Abstract
Vitamin D has been considered as neurosteroid, and its pivotal role in neuroprotection, brain development, and immunomodulation has been noticed in studies; however, our knowledge regarding its role in neurological disorders is still developing. The potential role of vitamin D in the pathophysiology and treatment of epilepsy, as one the most prevalent neurological disorders, has received less attention in recent years. In this article, we review the possible relationship between vitamin D and epilepsy from different aspects, including the action mechanism of vitamin D in the central nervous system and ecological and epidemiological findings. We also present the outcome of studies that evaluated the level of vitamin D and the impact of administrating vitamin D in epileptic patients or animal subjects. We also review the current evidence on interactions between vitamin D and antiepileptic drugs.
Conflict of interest statement: All authors declare that they have no conflict of interest.
References
Adams, J., Collaço-Moraes, Y., and De Belleroche, J. (1996). Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J. Neurochem. 66, 6–13.10.1046/j.1471-4159.1996.66010006.xSuche in Google Scholar PubMed
Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680.10.1038/90609Suche in Google Scholar PubMed
Ali, F.E., Al-Bustan, M.A., Al-Busairi, W.A., and Al-Mulla, F.A. (2004). Loss of seizure control due to anticonvulsant-induced hypocalcemia. Ann. Pharmacother. 38, 1002–1005.10.1345/aph.1D467Suche in Google Scholar PubMed
Ali, I.I., Herial, N.A., Horrigan, T., Kellough, L., and Tietjen, G.E. (2006). Measurement of bone mineral density in patients on levetiracetam monotherapy. Epilepsia 47, 276–276.Suche in Google Scholar
Ali, I.I., Herial, N.A., Orris, M., Horrigan, T., and Tietjen, G.E. (2011). Migraine prophylaxis with topiramate and bone health in women. Headache 51, 613–616.10.1111/j.1526-4610.2011.01863.xSuche in Google Scholar PubMed
Annweiler, C., Llewellyn, D.J., and Beauchet, O. (2013). Low serum vitamin D concentrations in Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 33, 659–674.10.3233/JAD-2012-121432Suche in Google Scholar PubMed
Balabanova, S., Richter, H.-P., Antoniadis, G., Homoki, J., Kremmer, N., Hanle, J., and Teller, W. (1984). 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1, 25-dihydroxyvitamin D in human cerebrospinal fluid. Klin. Wochenschr. 62, 1086–1090.10.1007/BF01711378Suche in Google Scholar PubMed
Balion, C., Griffith, L.E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., Llewellyn, D.J., and Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology 79, 1397–1405.10.1212/WNL.0b013e31826c197fSuche in Google Scholar PubMed PubMed Central
Balosso, S., Ravizza, T., Perego, C., Peschon, J., Campbell, I.L., De Simoni, M.G., and Vezzani, A. (2005). Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Ann. Neurol. 57, 804–812.10.1002/ana.20480Suche in Google Scholar PubMed
Barnevik-Olsson, M., Gillberg, C., and Fernell, E. (2008). Prevalence of autism in children born to Somali parents living in Sweden: a brief report. Dev. Med. Child Neurol. 50, 598–601.10.1111/j.1469-8749.2008.03036.xSuche in Google Scholar PubMed
Bartels, L.E., Jørgensen, S.P., Agnholt, J., Kelsen, J., Hvas, C.L., and Dahlerup, J.F. (2007). 1, 25-Dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4+ T cells from patients with Crohn’s disease. Int. Immunopharmacol. 7, 1755–1764.10.1016/j.intimp.2007.09.016Suche in Google Scholar PubMed
Baxendale, S. (2009). Seeing the light? Seizures and sunlight. Epilepsy Res. 84, 72–76.10.1016/j.eplepsyres.2008.11.015Suche in Google Scholar PubMed
Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic strength by glial TNFα. Science 295, 2282–2285.10.1126/science.1067859Suche in Google Scholar PubMed
Ben-Ari, Y., Khalilov, I., Kahle, K.T., and Cherubini, E. (2012). The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486.10.1177/1073858412438697Suche in Google Scholar PubMed
Benarroch, E.E. (2011). Na+, K+-ATPase functions in the nervous system and involvement in neurologic disease. Neurology 76, 287–293.10.1212/WNL.0b013e3182074c2fSuche in Google Scholar PubMed
Bergqvist, A., Schall, J.I., and Stallings, V.A. (2007). Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia 48, 66–71.10.1111/j.1528-1167.2006.00803.xSuche in Google Scholar PubMed
Bernardino, L., Xapelli, S., Silva, A.P., Jakobsen, B., Poulsen, F.R., Oliveira, C.R., Vezzani, A., Malva, J.O., and Zimmer, J. (2005). Modulator effects of interleukin-1β and tumor necrosis factor-α on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J. Neurosci. 25, 6734–6744.10.1523/JNEUROSCI.1510-05.2005Suche in Google Scholar PubMed PubMed Central
Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., and Meldolesi, J. (2001). CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.10.1038/89490Suche in Google Scholar PubMed
Borowicz, K.K., Morawska, M., Furmanek-Karwowska, K., Luszczki, J.J., and Czuczwar, S.J. (2007). Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock. Eur. J. Pharmacol. 573, 111–115.10.1016/j.ejphar.2007.07.002Suche in Google Scholar PubMed
