Startseite Cognitive function in schizophrenia: conflicting findings and future directions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cognitive function in schizophrenia: conflicting findings and future directions

  • Ahmed A. Moustafa EMAIL logo , Julia K. Garami , Justin Mahlberg , Jan Golembieski , Szabolcs Keri , BlaŻej Misiak und Dorota Frydecka
Veröffentlicht/Copyright: 12. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Introduction: Schizophrenia is a severe mental disorder with multiple psychopathological domains being affected. Several lines of evidence indicate that cognitive impairment serves as the key component of schizophrenia psychopathology. Although there have been a multitude of cognitive studies in schizophrenia, there are many conflicting results. We reasoned that this could be due to individual differences among the patients (i.e. variation in the severity of positive vs. negative symptoms), different task designs, and/or the administration of different antipsychotics.

Methods: We thus review existing data concentrating on these dimensions, specifically in relation to dopamine function. We focus on most commonly used cognitive domains: learning, working memory, and attention.

Results: We found that the type of cognitive domain under investigation, medication state and type, and severity of positive and negative symptoms can explain the conflicting results in the literature.

Conclusions: This review points to future studies investigating individual differences among schizophrenia patients in order to reveal the exact relationship between cognitive function, clinical features, and antipsychotic treatment.


Corresponding author: Ahmed A. Moustafa, School of Social Sciences and Psychology, University of Western Sydney, Sydney, New South Wales 2751, Australia; and Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, New South Wales 2751, Australia, e-mail:

References

Abi-Dargham, A. (2003). Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry 2, 166–171.Suche in Google Scholar

Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.-R., Keilp, J., Kochan, L., Van Heertum, R., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708–3719.10.1523/JNEUROSCI.22-09-03708.2002Suche in Google Scholar

Akil, M., Pierri, J.N., Whitehead, R.E., Edgar, C.L., Mohila, C., Sampson, A.R., and Lewis, D.A. (1999). Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry 156, 1580–1589.10.1176/ajp.156.10.1580Suche in Google Scholar

Asenjo Lobos, C., Komossa, K., Rummel-Kluge, C., Hunger, H., Schmid, F., Schwarz, S., and Leucht, S. (2010). Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. 10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21069690.10.1002/14651858.CD006633Suche in Google Scholar

Baddeley, A. (1981). The concept of working memory: a view of its current state and probable future development. Cognition 10, 17–23.10.1016/0010-0277(81)90020-2Suche in Google Scholar

Barch, D.M., Carter, C.S., Braver, T.S., Sabb, F.W., MacDonald, A., 3rd, Noll, D.C., and Cohen, J.D. (2001). Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch. Gen. Psychiatry 58, 280–288.10.1001/archpsyc.58.3.280Suche in Google Scholar

Barch, D.M., Mitropoulou, V., Harvey, P.D., New, A.S., Silverman, J.M., and Siever, L.J. (2004). Context-processing deficits in schizotypal personality disorder. J. Abnorm. Psychol. 113, 556–568.10.1037/0021-843X.113.4.556Suche in Google Scholar

Baruch, I., Hemsley, D.R., and Gray, J.A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. J. Nerv. Ment. Dis. 176, 598–606.10.1097/00005053-198810000-00004Suche in Google Scholar

Becker, A., Peters, B., Schroeder, H., Mann, T., Huether, G., and Grecksch, G. (2003). Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 687–700.10.1016/S0278-5846(03)00080-0Suche in Google Scholar

Bedard, M.A., Scherer, H., Stip, E., Cohen, H., Rodriguez, J.P., and Richer, F. (2000). Procedural learning in schizophrenia: further consideration on the deleterious effect of neuroleptics. Brain Cogn. 43, 31–39.Suche in Google Scholar

Beninger, R.J. (2006). Dopamine and incentive learning: a framework for considering antipsychotic medication effects. Neurotox. Res. 10, 199–209.10.1007/BF03033357Suche in Google Scholar

Bilder, R.M., Volavka, J., Czobor, P., Malhotra, A.K., Kennedy, J.L., Ni, X., Lindenmayer, J.P., Citrome. L., McEvoy. J., Kunz, M., et al. (2002a). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol. Psychiatry 52, 701–707.10.1016/S0006-3223(02)01416-6Suche in Google Scholar

Bilder, R.M., Goldman, R.S., Volavka, J., Czobor, P., Hoptman, M., Sheitman, B., Goldman, R.S., Hoptman, M.J., Sheitman, B., Lindenmayer, J.P. et al. (2002b). Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am. J. Psychiatry 159, 1018–1028.10.1176/appi.ajp.159.6.1018Suche in Google Scholar PubMed

Bodi, N., Csibri, E., Myers, C.E., Gluck, M.A., and Keri, S. (2009). Associative learning, acquired equivalence, and flexible generalization of knowledge in mild Alzheimer disease. Cogn. Behav. Neurol. 22, 89–94.10.1097/WNN.0b013e318192ccf0Suche in Google Scholar PubMed

Bogerts, B., Meertz, E., and Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch. Gen. Psychiatry 42, 784–791.10.1001/archpsyc.1985.01790310046006Suche in Google Scholar PubMed

Bondolfi, G., Dufour, H., Patris, M., May, J.P., Billeter, U., Eap, C.B., and Baumann, P. (1998). Risperidone versus clozapine in treatment-resistant chronic schizophrenia: a randomized double-blind study. The Risperidone Study Group. Am. J. Psychiatry 155, 499–504.10.1176/ajp.155.4.499Suche in Google Scholar PubMed

Bora, E. and Murray, R.M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr. Bull. 40, 744–755.10.1093/schbul/sbt085Suche in Google Scholar PubMed PubMed Central

Bourque, J., Lakis, N., Champagne, J., Stip, E., Lalonde, P., Lipp, O., and Mendrek, A. (2013). Clozapine and visuospatial processing in treatment-resistant schizophrenia. Cogn. Neuropsychiatry 18, 615–630.10.1080/13546805.2012.760917Suche in Google Scholar PubMed

Brahmbhatt, S.B., Haut, K., Csernansky, J.G., and Barch, D.M. (2006). Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr. Res. 87, 191–204.10.1016/j.schres.2006.05.019Suche in Google Scholar PubMed

Breier, A.F., Malhotra, A.K., Su, T.P., Pinals, D.A., Elman, I., Adler, C.M., Lafargue, R.T., Clifton, A., and Pickar, D. (1999). Clozapine and risperidone in chronic schizophrenia: effects on symptoms, parkinsonian side effects, and neuroendocrine response. Am. J. Psychiatry 156, 294–298.10.1176/ajp.156.2.294Suche in Google Scholar

