Cognitive function in schizophrenia: conflicting findings and future directions
- 
            
            
        Ahmed A. Moustafa
        , Julia K. Garami 
Abstract
Introduction: Schizophrenia is a severe mental disorder with multiple psychopathological domains being affected. Several lines of evidence indicate that cognitive impairment serves as the key component of schizophrenia psychopathology. Although there have been a multitude of cognitive studies in schizophrenia, there are many conflicting results. We reasoned that this could be due to individual differences among the patients (i.e. variation in the severity of positive vs. negative symptoms), different task designs, and/or the administration of different antipsychotics.
Methods: We thus review existing data concentrating on these dimensions, specifically in relation to dopamine function. We focus on most commonly used cognitive domains: learning, working memory, and attention.
Results: We found that the type of cognitive domain under investigation, medication state and type, and severity of positive and negative symptoms can explain the conflicting results in the literature.
Conclusions: This review points to future studies investigating individual differences among schizophrenia patients in order to reveal the exact relationship between cognitive function, clinical features, and antipsychotic treatment.
References
Abi-Dargham, A. (2003). Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry 2, 166–171.Suche in Google Scholar
Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.-R., Keilp, J., Kochan, L., Van Heertum, R., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708–3719.10.1523/JNEUROSCI.22-09-03708.2002Suche in Google Scholar
Akil, M., Pierri, J.N., Whitehead, R.E., Edgar, C.L., Mohila, C., Sampson, A.R., and Lewis, D.A. (1999). Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry 156, 1580–1589.10.1176/ajp.156.10.1580Suche in Google Scholar
Asenjo Lobos, C., Komossa, K., Rummel-Kluge, C., Hunger, H., Schmid, F., Schwarz, S., and Leucht, S. (2010). Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. 10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21069690.10.1002/14651858.CD006633Suche in Google Scholar
Baddeley, A. (1981). The concept of working memory: a view of its current state and probable future development. Cognition 10, 17–23.10.1016/0010-0277(81)90020-2Suche in Google Scholar
Barch, D.M., Carter, C.S., Braver, T.S., Sabb, F.W., MacDonald, A., 3rd, Noll, D.C., and Cohen, J.D. (2001). Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch. Gen. Psychiatry 58, 280–288.10.1001/archpsyc.58.3.280Suche in Google Scholar
Barch, D.M., Mitropoulou, V., Harvey, P.D., New, A.S., Silverman, J.M., and Siever, L.J. (2004). Context-processing deficits in schizotypal personality disorder. J. Abnorm. Psychol. 113, 556–568.10.1037/0021-843X.113.4.556Suche in Google Scholar
Baruch, I., Hemsley, D.R., and Gray, J.A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. J. Nerv. Ment. Dis. 176, 598–606.10.1097/00005053-198810000-00004Suche in Google Scholar
Becker, A., Peters, B., Schroeder, H., Mann, T., Huether, G., and Grecksch, G. (2003). Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 687–700.10.1016/S0278-5846(03)00080-0Suche in Google Scholar
Bedard, M.A., Scherer, H., Stip, E., Cohen, H., Rodriguez, J.P., and Richer, F. (2000). Procedural learning in schizophrenia: further consideration on the deleterious effect of neuroleptics. Brain Cogn. 43, 31–39.Suche in Google Scholar
Beninger, R.J. (2006). Dopamine and incentive learning: a framework for considering antipsychotic medication effects. Neurotox. Res. 10, 199–209.10.1007/BF03033357Suche in Google Scholar
Bilder, R.M., Volavka, J., Czobor, P., Malhotra, A.K., Kennedy, J.L., Ni, X., Lindenmayer, J.P., Citrome. L., McEvoy. J., Kunz, M., et al. (2002a). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol. Psychiatry 52, 701–707.10.1016/S0006-3223(02)01416-6Suche in Google Scholar
Bilder, R.M., Goldman, R.S., Volavka, J., Czobor, P., Hoptman, M., Sheitman, B., Goldman, R.S., Hoptman, M.J., Sheitman, B., Lindenmayer, J.P. et al. (2002b). Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am. J. Psychiatry 159, 1018–1028.10.1176/appi.ajp.159.6.1018Suche in Google Scholar PubMed
Bodi, N., Csibri, E., Myers, C.E., Gluck, M.A., and Keri, S. (2009). Associative learning, acquired equivalence, and flexible generalization of knowledge in mild Alzheimer disease. Cogn. Behav. Neurol. 22, 89–94.10.1097/WNN.0b013e318192ccf0Suche in Google Scholar PubMed
Bogerts, B., Meertz, E., and Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch. Gen. Psychiatry 42, 784–791.10.1001/archpsyc.1985.01790310046006Suche in Google Scholar PubMed
Bondolfi, G., Dufour, H., Patris, M., May, J.P., Billeter, U., Eap, C.B., and Baumann, P. (1998). Risperidone versus clozapine in treatment-resistant chronic schizophrenia: a randomized double-blind study. The Risperidone Study Group. Am. J. Psychiatry 155, 499–504.10.1176/ajp.155.4.499Suche in Google Scholar PubMed