Bouillon, R., Reynaert, J., Claes, J.H., Lissens, W., and De Moor, P. (1975). The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D, calcium, and parathyroid hormone. J. Clin. Endocrinol. Metab. 41, 1130–1135.10.1210/jcem-41-6-1130Suche in Google Scholar PubMed
Brewer, L.D., Thibault, V., Chen, K.-C., Langub, M.C., Landfield, P.W., and Porter, N.M. (2001). Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J. Neurosci. 21, 98–108.10.1523/JNEUROSCI.21-01-00098.2001Suche in Google Scholar
Brodie, M.J., Mintzer, S., Pack, A.M., Gidal, B.E., Vecht, C.J., and Schmidt, D. (2013). Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia. 54, 11–27.10.1111/j.1528-1167.2012.03671.xSuche in Google Scholar
Brown, A. (1999). Regulation of vitamin D action. Nephrol. Dial. Transplant. 14, 11–16.10.1093/ndt/14.1.11Suche in Google Scholar
Cannell, J.J. (2008). Autism and vitamin D. Med. Hypotheses 70, 750–759.10.1016/j.mehy.2007.08.016Suche in Google Scholar
Cansu, A., Yesilkaya, E., Serdaroğlu, A., Hırfanoğlu, T.L., Çamurdan, O., Gülbahar, Ö., Gücüyener, K., and Cinaz, P. (2008). Evaluation of bone turnover in epileptic children using oxcarbazepine. Pediatr. Neurol. 39, 266–271.10.1016/j.pediatrneurol.2008.07.001Suche in Google Scholar
Christakos, S., Ajibade, D.V., Dhawan, P., Fechner, A.J., and Mady, L.J. (2012). Vitamin D: metabolism. Rheum. Dis. Clin. North Am. 38, 1–11.10.1016/j.rdc.2012.03.003Suche in Google Scholar
Christiansen, C., Rødbro, P., and Lund, M. (1973). Incidence of anticonvulsant osteomalacia and effect of vitamin D: controlled therapeutic trial. Br. Med. J. 4, 695–701.10.1136/bmj.4.5894.695Suche in Google Scholar
Christiansen, C., Rødbro, P., and Sjö, O. (1974). “Anticonvulsant action” of vitamin D in epileptic patients? A controlled pilot study. Br. Med. J. 2, 258–259.10.1136/bmj.2.5913.258Suche in Google Scholar
Clark, J.H., Rhoden, D.K., and Turner, D.S. (1993). Symptomatic vitamin A and D deficiencies in an eight-year-old with autism. J. Parenter. Enteral Nutr. 17, 284–286.10.1177/0148607193017003284Suche in Google Scholar
Cornet, A., Baudet, C., Neveu, I., Evercooren, B.V., Brachet, P., and Naveilhan, P. (1998). 1, 25-Dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. J. Neurosci. Res. 53, 742–746.10.1002/(SICI)1097-4547(19980915)53:6<742::AID-JNR11>3.0.CO;2-#Suche in Google Scholar
Cortez, M.A., Burnham, W.M., and Hwang, P.A. (1997). Infantile spasms: seasonal onset differences and zeitgebers. Pediatr. Neurol. 16, 220–224.10.1016/S0887-8994(97)00017-9Suche in Google Scholar
Davis, R.L. and Crozier, R.A. (2015). Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res. 361, 115–127.10.1007/s00441-014-2071-xSuche in Google Scholar
Dawson, V.L. and Dawson, T.M. (1996). Nitric oxide actions in neurochemistry. Neurochem. Int. 29, 97–110.10.1016/0197-0186(95)00149-2Suche in Google Scholar
de Abreu, D.F., Eyles, D., and Feron, F. (2009). Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 34, S265–S277.10.1016/j.psyneuen.2009.05.023Suche in Google Scholar PubMed
De Boer, H.M., Mula, M., and Sander, J.W. (2008). The global burden and stigma of epilepsy. Epilepsy Behav. 12, 540–546.10.1016/j.yebeh.2007.12.019Suche in Google Scholar PubMed
De Simoni, M.G., Perego, C., Ravizza, T., Moneta, D., Conti, M., Marchesi, F., De Luigi, A., Garattini, S., and Vezzani, A. (2000). Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci. 12, 2623–2633.10.1046/j.1460-9568.2000.00140.xSuche in Google Scholar PubMed
de Viragh, P.A., Haglid, K., and Celio, M. (1989). Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc. Natl. Acad. Sci. USA 86, 3887–3890.10.1073/pnas.86.10.3887Suche in Google Scholar PubMed PubMed Central
DeLuca, H.F. (2004). Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 80, 1689S–1696S.10.1093/ajcn/80.6.1689SSuche in Google Scholar PubMed
Dinarello, C.A. (1996). Biologic basis for interleukin-1 in disease. Blood. 87, 2095–2147.10.1182/blood.V87.6.2095.bloodjournal8762095Suche in Google Scholar
Dong, X.-x., Wang, Y., and Qin, Z.-h. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30, 379–387.10.1038/aps.2009.24Suche in Google Scholar PubMed PubMed Central
Ecevit, Ç., Aydoğan, A., ülay Kavakli, T., and Altinöz, S. (2004). Effect of carbamazepine and valproate on bone mineral density. Pediatr. Neurol. 31, 279–282.10.1016/j.pediatrneurol.2004.03.021Suche in Google Scholar PubMed
Emmanuel, R., Alexandre, D., Benoit, V., Mohamed, H.S., and Remi, N. (2011). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol. Rep. 63, 1189–1194.10.1016/S1734-1140(11)70638-7Suche in Google Scholar
Ensrud, K., Walczak, T., Blackwell, T., Ensrud, E., Bowman, P., and Stone, K. (2004). Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology 62, 2051–2057.10.1212/01.WNL.0000125185.74276.D2Suche in Google Scholar
Erbayat Altay, E., Serdaroğlu, A., Tümer, L., Gücüyener, K., and Hasanoğlu, A. (2000). Evaluation of bone mineral metabolism in children receiving carbamazepine and valproic acid. J. Pediatr. Endocrinol. Metab. 13, 933–940.10.1515/JPEM.2000.13.7.933Suche in Google Scholar
Eyles, D.W. (2010). Vitamin D and autism: does skin colour modify risk? Acta Paediatr. 99, 645–647.10.1111/j.1651-2227.2010.01797.xSuche in Google Scholar
Eyles, D., Brown, J., Mackay-Sim, A., McGrath, J., and Feron, F. (2003). Vitamin D3 and brain development. Neuroscience 118, 641–653.10.1016/S0306-4522(03)00040-XSuche in Google Scholar