Buckley, P.F. and Stahl, S.M. (2007). Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand. 115, 93–100.10.1111/j.1600-0447.2007.00992.xSuche in Google Scholar PubMed

Burch, G.S., Hemsley, D.R., and Joseph, M.H. (2004). Trials-to-criterion latent inhibition in humans as a function of stimulus pre-exposure and positive-schizotypy. Br. J. Psychol. 95(Pt 2), 179–196.10.1348/000712604773952412Suche in Google Scholar PubMed

Buschman, T.J. and Miller, E.K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862.10.1126/science.1138071Suche in Google Scholar PubMed

Carlsson, A., Waters, N., Holm-Waters, S., Tedroff, J., Nilsson, M., and Carlsson, M.L. (2001). Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu. Rev. Pharmacol. Toxicol. 41, 237–260.10.1146/annurev.pharmtox.41.1.237Suche in Google Scholar

Carpenter, W.T., Jr., Heinrichs, D.W., and Wagman, A.M. (1988). Deficit and nondeficit forms of schizophrenia: the concept. Am. J. Psychiatry 145, 578–583.10.1176/ajp.145.5.578Suche in Google Scholar

Castner, S.A., Williams, G.V., and Goldman-Rakic, P.S. (2000). Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287, 2020–2022.10.1126/science.287.5460.2020Suche in Google Scholar

Chapman, L.J. and Chapman, J.P. (1973). Problems in the measurement of cognitive deficit. Psychol. Bull. 79, 380–385.10.1037/h0034541Suche in Google Scholar

Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204.10.1017/S0140525X12000477Suche in Google Scholar

Cohen, J.D., Barch, D.M., Carter, C., and Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J. Abnorm. Psychol. 108, 120–133.10.1037/0021-843X.108.1.120Suche in Google Scholar

Cohen, J.D., Braver, T.S., and Brown, J.W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12, 223–229.10.1016/S0959-4388(02)00314-8Suche in Google Scholar

Collerton, D., Perry, E., and McKeith, I. (2005). Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–757; discussion 757–794.10.1017/S0140525X05000130Suche in Google Scholar PubMed

Collins, A.G., Brown, J.K., Gold, J.M., Waltz, J.A., and Frank, M.J. (2014). Working memory contributions to reinforcement learning impairments in schizophrenia. J. Neurosci. 34, 13747–13756.10.1523/JNEUROSCI.0989-14.2014Suche in Google Scholar PubMed PubMed Central

Corlett, P.R., Honey, G.D., and Fletcher, P.C. (2007). From prediction error to psychosis: ketamine as a pharmacological model of delusions. J. Psychopharmacol. 21, 238–252.10.1177/0269881107077716Suche in Google Scholar PubMed

Coull, J.T. (2005). Psychopharmacology of human attention. In: Neurobiology of Attention (e-publication). L. Itti, G. Rees and J.K. Tsotsos, eds. (New York, NY: Elsevier Inc./Academic Press). pp. 50–56.10.1016/B978-012375731-9/50013-6Suche in Google Scholar

Curtis, V.A., Katsafouros, K., Moller, H.J., Medori, R., and Sacchetti, E. (2008). Long-acting risperidone improves negative symptoms in stable psychotic patients. J. Psychopharmacol. 22, 254–261.10.1177/0269881107082119Suche in Google Scholar PubMed

D’Ardenne, K., McClure, S.M., Nystrom, L.E., and Cohen, J.D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267.10.1126/science.1150605Suche in Google Scholar PubMed

Dassa, D., Naudin, J., and Azorin, J.M. (1995). [New neuroleptic agents and new models for psychoses]. Ann. Med. Psychol. (Paris) 153, 106–120.Suche in Google Scholar

Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486.10.1176/ajp.148.11.1474Suche in Google Scholar PubMed

de Bartolomeis, A., Balletta, R., Giordano, S., Filomena Buonaguro, E., Latte, G., and Lasevoli, F. (2013). Differential cognitive performances between schizophrenic responders and non-responders to antipsychotics: correlation with course of the illness, psychopathology, attitude to the treatment and antipsychotics doses. Psychiatry Res. 210, 387–395.10.1016/j.psychres.2013.06.042Suche in Google Scholar PubMed

DeRosse, P., Hodgkinson, C.A., Lencz, T., Burdick, K.E., Kane, J.M., Goldman, D., and Malhotra, A.K. (2007). Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol. Psychiatry 61, 1208–1210.10.1016/j.biopsych.2006.07.023Suche in Google Scholar PubMed

Deserno, L., Boehme, R., Heinz, A., and Schlagenhauf, F. (2013). Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry 4, 172.10.3389/fpsyt.2013.00172Suche in Google Scholar PubMed PubMed Central

Diwadkar, V.A., Goradia, D., Hosanagar, A., Mermon, D., Montrose, D.M., Birmaher, B., Axelson, D., Rajarathinem, R., Haddad, L., Amirsadri, A., et al. (2011). Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: comparing vulnerability markers. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1349–1354.10.1016/j.pnpbp.2011.04.009Suche in Google Scholar PubMed PubMed Central

Dunn, L.A., Atwater, G.E., and Kilts, C.D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112, 315–323.10.1007/BF02244927Suche in Google Scholar PubMed

Eich, T.S., Nee, D.E., Insel, C., Malapani, C., and Smith, E.E. (2014). Neural correlates of impaired cognitive control over working memory in schizophrenia. Biol. Psychiatry 76, 146–153.10.1016/j.biopsych.2013.09.032Suche in Google Scholar PubMed PubMed Central

Elvevag, B. and Goldberg, T.E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol. 14, 1–21.10.1615/CritRevNeurobiol.v14.i1.10Suche in Google Scholar

Evans, L.H., Gray, N.S., and Snowden, R.J. (2007). A new continuous within-participants latent inhibition task: examining associations with schizotypy dimensions, smoking status and gender. Biol. Psychol. 74, 365–373.10.1016/j.biopsycho.2006.09.007Suche in Google Scholar

Farde, L., Wiesel, F.A., Halldin, C., and Sedvall, G. (1988). Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch. Gen. Psychiatry 45, 71–76.10.1001/archpsyc.1988.01800250087012Suche in Google Scholar

Farkas, M., Polgar, P., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C.E., Gluck, M.A., and Kéri, S. (2008). Associative learning in deficit and nondeficit schizophrenia. Neuroreport 19, 55–58.10.1097/WNR.0b013e3282f2dff6Suche in Google Scholar

Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., and Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophr. Res. 158, 156–162.10.1016/j.schres.2014.06.034Suche in Google Scholar

