin, M., and Leopold, D.A. (2010). Pulvinar inactivation disrupts selection of movement plans. J. Neurosci. 30, 8650–8659.10.1523/JNEUROSCI.0953-10.2010Search in Google Scholar PubMed PubMed Central
Wunderlich, K., Schneider, K.A., and Kastner, S. (2005). Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat. Neurosci. 8, 1595–1602.10.1038/nn1554Search in Google Scholar PubMed PubMed Central
Xu, W. and Südhof, T.C. (2013). A neural circuit for memory specificity and generalization. Science (New York, NY) 339, 1290–1295.10.1126/science.1229534Search in Google Scholar PubMed PubMed Central
Xuereb, J.H., Perry, R.H., Candy, J.M., Perry, E.K., Marshall, E., and Bonham, J.R. (1991). Nerve cell loss in the thalamus in Alzheimer’s disease and Parkinson’s disease. Brain 114, 1363–1379.10.1093/brain/114.3.1363Search in Google Scholar
Yamada, K., Hamasaki, T., and Kuratsu, J. (2014). Thalamic stimulation alleviates levodopa-resistant rigidity in a patient with non-Parkinson’s disease parkinsonian syndrome. J. Clin. Neurosci. 21, 882–884.10.1016/j.jocn.2013.07.036Search in Google Scholar PubMed
Yoneoka, Y., Takeda, N., Inoue, A., Ibuchi, Y., Kumagai, T., Sugai, T., Takeda, K., and Ueda, K. (2004). Acute Korsakoff syndrome following mammillothalamic tract infarction. Am. J. Neuroradiol. 25, 964–968.Search in Google Scholar
Zaidel, A., Arkadir, D., Israel, Z., and Bergman, H. (2009). Akineto-rigid vs. tremor syndromes in Parkinsonism. Curr. Opin. Neurol. 22, 387–393.10.1097/WCO.0b013e32832d9d67Search in Google Scholar PubMed
Zarei, M., Patenaude, B., Damoiseaux, J., Morgese, C., Smith, S., Matthews, P.M., Barkhof, F., Rombouts, S.A., Sanz-Arigita, E., and Jenkinson, M. (2010). Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer’s disease. Neuroimage 49, 1–8.10.1016/j.neuroimage.2009.09.001Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- New dimensions of connectomics and network plasticity in the central nervous system
- Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases
- Effects of altered RTN3 expression on BACE1 activity and Alzheimer’s neuritic plaques
- Role of ABC transporters in the pathology of Alzheimer’s disease
- The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field
- Applications of transcranial direct current stimulation in children and pediatrics
- Epilepsy and vitamin D: a comprehensive review of current knowledge
- The thalamus as a relay station and gatekeeper: relevance to brain disorders
Articles in the same Issue
- Frontmatter
- New dimensions of connectomics and network plasticity in the central nervous system
- Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases
- Effects of altered RTN3 expression on BACE1 activity and Alzheimer’s neuritic plaques
- Role of ABC transporters in the pathology of Alzheimer’s disease
- The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field
- Applications of transcranial direct current stimulation in children and pediatrics
- Epilepsy and vitamin D: a comprehensive review of current knowledge
- The thalamus as a relay station and gatekeeper: relevance to brain disorders