Eyles, D.W., Smith, S., Kinobe, R., Hewison, M., and McGrath, J.J. (2005). Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J. Chem. Neuroanat. 29, 21–30.10.1016/j.jchemneu.2004.08.006Suche in Google Scholar PubMed
Farinas, I., Jones, K.R., Backus, C., Wang, X.-Y., and Reichardt, L.F. (1994). Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–661.10.1038/369658a0Suche in Google Scholar PubMed
Feldkamp, J., Becker, A., Witte, O., Scharff, D., and Scherbaum, W. (2000). Long-term anticonvulsant therapy leads to low bone mineral density – evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp. Clin. Endocrinol. Diabetes. 108, 37–43.10.1055/s-0032-1329213Suche in Google Scholar PubMed
Fernell, E., Barnevik-Olsson, M., Bågenholm, G., Gillberg, C., Gustafsson, S., and Sääf, M. (2010). Serum levels of 25-hydroxyvitamin D in mothers of Swedish and of Somali origin who have children with and without autism. Acta Paediatr. 99, 743–747.10.1111/j.1651-2227.2010.01755.xSuche in Google Scholar PubMed
Féron, F., Burne, T.H.J., Brown, J., Smith, E., McGrath, J.J., Mackay-Sim, A., and Eyles, D. (2005). Developmental Vitamin D3 deficiency alters the adult rat brain. Brain Res. Bull. 65, 141–148.10.1016/j.brainresbull.2004.12.007Suche in Google Scholar PubMed
Foss, M., Meneghelli, U., and Tabosa, V.J. (1978). The effect of the anticonvulsants phenobarbital and diphenylhydantoin on intestinal absorption of calcium. Acta Physiol. Lat. Am. 29, 223–228.Suche in Google Scholar
Freidel, M., Krause, E., Kuhn, K., Peper, R., and Vogel, H. (2007). [Oxcarbazepine in the treatment of epilepsy]. Fortschr. Neurol. Psychiatr. 75, 100–106.10.1055/s-2006-932218Suche in Google Scholar
Fu, G.K., Lin, D., Zhang, M.Y., Bikle, D.D., Shackleton, C.H., Miller, W.L., and Portale, A.A. (1997). Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol. Endocrinol. 11, 1961–1970.10.1210/mend.11.13.0035Suche in Google Scholar
Fuleihan, G.E.-H., Dib, L., Yamout, B., Sawaya, R., and Mikati, M.A. (2008). Predictors of bone density in ambulatory patients on antiepileptic drugs. Bone. 43, 149–155.10.1016/j.bone.2008.03.002Suche in Google Scholar
Furth, M.E., Ronald, M.L., and George, D.Y. (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 247, 1446–1451.10.1126/science.2321006Suche in Google Scholar
Garcion, E., Wion-Barbot, N., Montero-Menei, C.N., Berger, F., and Wion, D. (2002). New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 13, 100–105.10.1016/S1043-2760(01)00547-1Suche in Google Scholar
Gillberg, C. (1990). Do children with autism have March birthdays? Acta Psychiatr. Scand. 82, 152–156.10.1111/j.1600-0447.1990.tb01373.xSuche in Google Scholar PubMed
Goodman, R. and Richards, H. (1995). Child and adolescent psychiatric presentations of second-generation Afro-Caribbeans in Britain. Br J Psychiatry 167, 362–369.10.1192/bjp.167.3.362Suche in Google Scholar PubMed
Gough, H., Goggin, T., Bissessar, A., Baker, M., Crowley, M., and Callaghan, N. (1986). A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in out-patients with epilepsy. Q. J. Med. 59, 569–577.Suche in Google Scholar
Grant, W.B. and Soles, C.M. (2009). Epidemiologic evidence for supporting the role of maternal vitamin D deficiency as a risk factor for the development of infantile autism. Dermatoendocrinology 1, 223–228.10.4161/derm.1.4.9500Suche in Google Scholar PubMed PubMed Central
Hahn, T., Birge, S., Scharp, C., and Avioli, L. (1972). Phenobarbital-induced alterations in vitamin D metabolism. J. Clin. Invest. 51, 741.10.1172/JCI106868Suche in Google Scholar PubMed PubMed Central
Hahn, T.J., Hendin, B.A., Scharp, C.R., Boisseau, V.C., and Haddad Jr, J.G. (1975). Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N. Engl. J. Med. 292, 550–554.10.1056/NEJM197503132921102Suche in Google Scholar
Harms, L.R., Burne, T.H., Eyles, D.W., and McGrath, J.J. (2011). Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab. 25, 657–669.10.1016/j.beem.2011.05.009Suche in Google Scholar
Heo, K., Rhee, Y., Lee, H.W., Lee, S.A., Shin, D.J., Kim, W.J., Song, H.K., Song, K., and Lee, B.I. (2011). The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia 52, 1884–1889.10.1111/j.1528-1167.2011.03131.xSuche in Google Scholar
Holick, M.F. (2007). Vitamin D deficiency. N. Engl. J. Med. 357, 266–281.10.1056/NEJMra070553Suche in Google Scholar
Holick, M.F. and Garabedian, M. (2006). Vitamin D: Photobiology, Metabolism, Mechanism of Action, and Clinical Applications. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th ed. (Washington, DC: American Society for Bone and Mineral Research), pp. 106–114.Suche in Google Scholar
Holick, M.F., Smith, E., and Pincus, S. (1987). Skin as the site of vitamin D synthesis and target tissue for 1, 25-dihydroxyvitamin D3: use of calcitriol (1, 25-dihydroxyvitamin D3) for treatment of psoriasis. Arch. Dermatol. 123, 1677–1683.10.1001/archderm.1987.01660360108022Suche in Google Scholar
Holick, M.F., Binkley, N.C., Bischoff-Ferrari, H.A., Gordon, C.M., Hanley, D.A., Heaney, R.P., Murad, M.H., and Weaver, C.M. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930.10.1210/jc.2011-0385Suche in Google Scholar
Holló, A., Clemens, Z., Kamondi, A., Lakatos, P., and Szücs, A. (2012). Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav. 24, 131–133.10.1016/j.yebeh.2012.03.011Suche in Google Scholar