Feldon, J. and Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol. Psychiatry 29, 635–646.10.1016/0006-3223(91)90133-7Suche in Google Scholar

Fervaha, G., Agid, O., Foussias, G., and Remington, G. (2013). Impairments in both reward and punishment guided reinforcement learning in schizophrenia. Schizophr. Res. 150, 592–593.10.1016/j.schres.2013.08.012Suche in Google Scholar PubMed

Fink-Jensen, A. (2000). Novel pharmacological approaches to the treatment of schizophrenia. Dan. Med. Bull. 47, 151–167.10.1080/080394800448291Suche in Google Scholar

Fiorillo, C.D. (2011). Transient activation of midbrain dopamine neurons by reward risk. Neuroscience 197, 162–171.10.1016/j.neuroscience.2011.09.037Suche in Google Scholar PubMed PubMed Central

Fiorillo, C.D., Tobler, P.N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902.10.1126/science.1077349Suche in Google Scholar PubMed

Fitton, A. and Heel, R.C. (1990). Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia. Drugs 40, 722–747.10.2165/00003495-199040050-00007Suche in Google Scholar PubMed

Fletcher, P.C. and Frith, C.D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci 10, 48–58.10.1038/nrn2536Suche in Google Scholar PubMed

Foerde, K., Poldrack, R.A., Khan, B.J., Sabb, F.W., Bookheimer, S.Y., Bilder, R.M., Guthrie, D., Granholm, E., Nuechterlein, K.H., Marder, S.R., et al. (2008). Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology 22, 100–109.10.1037/0894-4105.22.1.100Suche in Google Scholar PubMed

Forbes, N.F., Carrick, L.A., McIntosh, A.M., and Lawrie, S.M. (2009). Working memory in schizophrenia: a meta-analysis. Psychol. Med. 39, 889–905.10.1017/S0033291708004558Suche in Google Scholar PubMed

Friston, K. (2003). Learning and inference in the brain. Neural Networks 16, 1325–1352.10.1016/j.neunet.2003.06.005Suche in Google Scholar PubMed

Frith, C.D. (1979). Consciousness, information processing and schizophrenia. Br. J. Psychiatry 134, 225–235.10.1192/bjp.134.3.225Suche in Google Scholar PubMed

Frith, C.D. and Done, D.J. (1988). Towards a neuropsychology of schizophrenia. Br. J. Psychiatry 153, 437–443.10.1192/bjp.153.4.437Suche in Google Scholar PubMed

Frith, C.D. and Done, D.J. (1989). Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychol. Med. 19, 359–363.10.1017/S003329170001240XSuche in Google Scholar PubMed

Frydecka, D., Eissa, A.M., Hewedi, D.H., Ali, M., Drapala, J., Misiak, B., Klosinska, E., Phillips, J.R., and Moustafa, A.A. (2014). Impairments of working memory in schizophrenia and bipolar disorder: the effect of history of psychotic symptoms and different aspects of cognitive task demands. Front. Behav. Neurosci. 8, 416.10.3389/fnbeh.2014.00416Suche in Google Scholar PubMed PubMed Central

Fujimaki, K., Takahashi, T., and Morinobu, S. (2012). Association of typical versus atypical antipsychotics with symptoms and quality of life in schizophrenia. PLoS One 7, e37087.10.1371/journal.pone.0037087Suche in Google Scholar PubMed PubMed Central

Glahn, D.C., Ragland, J.D., Abramoff, A., Barrett, J., Laird, A.R., Bearden, C.E., and Velligan, D.I. (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum. Brain. Mapp. 25, 60–69.10.1002/hbm.20138Suche in Google Scholar PubMed PubMed Central

Gold, J.M., Fuller, R.L., Robinson, B.M., McMahon, R.P., Braun, E.L., and Luck, S.J. (2006). Intact attentional control of working memory encoding in schizophrenia. J. Abnorm. Psychol. 115, 658–673.10.1037/0021-843X.115.4.658Suche in Google Scholar PubMed

Goldman-Rakic, P.S. (1994). Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6, 348–357.10.1176/jnp.6.4.348Suche in Google Scholar PubMed

Goldman-Rakic, P.S., Castner, S.A., Svensson, T.H., Siever, L.J., and Williams, G.V. (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174, 3–16.10.1007/s00213-004-1793-ySuche in Google Scholar PubMed

Goldman, M.B. and Mitchell, C.P. (2004). What is the functional significance of hippocampal pathology in schizophrenia? Schizophr. Bull. 30, 367–392.10.1093/oxfordjournals.schbul.a007086Suche in Google Scholar PubMed

Golembiewski, J. (2013). The subcortical confinement hypothesis for schizotypal hallucinations. Curēus 5, e118.Suche in Google Scholar

Gouzoulis-Mayfrank, E., Heekeren, K., Voss, T., Moerth, D., Thelen, B., and Meincke, U. (2004). Blunted inhibition of return in schizophrenia-evidence from a longitudinal study. Prog Neuropsychopharmacol. Biol. Psychiatry 28, 389–396.10.1016/j.pnpbp.2003.11.010Suche in Google Scholar PubMed

Gouzoulis-Mayfrank, E., Balke, M., Hajsamou, S., Ruhrmann, S., Schultze-Lutter, F., Daumann, J., and Heekeren, K. (2007). Orienting of attention in unmedicated patients with schizophrenia, prodromal subjects and healthy relatives. Schizophr. Res. 97, 35–42.10.1016/j.schres.2007.06.028Suche in Google Scholar PubMed

Grace, A.A. (2010). Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox. Res. 18, 367–376.10.1007/s12640-010-9154-6Suche in Google Scholar PubMed PubMed Central

Gray, J.A., Feldon, J., Rawlins, J.N.P., Hemsley, D.R., and Smith, A.D. (1991a). The neuropsychology of schizophrenia. Behav. Brain Sci. 14, 1–20.10.1017/S0140525X00065055Suche in Google Scholar

Gray, J.A., Feldon, J., Rawlins, J.N.P., Hemsley, D., and Smith, A.D. (1991b). The neurophysiology of schizophrenia. Behav. Brain Sci. 14, 1–84.10.1017/S0140525X00065055Suche in Google Scholar

Gray, N.S., Pickering, A.D., Hemsley, D.R., Dawling, S., and Gray, J.A. (1992). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl) 107, 425–430.10.1007/BF02245170Suche in Google Scholar

Gray, N.S., Fernandez, M., Williams, J., Ruddle, R.A., and Snowden, R.J. (2002). Which schizotypal dimensions abolish latent inhibition? Br. J. Clin. Psychol. 41(Pt 3), 271–284.10.1348/014466502760379136Suche in Google Scholar