Hosseinpour, F., Ellfolk, M., Norlin, M., and Wikvall, K. (2007). Phenobarbital suppresses vitamin D 3 25-hydroxylase expression: a potential new mechanism for drug-induced osteomalacia. Biochem. Biophys. Res. Commun. 357, 603–607.10.1016/j.bbrc.2007.03.177Suche in Google Scholar
Humble, M.B., Gustafsson, S., and Bejerot, S. (2010). Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. J. Steroid Biochem. Mol. Biol. 121, 467–470.10.1016/j.jsbmb.2010.03.013Suche in Google Scholar
Jia, F., Wang, B., Shan, L., Xu, Z., Staal, W.G., and Du, L. (2015). Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 135, e196–e198.10.1542/peds.2014-2121Suche in Google Scholar
Kalia, L.V., Kalia, S.K., and Salter, M.W. (2008). NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 7, 742–755.10.1016/S1474-4422(08)70165-0Suche in Google Scholar
Kalueff, A., Eremin, K., and Tuohimaa, P. (2004). Mechanisms of neuroprotective action of vitamin D3. Biochemistry (Mosc.) 69, 738–741.10.1023/B:BIRY.0000040196.65686.2fSuche in Google Scholar
Kalueff, A.V., Minasyan, A., and Tuohimaa, P. (2005). Anticonvulsant effects of 1, 25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res. Bull. 67, 156–160.10.1016/j.brainresbull.2005.06.022Suche in Google Scholar PubMed
Kalueff, A., Minasyan, A., Keisala, T., Kuuslahti, M., Miettinen, S., and Tuohimaa, P. (2006a). The vitamin D neuroendocrine system as a target for novel neurotropic drugs. CNS Neurol. Disord. Drug Targets 5, 363–371.10.2174/187152706777452209Suche in Google Scholar
Kalueff, A.V., Minasyan, A., Keisala, T., Kuuslahti, M., Miettinen, S., and Tuohimaa, P. (2006b). Increased severity of chemically induced seizures in mice with partially deleted vitamin D receptor gene. Neurosci. Lett. 394, 69–73.10.1016/j.neulet.2005.10.007Suche in Google Scholar PubMed
Kamikawa, H., Hori, T., Nakane, H., Aou, S., and Tashiro, N. (1998). IL-1β increases norepinephrine level in rat frontal cortex: involvement of prostanoids, NO, and glutamate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R803–R810.10.1152/ajpregu.1998.275.3.R803Suche in Google Scholar PubMed
Kawashima, H., Torikai, S., and Kurokawa, K. (1981). Localization of 25-hydroxyvitamin D3 1 alpha-hydroxylase and 24-hydroxylase along the rat nephron. Proc. Natl. Acad. Sci. USA 78, 1199–1203.10.1073/pnas.78.2.1199Suche in Google Scholar PubMed PubMed Central
Keen, D., Reid, F., and Arnone, D. (2010). Autism, ethnicity and maternal immigration. Br. J. Psychiatry 196, 274–281.10.1192/bjp.bp.109.065490Suche in Google Scholar PubMed
Kesby, J.P., Burne, T.H., McGrath, J.J., and Eyles, D.W. (2006). Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol. Psychiatry 60, 591–596.10.1016/j.biopsych.2006.02.033Suche in Google Scholar PubMed
Kesby, J.P., O’Loan, J.C., Alexander, S., Deng, C., Huang, X.-F., McGrath, J.J., Eyles, D.W., and Burne, T.H. (2012). Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring. Psychopharmacology (Berl.). 220, 455–463.10.1007/s00213-011-2492-0Suche in Google Scholar PubMed
Kim, S.H., Lee, J.W., Choi, K.-G., Chung, H.W., and Lee, H.W. (2007). A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav. 10, 291–295.10.1016/j.yebeh.2006.11.007Suche in Google Scholar PubMed
Knekt, P., Kilkkinen, A., Rissanen, H., Marniemi, J., Sääksjärvi, K., and Heliövaara, M. (2010). Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 67, 808–811.10.1001/archneurol.2010.120Suche in Google Scholar
Ko, P., Burkert, R., McGrath, J., and Eyles, D. (2004). Maternal vitamin D 3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res. Dev. Brain Res. 153, 61–68.10.1016/j.devbrainres.2004.07.013Suche in Google Scholar
Kočovská, E., Fernell, E., Billstedt, E., Minnis, H., and Gillberg, C. (2012). Vitamin D and autism: clinical review. Res. Dev. Disabil. 33, 1541–1550.10.1016/j.ridd.2012.02.015Suche in Google Scholar
Koo, D.L., Joo, E.Y., Kim, D., and Hong, S.B. (2013). Effects of levetiracetam as a monotherapy on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 104, 134–139.10.1016/j.eplepsyres.2012.09.002Suche in Google Scholar
Krishnamoorthy, G., Nair, R., Sundar, U., Kini, P., and Shrivastava, M. (2010). Early predisposition to osteomalacia in Indian adults on phenytoin or valproate monotherapy and effective prophylaxis by simultaneous supplementation with calcium and 25-hydroxy vitamin D at recommended daily allowance dosage: a prospective study. Neurol. India 58, 213.10.4103/0028-3886.63796Suche in Google Scholar
Kulak, C.A., Borba, V.Z., Bilezikian, J.P., Silvado, C.E., Paola, L.D., and Boguszewski, C.L. (2004). Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs. Arq. Neuropsiquiatr. 62, 940–948.10.1590/S0004-282X2004000600003Suche in Google Scholar
Kumandas, S., Koklu, E., Gümüs, H., Koklu, S., Kurtoglu, S., Karakukcu, M., and Keskin, M. (2006). Effect of carbamezapine and valproic acid on bone mineral density, IGF-I and IGFBP-3. J. Pediatr. Endocrinol. Metab. 19, 529–534.Suche in Google Scholar
Laflamme, N., Echchannaoui, H., Landmann, R., and Rivest, S. (2003). Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur. J. Immunol. 33, 1127–1138.10.1002/eji.200323821Suche in Google Scholar