Guillin, O., Abi-Dargham, A., and Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol. 78, 1–39.10.1016/S0074-7742(06)78001-1Suche in Google Scholar

Harris, M.S., Wiseman, C.L., Reilly, J.L., Keshavan, M.S., and Sweeney, J.A. (2009). Effects of risperidone on procedural learning in antipsychotic-naive first-episode schizophrenia. Neuropsychopharmacology 34, 468–476.10.1038/npp.2008.79Suche in Google Scholar PubMed PubMed Central

Hazy, T.E., Frank, M.J., and O’Reilly R.C. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1601–1613.10.1017/CBO9780511731525.016Suche in Google Scholar

Heckers, S., Goff, D., Schacter, D.L., Savage, C.R., Fischman, A.J., Alpert, N.M., and Rauch, S.L. (1999). Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch. Gen. Psychiatry 56, 1117–1123.10.1001/archpsyc.56.12.1117Suche in Google Scholar PubMed

Heinz, A. and Schlagenhauf, F. (2010). Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr. Bull. 36, 472–485.10.1093/schbul/sbq031Suche in Google Scholar PubMed PubMed Central

Hill, S.K., Reilly, J.L., Keefe, R.S., Gold, J.M., Bishop, J.R., Gershon, E.S., Tamminga, C.A., Pearlson, G.D., Keshavan, M.S., and Sweeney, J.A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am. J. Psychiatry 170, 1275–1284.10.1176/appi.ajp.2013.12101298Suche in Google Scholar PubMed PubMed Central

Ho, B.C., Andreasen, N.C., Ziebell, S., Pierson, R., and Magnotta, V. (2011). Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch. Gen. Psychiatry 68, 128–137.10.1001/archgenpsychiatry.2010.199Suche in Google Scholar PubMed PubMed Central

Holmes, A.J., MacDonald, A., 3rd, Carter, C.S., Barch, D.M., Andrew Stenger, V., and Cohen, J.D. (2005). Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr. Res. 76, 199–206.10.1016/j.schres.2005.01.021Suche in Google Scholar PubMed

Horacek, J., Bubenikova-Valesova, V., Kopecek, M., Palenicek, T., Dockery, C., Mohr, P., and Höschl, C. (2006). Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 20, 389–409.10.2165/00023210-200620050-00004Suche in Google Scholar PubMed

Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr. Bull. 35, 549–562.10.1093/schbul/sbp006Suche in Google Scholar PubMed PubMed Central

Javitt, D.C. (2009). Sensory processing in schizophrenia: neither simple nor intact. Schizophr. Bull. 35, 1059–1064.10.1093/schbul/sbp110Suche in Google Scholar PubMed PubMed Central

Javitt, D.C., Shelley, A.M., Silipo, G., and Lieberman, J.A. (2000). Deficits in auditory and visual context-dependent processing in schizophrenia: defining the pattern. Arch. Gen. Psychiatry 57, 1131–1137.10.1001/archpsyc.57.12.1131Suche in Google Scholar PubMed

Jones, H.M. (2004). On biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 161, 376–377; author reply 377–378.10.1176/appi.ajp.161.2.376-bSuche in Google Scholar PubMed

Joseph, M.H., Frith, C.D., and Waddington, J.L. (1979). Dopaminergic mechanisms and cognitive deficit in schizophrenia. A neurobiological model. Psychopharmacology (Berl) 63, 273–280.10.1007/BF00433561Suche in Google Scholar PubMed

Juckel, G., Schlagenhauf, F., Koslowski, M., Filonov, D., Wustenberg, T., Villringer, A., Knutson, B., Kienast, T., Gallinat. J., Wrase. J., et al. (2006). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl) 187, 222–228.10.1007/s00213-006-0405-4Suche in Google Scholar PubMed

Kane, J., Honigfeld, G., Singer, J., and Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789–796.10.1001/archpsyc.1988.01800330013001Suche in Google Scholar PubMed

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23.10.1176/appi.ajp.160.1.13Suche in Google Scholar PubMed

Kapur, S., Mizrahi, R., and Li, M. (2005). From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 79, 59–68.10.1016/j.schres.2005.01.003Suche in Google Scholar PubMed

Kathmann, N., von Recum, S., Haag, C., and Engel, R.R. (2000). Electrophysiological evidence for reduced latent inhibition in schizophrenic patients. Schizophr. Res. 45, 103–114.10.1016/S0920-9964(99)00172-3Suche in Google Scholar

Keedy, S.K., Reilly, J.L., Bishop, J.R., Weiden, P.J., and Sweeney, J.A. (2015). Impact of Antipsychotic treatment on attention and motor learning systems in first-episode schizophrenia. Schizophr. Bull. 41, 355–365.10.1093/schbul/sbu071Suche in Google Scholar PubMed PubMed Central

Keefe, R.S. and Fenton, W.S. (2007). How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr. Bull. 33, 912–920.10.1093/schbul/sbm046Suche in Google Scholar PubMed PubMed Central

Keefe, R.S., Silva, S.G., Perkins, D.O., and Lieberman, J.A. (1999). The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr. Bull. 25, 201–222.10.1093/oxfordjournals.schbul.a033374Suche in Google Scholar PubMed

Keefe, R.S., Bilder, R.M., Davis, S.M., Harvey, P.D., Palmer, B.W., Gold, J.M., Meltzer, H.Y., Green, M.F., Capuano, G., Stroup, T.S., et al. (2007a). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 633–647.10.1001/archpsyc.64.6.633Suche in Google Scholar PubMed

Keefe, R.S., Sweeney, J.A., Gu, H., Hamer, R.M., Perkins, D.O., McEvoy, J.P., and Lieberman, J.A. (2007b). Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am. J. Psychiatry 164, 1061–1071.10.1176/ajp.2007.164.7.1061Suche in Google Scholar PubMed

Kegeles, L.S., Slifstein, M., Xu, X., Urban, N., Thompson, J.L., Moadel, T., Harkavy-Friedman, JM., Gil, R., Laruelle, M., and Abi-Dargham, A. (2010). Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with [18F]fallypride positron emission tomography. Biol. Psychiatry 68, 634–641.10.1016/j.biopsych.2010.05.027Suche in Google Scholar PubMed PubMed Central

Kempton, M.J., Stahl, D., Williams, S.C., and DeLisi, L.E. (2010). Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr. Res. 120, 54–62.10.1016/j.schres.2010.03.036Suche in Google Scholar PubMed

Keri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neurosci. Biobehav. Rev. 32, 206–218.10.1016/j.neubiorev.2007.07.003Suche in Google Scholar PubMed

Kessler, R.M., Woodward, N.D., Riccardi, P., Li, R., Ansari, M.S., Anderson, S., Dawant, B., Zald, D., and Meltzer, H.Y. (2009). Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol. Psychiatry 65, 1024–1031.10.1016/j.biopsych.2008.12.029Suche in Google Scholar PubMed PubMed Central

Klemm, E., Grunwald, F., Kasper, S., Menzel, C., Broich, K., Danos, P., Reichmann, K., Krappel, C., Rieker, O., Briele, B., et al. (1996). [123I]IBZM SPECT for imaging of striatal D2 dopamine receptors in 56 schizophrenic patients taking various neuroleptics. Am. J. Psychiatry 153, 183–190.10.1176/ajp.153.2.183Suche in Google Scholar

Koch, K., Schachtzabel, C., Wagner, G., Schikora, J., Schultz, C., Reichenbach, J.R., Sauer, H., and Schlösser, R.G. (2010). Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage 50, 223–232.10.1016/j.neuroimage.2009.12.031Suche in Google Scholar

Konopaske, G.T., Dorph-Petersen, K.A., Sweet, R.A., Pierri, J.N., Zhang, W., Sampson, A.R., and Lewis, D.A. (2008). Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol. Psychiatry 63, 759–765.10.1016/j.biopsych.2007.08.018Suche in Google Scholar

Krieckhaus, E.E., Donahoe, J.W., and Morgan, M.A. (1992). Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biol. Psychiatry 31, 560–570.10.1016/0006-3223(92)90242-RSuche in Google Scholar

Laruelle, M. and Abi Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371.10.1177/026988119901300405Suche in Google Scholar

Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., and Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56–72.10.1016/S0006-3223(99)00067-0Suche in Google Scholar

Lee, J. and Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. J. Abnorm. Psychol. 114, 599–611.10.1037/0021-843X.114.4.599Suche in Google Scholar PubMed

Lee, J. and Park, S. (2006). The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophr. Res. 81, 191–197.10.1016/j.schres.2005.08.015Suche in Google Scholar PubMed

Leysen, J.E., Gommeren, W., Eens, A., de Chaffoy de Courcelles, D., Stoof, J.C., and Janssen, P.A. (1988). Biochemical profile of risperidone, a new antipsychotic. J. Pharmacol. Exp. Ther. 247, 661–670.Suche in Google Scholar

Lubow, R.E. (1973). Latent inhibition. Psychol. Bull. 79, 398–407.10.1037/h0034425Suche in Google Scholar PubMed

Lubow, R.E. (1989). Latent Inhibition and Conditioned Attention Theory. (Cambridge, UK: Cambridge University Press).10.1017/CBO9780511529849Suche in Google Scholar

Lubow, R.E. (1992). Latent inhibition in low and high “psychotic-prone” normal subjects. Pers. Indiv. Differ. 13, 563–572.10.1016/0191-8869(92)90197-WSuche in Google Scholar

Lubow, R.E., Kaplan, O., Abramovich, P., Rudnick, A., and Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophr. Res. 45, 145–156.10.1016/S0920-9964(99)00188-7Suche in Google Scholar

Luck, S.J. and Gold, J.M. (2008). The construct of attention in schizophrenia. Biol. Psychiatry 64, 34–39.10.1016/j.biopsych.2008.02.014Suche in Google Scholar

Lynch, M.R. (1992). Schizophrenia and the D1 receptor: focus on negative symptoms. Prog. Neuropsychopharmacol. Biol. Psychiatry 16, 797–832.10.1016/0278-5846(92)90102-KSuche in Google Scholar

MacDonald, A.W., Pogue-Geile, M.F., Johnson, M.K., and Carter, C.S. (2003). A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Arch. Gen. Psychiatry 60, 57–65.10.1001/archpsyc.60.1.57Suche in Google Scholar

MacDonald, P.A., MacDonald, A.A., Seergobin, K.N., Tamjeedi, R., Ganjavi, H., Provost, J.S., and Monchi, O. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain 134(Pt 5), 1447–1463.10.1093/brain/awr075Suche in Google Scholar

Malhotra, A.K., Kestler, L.J., Mazzanti, C., Bates, J.A., Goldberg, T., and Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am. J. Psychiatry 159, 652–654.10.1176/appi.ajp.159.4.652Suche in Google Scholar

Manoach, D.S., Greve, D.N., Lindgren, K.A., and Dale, A.M. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 20, 1670–1684.10.1016/j.neuroimage.2003.08.002Suche in Google Scholar

Martins Serra, A., Jones, S.H., Toone, B., and Gray, J.A. (2001). Impaired associative learning in chronic schizophrenics and their first-degree relatives: a study of latent inhibition and the Kamin blocking effect. Schizophr. Res. 48, 273–289.10.1016/S0920-9964(00)00141-9Suche in Google Scholar

McClure, M.M., Barch, D.M., Flory, J.D., Harvey, P.D., and Siever, L.J. (2008). Context processing in schizotypal personality disorder: evidence of specificity of impairment to the schizophrenia spectrum. J. Abnorm. Psychol. 117, 342–354.10.1037/0021-843X.117.2.342Suche in Google Scholar PubMed PubMed Central

McIntosh, A.M., Gow, A., Luciano, M., Davies, G., Liewald, D.C., Harris, S.E., Corley, J., Hall, J., Starr, J.M., Porteous, D.J., et al. (2013). Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol. Psychiatry 73, 938–943.10.1016/j.biopsych.2013.01.011Suche in Google Scholar

Meisenzahl, E.M., Schmitt, G.J., Scheuerecker, J., and Moller, H.J. (2007). The role of dopamine for the pathophysiology of schizophrenia. Int. Rev. Psychiatry 19, 337–345.10.1080/09540260701502468Suche in Google Scholar

Meltzer, H.Y., Park, S., and Kessler, R. (1999). Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc. Natl. Acad. Sci. USA 96, 13591–13593.10.1073/pnas.96.24.13591Suche in Google Scholar

Mesholam-Gately, R.I., Giuliano, A.J., Goff, K.P., Faraone, S.V., and Seidman, L.J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23, 315–336.10.1037/a0014708Suche in Google Scholar

Mikell, C.B., McKhann, G.M., Segal, S., McGovern, R.A., Wallenstein, M.B., and Moore, H. (2009). The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact. Funct. Neurosurg. 87, 256–265.10.1159/000225979Suche in Google Scholar

Miller, D.D., Perry, P.J., Cadoret, R.J., and Andreasen, N.C. (1994). Clozapine’s effect on negative symptoms in treatment-refractory schizophrenics. Compr. Psychiatry 35, 8–15.10.1016/0010-440X(94)90164-3Suche in Google Scholar