Lau, K., Nakade, O., Barr, B., Taylor, A.K., Houchin, K., and Baylink, D.J. (1995). Phenytoin increases markers of osteogenesis for the human species in vitro and in vivo. J. Clin. Endocrinol. Metab. 80, 2347–2353.Suche in Google Scholar
Lee, Y.-J., Park, K.M., Kim, Y.M., Yeon, G.M., and Nam, S.O. (2015). Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatr. Neurol. 52, 153–159.10.1016/j.pediatrneurol.2014.10.008Suche in Google Scholar
Lefebvre d’Hellencourt, C., Montero-Menei, C.N., Bernard, R., and Couez, D. (2003). Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J. Neurosci. Res. 71, 575–582.10.1002/jnr.10491Suche in Google Scholar
Li, X.-H., Hou, X.-Y., and Chen, R. (2015). The roles of vitamin B12 and vitamin D in children with intractable epilepsy. Int. J. Clin. Exp. Med. 8, 764.Suche in Google Scholar
Lifshitz, F. and Maclaren, N.K. (1973). Vitamin D-dependent rickets in institutionalized, mentally retarded children receiving long-term anticonvulsant therapy. I. A survey of 288 patients. J. Pediatr. 83, 612–620.10.1016/S0022-3476(73)80223-9Suche in Google Scholar
Löscher, W. and Brandt, C. (2010). Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol. Rev. 62, 668–700.10.1124/pr.110.003046Suche in Google Scholar
Löscher, W. and Fiedler, M. (2000). The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VII. Seasonal influences on anticonvulsant drug actions in mouse models of generalized seizures. Epilepsy Res. 38, 231–248.10.1016/S0920-1211(99)00095-9Suche in Google Scholar
Lowe, K., Maiyar, A., and Norman, A. (1991). Vitamin D-mediated gene expression. Crit. Rev. Eukaryot. Gene Expr. 2, 65–109.Suche in Google Scholar
Manfredini, R., Vergine, G., Boari, B., Faggioli, R., and Borgna-Pignatti, C. (2004). Circadian and seasonal variation of first febrile seizures. J. Pediatr. 145, 838–839.10.1016/j.jpeds.2004.06.079Suche in Google Scholar PubMed
Margineanu, D.G. (2010). Epileptic hypersynchrony revisited. Neuroreport. 21, 963–967.10.1097/WNR.0b013e32833ed111Suche in Google Scholar PubMed
McCormick, D.A. and Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846.10.1146/annurev.physiol.63.1.815Suche in Google Scholar PubMed
McGrath, J.J., Burne, T.H., Féron, F., Mackay-Sim, A., and Eyles, D.W. (2010). Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr. Bull., sbq101.10.1093/schbul/sbq101Suche in Google Scholar PubMed PubMed Central
Meguid, N.A., Hashish, A.F., Anwar, M., and Sidhom, G. (2010). Reduced serum levels of 25-hydroxy and 1, 25-dihydroxy vitamin D in Egyptian children with autism. J. Altern. Complement. Med. 16, 641–645.10.1089/acm.2009.0349Suche in Google Scholar PubMed
Menon, B. and Harinarayan, C. (2010). The effect of anti epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism – a longitudinal study. Seizure. 19, 153–158.10.1016/j.seizure.2010.01.006Suche in Google Scholar PubMed
Meyer, M.B., Watanuki, M., Kim, S., Shevde, N.K., and Pike, J.W. (2006). The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1, 25-dihydroxyvitamin D3 in intestinal cells. Mol. Endocrinol. 20, 1447–1461.10.1210/me.2006-0031Suche in Google Scholar PubMed
Mintzer, S., Boppana, P., Toguri, J., and DeSantis, A. (2006). Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia 47, 510–515.10.1111/j.1528-1167.2006.00460.xSuche in Google Scholar PubMed
Mitrovic, B., Pierre, B.A., Mackenzie-Graham, A.J., and Merrill, J E. (1994). The role of nitric oxide in glial pathologya. Ann. N. Y. Acad. Sci. 738, 436–446.10.1111/j.1749-6632.1994.tb21835.xSuche in Google Scholar
Molloy, C.A., Kalkwarf, H.J., Manning-Courtney, P., Mills, J.L., and Hediger, M.L. (2010). Plasma 25 (OH) D concentration in children with autism spectrum disorder. Dev. Med. Child Neurol. 52, 969–971.10.1111/j.1469-8749.2010.03704.xSuche in Google Scholar
Moore, T.B., Koeffler, H.P., Yamashiro, J.M., and Wada, R.K. (1996). Vitamin D3 analogs inhibit growth and induce differentiation in LA-N-5 human neuroblastoma cells. Clin. Exp. Metastasis 14, 239–245.Suche in Google Scholar
Mylvaganam, S., Ramani, M., Krawczyk, M., and Carlen, P.L. (2014). Roles of gap junctions, connexins, and pannexins in epilepsy. Front. Physiol. 5, 172.10.3389/fphys.2014.00172Suche in Google Scholar
Nagarjunakonda, S., Amalakanti, S., Uppala, V., Rajanala, L., and Athina, S. (2016). Vitamin D in epilepsy: vitamin D levels in epilepsy patients, patients on antiepileptic drug polytherapy and drug-resistant epilepsy sufferers. Eur. J. Clin. Nutr. 70, 140–142.10.1038/ejcn.2015.127Suche in Google Scholar
Naveilhan, P., Neveu, I., Baudet, C., Ohyama, K., Brachet, P., and Wion, D. (1993). Expression of 25 (OH) vitamin D3 24-hydroxylase gene in glial cells. Neuroreport 5, 255–257.10.1097/00001756-199312000-00018Suche in Google Scholar
Nettekoven, S., Ströhle, A., Trunz, B., Wolters, M., Hoffmann, S., Horn, R., Steinert, M., Brabant, G., Lichtinghagen, R., and Welkoborsky, H.-J. (2008). Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. Eur. J. Pediatr. 167, 1369–1377.10.1007/s00431-008-0672-7Suche in Google Scholar
Neveu, I., Naveilhan, P., Baudet, C., Brachet, P., and Metsis, M. (1994a). 1, 25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport. 6, 124–126.10.1097/00001756-199412300-00032Suche in Google Scholar