Milstein, J.A., Dalley, J.W., and Robbins, T.W. (2005). Neuropharmacology of Attention. In L. Itti, G. Rees and J.K. Tsotsos (Eds.), Neurobiology of Attention. e-publication (New York, NY: Elsevier Inc./Academic Press). pp. 57–62.10.1016/B978-012375731-9/50014-8Suche in Google Scholar

Monteleone, P., Di Lieto, A., Martiadis, V., Bartoli, L., and Maj, M. (2002). Correlations between negative symptoms and peripheral G protein levels in mononuclear leukocytes of deficit and nondeficit schizophrenics. Preliminary results. Eur. Arch. Psychiatry Clin. Neurosci. 252, 214–218.10.1007/s00406-002-0383-4Suche in Google Scholar PubMed

Morris, S.E., Heerey, E.A., Gold, J.M., and Holroyd, C.B. (2008). Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophr. Res. 99, 274–285.10.1016/j.schres.2007.08.027Suche in Google Scholar PubMed PubMed Central

Morris, R.W., Vercammen, A., Lenroot, R., Moore, L., Langton, J.M., Short, B., Kulkarni, J., Curtis, J., O’Donnell, M., Weickert, C.S., et al. (2012). Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol. Psychiatry 17, 235, 280–239.10.1038/mp.2011.75Suche in Google Scholar PubMed PubMed Central

Morris, R., Griffiths, O., Le Pelley, M.E., and Weickert, T.W. (2013). Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophr. Bull. 39, 575–582.10.1093/schbul/sbr192Suche in Google Scholar

Moser, P.C., Hitchcock, J.M., Lister, S., and Moran, P.M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res. Brain Res. Rev. 33, 275–307.10.1016/S0165-0173(00)00026-6Suche in Google Scholar

Moustafa, A.A. and Gluck, M.A. (2011). Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson’s disease an schizophrenia. Neural. Netw. 24, 575–591.10.1016/j.neunet.2011.02.006Suche in Google Scholar PubMed

Murray, G.K., Cheng, F., Clark, L., Barnett, J.H., Blackwell, A.D., Fletcher, P.C., Robbins, T.W., Bullmore, E.T., and Jones, P.B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855.10.1093/schbul/sbn078Suche in Google Scholar PubMed PubMed Central

Mushquash, A.R., Fawcett, J.M., and Klein, R.M. (2012). Inhibition of return and schizophrenia: a meta-analysis. Schizophr. Res. 135, 55–61.10.1016/j.schres.2011.11.034Suche in Google Scholar PubMed

Myers, C.E., Shohamy, D., Gluck, M.A., Grossman, S., Kluger, A., Ferris, S., Golomb, J., Schnirman, G., and Schwartz, R. (2003). Dissociating hippocampal versus basal ganglia contributions to learning and transfer. J. Cogn. Neurosci. 15, 185–193.10.1162/089892903321208123Suche in Google Scholar PubMed

Myers, C.E., Hopkins, R.O., DeLuca, J., Moore, N.B., Wolansky, L.J., Sumner, J.M., Golomb, J., Schnirman, G., and Schwartz, R. (2008). Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury. Neuropsychology 22, 681–686.10.1037/0894-4105.22.5.681Suche in Google Scholar PubMed

Neuhaus, A.H., Karl, C., Hahn, E., Trempler, N.R., Opgen-Rhein, C., Urbanek, C., Hahn, C., Ta, T.M., and Dettling, M. (2011). Dissection of early bottom-up and top-down deficits during visual attention in schizophrenia. Clin. Neurophysiol. 122, 90–98.10.1016/j.clinph.2010.06.011Suche in Google Scholar PubMed

Nielsen, M.O., Rostrup, E., Wulff, S., Bak, N., Broberg, B.V., Lublin, H., Kapur, S., and Glenthoj, B. (2012). Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Arch. Gen. Psychiatry 69, 1195–1204.10.1001/archgenpsychiatry.2012.847Suche in Google Scholar PubMed

Noudoost, B. and Moore, T. (2011). The role of neuromodulators in selective attention. Trends Cogn. Sci. 15, 585–591.10.1016/j.tics.2011.10.006Suche in Google Scholar PubMed PubMed Central

Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., and Matsushima, E., et al. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634–636.10.1038/385634a0Suche in Google Scholar

Olabi, B., Ellison-Wright, I., McIntosh, A.M., Wood, S.J., Bullmore, E., and Lawrie, S.M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol. Psychiatry 70, 88–96.10.1016/j.biopsych.2011.01.032Suche in Google Scholar

Paquet, F., Soucy, J.P., Stip, E., Levesque, M., Elie, A., and Bedard, M.A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 16, 47–56.10.1176/jnp.16.1.47Suche in Google Scholar

Perry, W., Heaton, R.K., Potterat, E., Roebuck, T., Minassian, A., and Braff, D.L. (2001). Working memory in schizophrenia: transient “online” storage versus executive functioning. Schizophr. Bull. 27, 157–176.10.1093/oxfordjournals.schbul.a006854Suche in Google Scholar

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J., and Frith, C.D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045.10.1038/nature05051Suche in Google Scholar

Polgar, P., Farkas, M., Nagy, O., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C.E., Gluck, M.A., and Kéri, S. (2008). How to find the way out from four rooms? The learning of “chaining” associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophr. Res. 99, 200–207.10.1016/j.schres.2007.06.027Suche in Google Scholar

Polgar, P., Rethelyi, J.M., Balint, S., Komlosi, S., Czobor, P., and Bitter, I. (2010). Executive function in deficit schizophrenia: what do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophr. Res. 122, 85–93.10.1016/j.schres.2010.06.007Suche in Google Scholar

Preuschoff, K., Bossaerts, P., and Quartz, S.R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51, 381–390.10.1016/j.neuron.2006.06.024Suche in Google Scholar

Purdon, S.E., Woodward, N., Lindborg, S.R., and Stip, E. (2003). Procedural learning in schizophrenia after 6 months of double-blind treatment with olanzapine, risperidone, and haloperidol. Psychopharmacology (Berl) 169, 390–397.10.1007/s00213-003-1505-zSuche in Google Scholar

Rascle, C., Mazas, O., Vaiva, G., Tournant, M., Raybois, O., Goudemand, M., and Thomas, P. (2001). Clinical features of latent inhibition in schizophrenia. Schizophr. Res. 51, 149–161.10.1016/S0920-9964(00)00162-6Suche in Google Scholar

Reichenberg, A. (2010). The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin. Neurosci. 12, 383–392.10.31887/DCNS.2010.12.3/areichenbergSuche in Google Scholar