Neveu, I., Naveilhan, P., Baudet, C., Wion, D., De Luca, H.F., and Brachet, P. (1994b). 1, 25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24, 70–76.10.1016/0169-328X(94)90119-8Suche in Google Scholar
Nguyen, M.D., Julien, J.-P., and Rivest, S. (2002). Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227.10.1038/nrn752Suche in Google Scholar PubMed
Nicolaidou, P., Georgouli, H., Kotsalis, H., Matsinos, Y., Papadopoulou, A., Fretzayas, A., Syriopoulou, V., Krikos, X., Karantana, A., and Karpathios, T. (2006). Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J. Child Neurol. 21, 205–210.10.2310/7010.2006.00050Suche in Google Scholar PubMed
Noble, J.M., Mandel, A., and Patterson, M.C. (2007). Scurvy and rickets masked by chronic neurologic illness: revisiting “psychologic malnutrition”. Pediatrics 119, e783–e790.10.1542/peds.2006-1071Suche in Google Scholar
Norman, A.W. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88, 491S–499S.10.1093/ajcn/88.2.491SSuche in Google Scholar
Norman, A.W., Nemere, I., Zhou, L.-X., Bishop, J.E., Lowe, K.E., Maiyar, A.C., Collins, E.D., Taoka, T., Sergeev, I., and Farach-Carson, M.C. (1992). 1, 25 (OH) 2-vitamin D 3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. J. Steroid Biochem. Mol. Biol. 41, 231–240.10.1016/0960-0760(92)90349-NSuche in Google Scholar
Pack, A. (2008). Bone health in people with epilepsy: is it impaired and what are the risk factors? Seizure 17, 181–186.10.1016/j.seizure.2007.11.020Suche in Google Scholar PubMed
Pack, A.M. and Morrell, M.J. (2004). Epilepsy and bone health in adults. Epilepsy Behav. 5, 24–29.10.1016/j.yebeh.2003.11.029Suche in Google Scholar PubMed
Pack, A.M., Morrell, M.J., Marcus, R., Holloway, L., Flaster, E., Doñe, S., Randall, A., Seale, C., and Shane, E. (2005). Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy. Ann. Neurol. 57, 252–257.10.1002/ana.20378Suche in Google Scholar PubMed PubMed Central
Pack, A., Morrell, M., Randall, A., McMahon, D., and Shane, E. (2008). Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology 70, 1586–1593.10.1212/01.wnl.0000310981.44676.deSuche in Google Scholar PubMed PubMed Central
Pack, A.M., Morrell, M.J., McMahon, D.J., and Shane, E. (2011). Normal vitamin D and low free estradiol levels in women on enzyme-inducing antiepileptic drugs. Epilepsy Behav. 21, 453–458.10.1016/j.yebeh.2011.05.001Suche in Google Scholar PubMed PubMed Central
Pannu, R. and Singh, I. (2006). Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem. Int. 49, 170–182.10.1016/j.neuint.2006.04.010Suche in Google Scholar PubMed
Pardridge, W.M., Sakiyama, R., and Coty, W.A. (1985). Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J. Neurochem. 44, 1138–1141.10.1111/j.1471-4159.1985.tb08735.xSuche in Google Scholar PubMed
Pascussi, J.M., Robert, A., Nguyen, M., Walrant-Debray, O., Garabedian, M., Martin, P., Pineau, T., Saric, J., Navarro, F., and Maurel, P. (2005). Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Invest. 115, 177–186.10.1172/JCI21867Suche in Google Scholar
Phabphal, K., Geater, A., Limapichat, K., Sathirapanya, P., Setthawatcharawanich, S., and Leelawattana, R. (2013). Effect of switching hepatic enzyme-inducer antiepileptic drug to levetiracetam on bone mineral density, 25 hydroxyvitamin D, and parathyroid hormone in young adult patients with epilepsy. Epilepsia 54, e94–e98.10.1111/epi.12162Suche in Google Scholar
Pogge, E. (2010). Vitamin D and Alzheimer’s disease: is there a link? Consult. Pharm. 25, 440–450.10.4140/TCP.n.2010.440Suche in Google Scholar
Procopio, M. and Marriott, P.K. (1998). Seasonality of birth in epilepsy: a Danish study. Acta Neurol. Scand. 98, 297–301.10.1111/j.1600-0404.1998.tb01737.xSuche in Google Scholar
Procopio, M., Marriott, P.K., and Williams, P. (1997). Season of birth: aetiological implications for epilepsy. Seizure 6, 99–105.10.1016/S1059-1311(97)80062-3Suche in Google Scholar
Procopio, M., Marriott, P.K., and Davies, R.J. (2006). Seasonality of birth in epilepsy: a Southern Hemisphere study. Seizure 15, 17–21.10.1016/j.seizure.2005.10.001Suche in Google Scholar
Raol, Y.H., Lund, I.V., Bandyopadhyay, S., Zhang, G., Roberts, D.S., Wolfe, J.H., Russek, S.J., and Brooks-Kayal, A.R. (2006). Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J. Neurosci. 26, 11342–11346.10.1523/JNEUROSCI.3329-06.2006Suche in Google Scholar
Ravizza, T. and Vezzani, A. (2006). Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137, 301–308.10.1016/j.neuroscience.2005.07.063Suche in Google Scholar
Rivest, S. (2003). Molecular insights on the cerebral innate immune system. Brain. Behav. Immun. 17, 13–19.10.1016/S0889-1591(02)00055-7Suche in Google Scholar
Saporito, M.S., Brown, E.R., Hartpence, K.C., Wilcox, H.M., Vaught, J.L., and Carswell, S. (1994). Chronic 1, 25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain. Brain Res. 633, 189–196.10.1016/0006-8993(94)91539-3Suche in Google Scholar
Schmitt, B., Nordlund, D., and Rodgers, L. (1984). Prevalence of hypocalcemia and elevated serum alkaline phosphatase in patients receiving chronic anticonvulsant therapy. J. Fam. Pract. 18, 873–877.Suche in Google Scholar
Scorza, F.A., de Albuquerque, M., Arida, R.M., and Cavalheiro, E.A. (2007). Sudden unexpected death in epilepsy: are winter temperatures a new potential risk factor? Epilepsy Behav. 10, 509–510.10.1016/j.yebeh.2007.02.012Suche in Google Scholar
Sheth, R.D. (2004). Bone health in pediatric epilepsy. Epilepsy Behav. 5, 30–35.10.1016/j.yebeh.2003.11.025Suche in Google Scholar
Shinpo, K., Kikuchi, S., Sasaki, H., Moriwaka, F., and Tashiro, K. (2000). Effect of 1, 25-dihydroxyvitamin D3 on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by l-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J. Neurosci. Res. 62, 374–382.10.1002/1097-4547(20001101)62:3<374::AID-JNR7>3.0.CO;2-7Suche in Google Scholar
Siegel, A., Malkowitz, L., Moskovits, M.J., and Christakos, S. (1984). Administration of 1, 25-dihydroxyvitamin D 3 results in the elevation of hippocampal seizure threshold levels in rats. Brain Res. 298, 125–129.10.1016/0006-8993(84)91153-3Suche in Google Scholar
Simeone, T.A., Sanchez, R.M., and Rho, J.M. (2004). Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J. Child Neurol. 19, 343–360.10.1177/088307380401900507Suche in Google Scholar
Smolders, J., Damoiseaux, J., Menheere, P., and Hupperts, R. (2008). Vitamin D as an immune modulator in multiple sclerosis, a review. J. Neuroimmunol. 194, 7–17.10.1016/j.jneuroim.2007.11.014Suche in Google Scholar
Snoeijen-Schouwenaars, F.M., van Deursen, K.C., Tan, I.Y., Verschuure, P., and Majoie, M.H. (2015). Vitamin D supplementation in children with epilepsy and intellectual disability. Pediatr. Neurol. 52, 160–164.10.1016/j.pediatrneurol.2014.10.001Suche in Google Scholar
Stellwagen, D., Beattie, E.C., Seo, J.Y., and Malenka, R.C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25, 3219–3228.10.1523/JNEUROSCI.4486-04.2005Suche in Google Scholar
Stephen, L., McLellan, A., Harrison, J., Shapiro, D., Dominiczak, M., Sills, G., and Brodie, M. (1999). Bone density and antiepileptic drugs: a case-controlled study. Seizure. 8, 339–342.10.1053/seiz.1999.0301Suche in Google Scholar
Stewart, C. and Latif, A. (2008). Symptomatic nutritional rickets in a teenager with autistic spectrum disorder. Child Care Health Dev. 34, 276–278.10.1111/j.1365-2214.2007.00806.xSuche in Google Scholar
Sumi, K., Sugita, T., Shimotsuji, T., Seino, Y., Mimaki, T., and Yabuuchi, H. (1978). Effect of anticonvulsant therapy on serum 25-hydroxyvitamin D level. Tohoku J. Exp. Med. 125, 265–269.10.1620/tjem.125.265Suche in Google Scholar
Swann, J.W., Le, J.T., Lam, T.T., Owens, J., and Mayer, A.T. (2007). The impact of chronic network hyperexcitability on developing glutamatergic synapses. Eur. J. Neurosci. 26, 975–991.10.1111/j.1460-9568.2007.05739.xSuche in Google Scholar
Tekgul, H., Serdaroglu, G., Huseyinov, A., and Gökben, S. (2006). Bone mineral status in pediatric outpatients on antiepileptic drug monotherapy. J. Child Neurol. 21, 411–414.10.1177/08830738060210050101Suche in Google Scholar
Telci, A., Çakatay, U., Kurt, B.B., Kayali, R., Sivas, A., Akçay, T., and Gökyiğit, A. (2000). Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin. Chem. Lab. Med. 38, 47–50.10.1515/CCLM.2000.008Suche in Google Scholar
Thomas, M.K., Lloyd-Jones, D.M., Thadhani, R.I., Shaw, A.C., Deraska, D.J., Kitch, B.T., Vamvakas, E.C., Dick, I.M., Prince, R.L., and Finkelstein, J.S. (1998). Hypovitaminosis D in medical inpatients. N. Engl. J. Med. 338, 777–783.10.1056/NEJM199803193381201Suche in Google Scholar
Tjellesen, L. and Christiansen, C. (1982). Serum vitamin D metabolites in epileptic patients treated with 2 different anti-convulsants. Acta Neurol. Scand. 66, 335–341.10.1111/j.1600-0404.1982.tb06853.xSuche in Google Scholar
Torrey, E.F., Miller, J., Rawlings, R., and Yolken, R.H. (2000). Seasonal birth patterns of neurological disorders. Neuroepidemiology 19, 177–185.10.1159/000026253Suche in Google Scholar
Tuohimaa, P., Keisala, T., Minasyan, A., Cachat, J., and Kalueff, A. (2009). Vitamin D, nervous system and aging. Psychoneuroendocrinology 34, S278–S286.10.1016/j.psyneuen.2009.07.003Suche in Google Scholar
Turrin, N.P. and Rivest, S. (2004). Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol. Dis. 16, 321–334.10.1016/j.nbd.2004.03.010Suche in Google Scholar
Umesono, K., Murakami, K.K., Thompson, C.C., and Evans, R.M. (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255–1266.10.1016/0092-8674(91)90020-YSuche in Google Scholar
Van Cromphaut, S.J., Dewerchin, M., Hoenderop, J.G., Stockmans, I., Van Herck, E., Kato, S., Bindels, R.J., Collen, D., Carmeliet, P., and Bouillon, R. (2001). Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc. Natl. Acad. Sci. USA 98, 13324–13329.10.1073/pnas.231474698Suche in Google Scholar PubMed PubMed Central
Vaziri, N. (1993). Endocrinological consequences of the nephrotic syndrome. Am. J. Nephrol. 13, 360–364.10.1159/000168650Suche in Google Scholar PubMed
Verrotti, A., Agostinelli, S., Coppola, G., Parisi, P., and Chiarelli, F. (2010). A 12-month longitudinal study of calcium metabolism and bone turnover during valproate monotherapy. Eur. J. Neurol. 17, 232–237.10.1111/j.1468-1331.2009.02773.xSuche in Google Scholar PubMed
Vezzani, A. (2015). Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opin. Drug Saf. 14, 583–592.10.1517/14740338.2015.1010508Suche in Google Scholar PubMed
Vezzani, A. and Granata, T. (2005). Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743.10.1111/j.1528-1167.2005.00298.xSuche in Google Scholar PubMed