Risch, S.C. (1996). Pathophysiology of schizophrenia and the role of newer antipsychotics. Pharmacotherapy 16(1 Pt 2), 11–14.Suche in Google Scholar

Rosenheck, R., Cramer, J., Xu, W., Thomas, J., Henderson, W., Frisman, L., Fye, C., and Charney, D. (1997). A comparison of clozapine and haloperidol in hospitalized patients with refractory schizophrenia. Department of Veterans Affairs Cooperative Study Group on Clozapine in Refractory Schizophrenia. N. Engl. J. Med. 337, 809–815.10.1056/NEJM199709183371202Suche in Google Scholar PubMed

Rossi, A., Daneluzzo, E., Tomassini, A., Struglia, F., Cavallaro, R., Smeraldi, E., and Stratta, P. (2006). The effect of verbalization strategy on Wisconsin Card Sorting Test performance in schizophrenic patients receiving classical or atypical antipsychotics. BMC Psychiatry 6, 3.10.1186/1471-244X-6-3Suche in Google Scholar PubMed PubMed Central

Rueter, L.E., Ballard, M.E., Gallagher, K.B., Basso, A.M., Curzon, P., and Kohlhaas, K.L. (2004). Chronic low dose risperidone and clozapine alleviate positive but not negative symptoms in the rat neonatal ventral hippocampal lesion model of schizophrenia. Psychopharmacology (Berl) 176, 312–319.10.1007/s00213-004-1897-4Suche in Google Scholar PubMed

Sapir, A., Dobrusin, M., Ben-Bashat, G., and Henik, A. (2007). Neuroleptics reverse attentional effects in schizophrenia patients. Neuropsychologia 45, 3263–3271.10.1016/j.neuropsychologia.2007.06.007Suche in Google Scholar PubMed

Scherer, H., Stip, E., Paquet, F., and Bedard, M.A. (2003). Mild procedural learning disturbances in neuroleptic-naive patients with schizophrenia. J. Neuropsychiatry Clin. Neurosci. 15, 58–63.10.1176/jnp.15.1.58Suche in Google Scholar PubMed

Scherer, H., Bedard, M.A., Stip, E., Paquet, F., Richer, F., Beriault, M., Rodriguez, J.P., and Motard, J.P. (2004). Procedural learning in schizophrenia can reflect the pharmacologic properties of the antipsychotic treatments. Cogn. Behav. Neurol. 17, 32–40.10.1097/00146965-200403000-00004Suche in Google Scholar PubMed

Schmajuk, N.A. (2001). Hippocampal dysfunction in schizophrenia. Hippocampus 11, 599–613.10.1002/hipo.1074Suche in Google Scholar PubMed

Schmajuk, N.A., Christiansen, B., and Cox, L. (2000). Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behav. Neurosci. 114, 659–670.10.1037/0735-7044.114.4.659Suche in Google Scholar

Schmidt-Hansen, M., Killcross, A.S., and Honey, R.C. (2009). Latent inhibition, learned irrelevance, and schizotypy: assessing their relationship. Cogn. Neuropsychiatry 14, 11–29.10.1080/13546800802664539Suche in Google Scholar PubMed

Schneider, K.K., Schote, A.B., Meyer, J., and Frings, C. (2015). Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. Cogn. Affect. Behav. Neurosci. 15, 104–116.10.3758/s13415-014-0320-9Suche in Google Scholar

Schooler, N.R. (1994). Negative symptoms in schizophrenia: assessment of the effect of risperidone. J. Clin. Psychiatry 55(Suppl.), 22–28.Suche in Google Scholar

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593–1599.10.1126/science.275.5306.1593Suche in Google Scholar

Schwartz, M., Wiggins, O., Naudin, J., and Spitzer, M. (2005). Rebuilding reality: a phenomenology of aspects of chronic schizophrenia. Phenomenol. Cognit. Sci. 4, 91–115.10.1007/s11097-005-4738-ySuche in Google Scholar

Seeman, P. and Ulpian, C. (1983). Neuroleptics have identical potencies in human brain limbic and putamen regions. Eur. J. Pharmacol. 94, 145–148.10.1016/0014-2999(83)90452-1Suche in Google Scholar

Sereno, A.B. and Holzman, P.S. (1996). Spatial selective attention in schizophrenic, affective disorder, and normal subjects. Schizophr. Res. 20, 33–50.10.1016/0920-9964(95)00077-1Suche in Google Scholar

Serper, M.R. and Chou, J.C.Y. (1997). Novel neuroleptics improve attentional functioning in schizophrenic patients: ziprasidone and aripiprazole. CNS Spectrums 2, 56–59.10.1017/S1092852900005046Suche in Google Scholar

Shirazi-Southall, S., Rodriguez, D.E., and Nomikos, G.G. (2002). Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26, 583–594.10.1016/S0893-133X(01)00400-6Suche in Google Scholar

Shohamy, D., Myers, C.E., Kalanithi, J., and Gluck, M.A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci. Biobehav. Rev. 32, 219–236.10.1016/j.neubiorev.2007.07.008Suche in Google Scholar PubMed PubMed Central

Shohamy, D., Mihalakos, P., Chin, R., Thomas, B., Wagner, A.D., and Tamminga, C. (2009). Learning and generalization in schizophrenia: effects of disease and antipsychotic drug treatment. Biol. Psychiatry 67, 926–932.10.1016/j.biopsych.2009.10.025Suche in Google Scholar PubMed PubMed Central

Silverstein, S.M., Spaulding, W.D., Menditto, A.A., Savitz, A., Liberman, R.P., Berten, S., and Starobin, H. (2009). Attention shaping: a reward-based learning method to enhance skills training outcomes in schizophrenia. Schizophr. Bull. 35, 222–232.10.1093/schbul/sbm150Suche in Google Scholar PubMed PubMed Central

Smith, E.E., Eich, T.S., Cebenoyan, D., and Malapani, C. (2011). Intact and impaired cognitive-control processes in schizophrenia. Schizophr. Res. 126, 132–137.10.1016/j.schres.2010.11.022Suche in Google Scholar

Snyder, P.J., Jackson, C.E., Piskulic, D., Olver, J., Norman, T., and Maruff, P. (2008). Spatial working memory and problem solving in schizophrenia: the effect of symptom stabilization with atypical antipsychotic medication. Psychiatry Res. 160, 316–326.10.1016/j.psychres.2007.07.011Suche in Google Scholar

Somlai, Z., Moustafa, A.A., Keri, S., Myers, C.E., and Gluck, M.A. (2011). General functioning predicts reward and punishment learning in schizophrenia. Schizophr. Res. 127, 131–136.10.1016/j.schres.2010.07.028Suche in Google Scholar