Vezzani, A., Conti, M., De Luigi, A., Ravizza, T., Moneta, D., Marchesi, F., and De Simoni, M.G. (1999). Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065.10.1523/JNEUROSCI.19-12-05054.1999Suche in Google Scholar
Vezzani, A., Moneta, D., Richichi, C., Aliprandi, M., Burrows, S.J., Ravizza, T., Perego, C., and De Simoni, M.G. (2002). Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43, 30–35.10.1046/j.1528-1157.43.s.5.14.xSuche in Google Scholar PubMed
Viviani, B., Bartesaghi, S., Gardoni, F., Vezzani, A., Behrens, M., Bartfai, T., Binaglia, M., Corsini, E., Di Luca, M., and Galli, C. (2003). Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700.10.1523/JNEUROSCI.23-25-08692.2003Suche in Google Scholar
Voudris, K., Moustaki, M., Zeis, P.M., Dimou, S., Vagiakou, E., Tsagris, B., and Skardoutsou, A. (2002). Alkaline phosphatase and its isoenzyme activity for the evaluation of bone metabolism in children receiving anticonvulsant monotherapy. Seizure 11, 377–380.10.1053/seiz.2002.0671Suche in Google Scholar PubMed
Vyklicky, V., Korinek, M., Smejkalova, T., Balik, A., Krausova, B., Kaniakova, M., Lichnerova, K., Cerny, J., Krusek, J., and Dittert, I. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 63, S191.10.33549/physiolres.932678Suche in Google Scholar PubMed
Wang, Y., Chiang, Y.-H., Su, T.-P., Hayashi, T., Morales, M., Hoffer, B., and Lin, S.-Z. (2000). Vitamin D3 attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology 39, 873–880.10.1016/S0028-3908(99)00255-5Suche in Google Scholar
Weinstein, R.S., Bryce, G.F., Sappington, L.J., King, D.W., and Gallagher, B.B. (1984). Decreased serum ionized calcium and normal vitamin D metabolite levels with anticonvulsant drug treatment. J. Clin. Endocrinol. Metab. 58, 1003–1009.10.1210/jcem-58-6-1003Suche in Google Scholar
Weisman, Y., Fattal, A., Eisenberg, Z., Harel, S., Spirer, Z., and Harell, A. (1979). Decreased serum 24, 25-dihydroxy vitamin D concentrations in children receiving chronic anticonvulsant therapy. Br. Med. J. 2, 521.10.1136/bmj.2.6189.521Suche in Google Scholar
Wion, D., MacGrogan, D., Neveu, I., Jehan, F., Houlgatte, R., and Brachet, P. (1991). 1, 25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J. Neurosci. Res. 28, 110–114.10.1002/jnr.490280111Suche in Google Scholar
Ye, Z.-C. and Sontheimer, H. (1996). Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport. 7, 2181–2185.10.1097/00001756-199609020-00025Suche in Google Scholar
Yuhas, Y., Shulman, L., Weizman, A., Kaminsky, E., Vanichkin, A., and Ashkenazi, S. (1999). Involvement of tumor necrosis factor alpha and interleukin-1β in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infect. Immun. 67, 1455–1460.10.1128/IAI.67.3.1455-1460.1999Suche in Google Scholar
Zanatta, L., Goulart, P.B., Gonçalves, R., Pierozan, P., Winkelmann-Duarte, E.C., Woehl, V.M., Pessoa-Pureur, R., Silva, F.R.M.B., and Zamoner, A. (2012). 1α, 25-Dihydroxyvitamin D3 mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim. Biophys. Acta 1823, 1708–1719.10.1016/j.bbamcr.2012.06.023Suche in Google Scholar
Zehnder, D., Bland, R., Williams, M.C., McNinch, R.W., Howie, A.J., Stewart, P.M., and Hewison, M. (2001). Extrarenal expression of 25-hydroxyvitamin D3-1α-hydroxylase 1. J. Clin. Endocrinol. Metab. 86, 888–894.Suche in Google Scholar
Zeise, M., Espinoza, J., Morales, P., and Nalli, A. (1997). Interleukin-1β does not increase synaptic inhibition in hippocampal CA3 pyramidal and dentate gyrus granule cells of the rat in vitro. Brain Res. 768, 341–344.10.1016/S0006-8993(97)00787-7Suche in Google Scholar
Zhou, C., Assem, M., Tay, J.C., Watkins, P.B., Blumberg, B., Schuetz, E.G., and Thummel, K.E. (2006). Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J. Clin. Invest. 116, 1703–1712.10.1172/JCI27793Suche in Google Scholar PubMed PubMed Central
Zierold, C., Darwish, H.M., and DeLuca, H.F. (1994). Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc. Natl. Acad. Sci. USA 91, 900–902.10.1073/pnas.91.3.900Suche in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- New dimensions of connectomics and network plasticity in the central nervous system
- Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases
- Effects of altered RTN3 expression on BACE1 activity and Alzheimer’s neuritic plaques
- Role of ABC transporters in the pathology of Alzheimer’s disease
- The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field
- Applications of transcranial direct current stimulation in children and pediatrics
- Epilepsy and vitamin D: a comprehensive review of current knowledge
- The thalamus as a relay station and gatekeeper: relevance to brain disorders
Artikel in diesem Heft
- Frontmatter
- New dimensions of connectomics and network plasticity in the central nervous system
- Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases
- Effects of altered RTN3 expression on BACE1 activity and Alzheimer’s neuritic plaques
- Role of ABC transporters in the pathology of Alzheimer’s disease
- The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field
- Applications of transcranial direct current stimulation in children and pediatrics
- Epilepsy and vitamin D: a comprehensive review of current knowledge
- The thalamus as a relay station and gatekeeper: relevance to brain disorders