Spencer, K.M., Nestor, P.G., Valdman, O., Niznikiewicz, M.A., Shenton, M.E., and McCarley, R.W. (2011). Enhanced facilitation of spatial attention in schizophrenia. Neuropsychology 25, 76–85.10.1037/a0020779Suche in Google Scholar

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., and Friston, K. (2009). Bayesian model selection for group studies. Neuroimage 46, 1004–1017.10.1016/j.neuroimage.2009.03.025Suche in Google Scholar

Stip, E. (2006). [Cognition, schizophrenia and the effect of antipsychotics]. Encephale 32(3 Pt 1), 341–350.10.1016/S0013-7006(06)76162-0Suche in Google Scholar

Swerdlow, N.R., Braff, D.L., Hartston, H., Perry, W., and Geyer, M.A. (1996). Latent inhibition in schizophrenia. Schizophr. Res. 20, 91–103.10.1016/0920-9964(95)00097-6Suche in Google Scholar

Tamminga, C.A., Stan, A.D., and Wagner, A.D. (2010). The hippocampal formation in schizophrenia. Am. J. Psychiatry. 167, 1178–1193.10.1176/appi.ajp.2010.09081187Suche in Google Scholar PubMed

Tamrakar, S.M., Nepal, M.K., Koirala, N.R., Sharma, V.D., Gurung, C.K., and Adhikari, S.R. (2006). An open, randomized, comparative study of efficacy and safety of risperidone and haloperidol in schizophrenia. Kathmandu Univ. Med. J. 4, 152–160.Suche in Google Scholar

Tu, P.C., Yang, T.H., Kuo, W.J., Hsieh, J.C., and Su, T.P. (2006). Neural correlates of antisaccade deficits in schizophrenia, an fMRI study. J. Psychiatr. Res. 40, 606–612.10.1016/j.jpsychires.2006.05.012Suche in Google Scholar PubMed

Van Snellenberg, J.X., Torres, I.J., and Thornton, A.E. (2006). Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 20, 497–510.10.1037/0894-4105.20.5.497Suche in Google Scholar PubMed

van Veelen, N.M., Vink, M., Ramsey, N.F., and Kahn, R.S. (2010). Left dorsolateral prefrontal cortex dysfunction in medication-naive schizophrenia. Schizophr. Res. 123, 22–29.10.1016/j.schres.2010.07.004Suche in Google Scholar PubMed

Vita, A., De Peri, L., Deste, G., and Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2, e190.10.1038/tp.2012.116Suche in Google Scholar PubMed PubMed Central

Waltz, J.A., Frank, M.J., Robinson, B.M., and Gold, J.M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol. Psychiatry 62, 756–764.10.1016/j.biopsych.2006.09.042Suche in Google Scholar PubMed PubMed Central

Waltz, J.A., Frank, M.J., Wiecki, T.V., and Gold, J.M. (2011). Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 25, 86–97.10.1037/a0020882Suche in Google Scholar PubMed PubMed Central

Wasserman, J.I., Barry, R.J., Bradford, L., Delva, N.J., and Beninger, R.J. (2012). Probabilistic classification and gambling in patients with schizophrenia receiving medication: comparison of risperidone, olanzapine, clozapine and typical antipsychotics. Psychopharmacology (Berl) 222, 173–183.10.1007/s00213-011-2634-4Suche in Google Scholar PubMed

Weickert, T.W. and Goldberg, T.E. (2005). First- and second-generation antipsychotic medication and cognitive processing in schizophrenia. Curr. Psychiatry Rep. 7, 304–310.10.1007/s11920-005-0085-5Suche in Google Scholar PubMed

Weickert, T.W., Terrazas, A., Bigelow, L.B., Malley, J.D., Hyde, T., Egan, M.F., Weinberger, D.R., and Goldberg, T.E. (2002). Habit and skill learning in schizophrenia: evidence of normal striatal processing with abnormal cortical input. Learn. Mem. 9, 430–442.10.1101/lm.49102Suche in Google Scholar PubMed PubMed Central

Weickert, T.W., Goldberg, T.E., Egan, M.F., Apud, J.A., Meeter, M., Myers, C.E., Gluck, M.A., and Weinberger, D.R. (2010). Relative risk of probabilistic category learning deficits in patients with schizophrenia and their siblings. Biol. Psychiatry 67, 948–955.10.1016/j.biopsych.2009.12.027Suche in Google Scholar PubMed PubMed Central

Weickert, T.W., Leslie, F., Rushby, J.A., Hodges, J.R., and Hornberger, M. (2013a). Probabilistic association learning in frontotemporal dementia and schizophrenia. Cortex 49, 101–106.10.1016/j.cortex.2011.09.011Suche in Google Scholar PubMed

Weickert, T.W., Mattay, V.S., Das, S., Bigelow, L.B., Apud, J.A., Egan, M.F., Weinberger, D.R., and Goldberg, T.E. (2013b). Dopaminergic therapy removal differentially effects learning in schizophrenia and Parkinson’s disease. Schizophr. Res. 149, 162–166.10.1016/j.schres.2013.06.028Suche in Google Scholar PubMed PubMed Central

Weinberger, D.R. (1999). Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry 45, 395–402.10.1016/S0006-3223(98)00331-XSuche in Google Scholar

Wiesel, F.A., Farde, L., Nordstrom, A.L., and Sedvall, G. (1990). Central D1- and D2-receptor occupancy during antipsychotic drug treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 759–767.10.1016/0278-5846(90)90046-JSuche in Google Scholar

Williams, J.H., Wellman, N.A., Geaney, D.P., Cowen, P.J., Feldon, J., and Rawlins, J.N. (1998). Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br. J. Psychiatry 172, 243–249.10.1192/bjp.172.3.243Suche in Google Scholar PubMed

Woodward, N.D., Purdon, S.E., Meltzer, H.Y., and Zald, D.H. (2005). A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int. J. Neuropsychopharmacol. 8, 457–472.10.1017/S146114570500516XSuche in Google Scholar PubMed

Zierhut, K., Bogerts, B., Schott, B., Fenker, D., Walter, M., Albrecht, D., Steiner, J., Schütze, H., Northoff, G., Düzel, E., et al. (2010). The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. Psychiatry Res. 183, 187–194.10.1016/j.pscychresns.2010.03.007Suche in Google Scholar PubMed

Received: 2015-10-25
Accepted: 2015-11-16
Published Online: 2016-1-12
Published in Print: 2016-6-1

©2016 by De Gruyter

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2015-0060/html?lang=de
Button zum nach oben scrollen