Bora, E. and Murray, R.M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr. Bull. 40, 744–755.10.1093/schbul/sbt085Suche in Google Scholar PubMed PubMed Central
Bourque, J., Lakis, N., Champagne, J., Stip, E., Lalonde, P., Lipp, O., and Mendrek, A. (2013). Clozapine and visuospatial processing in treatment-resistant schizophrenia. Cogn. Neuropsychiatry 18, 615–630.10.1080/13546805.2012.760917Suche in Google Scholar PubMed
Brahmbhatt, S.B., Haut, K., Csernansky, J.G., and Barch, D.M. (2006). Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr. Res. 87, 191–204.10.1016/j.schres.2006.05.019Suche in Google Scholar PubMed
Breier, A.F., Malhotra, A.K., Su, T.P., Pinals, D.A., Elman, I., Adler, C.M., Lafargue, R.T., Clifton, A., and Pickar, D. (1999). Clozapine and risperidone in chronic schizophrenia: effects on symptoms, parkinsonian side effects, and neuroendocrine response. Am. J. Psychiatry 156, 294–298.10.1176/ajp.156.2.294Suche in Google Scholar
Buckley, P.F. and Stahl, S.M. (2007). Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand. 115, 93–100.10.1111/j.1600-0447.2007.00992.xSuche in Google Scholar PubMed
Burch, G.S., Hemsley, D.R., and Joseph, M.H. (2004). Trials-to-criterion latent inhibition in humans as a function of stimulus pre-exposure and positive-schizotypy. Br. J. Psychol. 95(Pt 2), 179–196.10.1348/000712604773952412Suche in Google Scholar PubMed
Buschman, T.J. and Miller, E.K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862.10.1126/science.1138071Suche in Google Scholar PubMed
Carlsson, A., Waters, N., Holm-Waters, S., Tedroff, J., Nilsson, M., and Carlsson, M.L. (2001). Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu. Rev. Pharmacol. Toxicol. 41, 237–260.10.1146/annurev.pharmtox.41.1.237Suche in Google Scholar
Carpenter, W.T., Jr., Heinrichs, D.W., and Wagman, A.M. (1988). Deficit and nondeficit forms of schizophrenia: the concept. Am. J. Psychiatry 145, 578–583.10.1176/ajp.145.5.578Suche in Google Scholar
Castner, S.A., Williams, G.V., and Goldman-Rakic, P.S. (2000). Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287, 2020–2022.10.1126/science.287.5460.2020Suche in Google Scholar
Chapman, L.J. and Chapman, J.P. (1973). Problems in the measurement of cognitive deficit. Psychol. Bull. 79, 380–385.10.1037/h0034541Suche in Google Scholar
Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204.10.1017/S0140525X12000477Suche in Google Scholar
Cohen, J.D., Barch, D.M., Carter, C., and Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J. Abnorm. Psychol. 108, 120–133.10.1037/0021-843X.108.1.120Suche in Google Scholar
Cohen, J.D., Braver, T.S., and Brown, J.W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12, 223–229.10.1016/S0959-4388(02)00314-8Suche in Google Scholar
Collerton, D., Perry, E., and McKeith, I. (2005). Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–757; discussion 757–794.10.1017/S0140525X05000130Suche in Google Scholar PubMed
Collins, A.G., Brown, J.K., Gold, J.M., Waltz, J.A., and Frank, M.J. (2014). Working memory contributions to reinforcement learning impairments in schizophrenia. J. Neurosci. 34, 13747–13756.10.1523/JNEUROSCI.0989-14.2014Suche in Google Scholar PubMed PubMed Central
Corlett, P.R., Honey, G.D., and Fletcher, P.C. (2007). From prediction error to psychosis: ketamine as a pharmacological model of delusions. J. Psychopharmacol. 21, 238–252.10.1177/0269881107077716Suche in Google Scholar PubMed
Coull, J.T. (2005). Psychopharmacology of human attention. In: Neurobiology of Attention (e-publication). L. Itti, G. Rees and J.K. Tsotsos, eds. (New York, NY: Elsevier Inc./Academic Press). pp. 50–56.10.1016/B978-012375731-9/50013-6Suche in Google Scholar
Curtis, V.A., Katsafouros, K., Moller, H.J., Medori, R., and Sacchetti, E. (2008). Long-acting risperidone improves negative symptoms in stable psychotic patients. J. Psychopharmacol. 22, 254–261.10.1177/0269881107082119Suche in Google Scholar PubMed
D’Ardenne, K., McClure, S.M., Nystrom, L.E., and Cohen, J.D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267.10.1126/science.1150605Suche in Google Scholar PubMed
Dassa, D., Naudin, J., and Azorin, J.M. (1995). [New neuroleptic agents and new models for psychoses]. Ann. Med. Psychol. (Paris) 153, 106–120.Suche in Google Scholar
Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486.10.1176/ajp.148.11.1474Suche in Google Scholar PubMed
de Bartolomeis, A., Balletta, R., Giordano, S., Filomena Buonaguro, E., Latte, G., and Lasevoli, F. (2013). Differential cognitive performances between schizophrenic responders and non-responders to antipsychotics: correlation with course of the illness, psychopathology, attitude to the treatment and antipsychotics doses. Psychiatry Res. 210, 387–395.10.1016/j.psychres.2013.06.042Suche in Google Scholar PubMed
DeRosse, P., Hodgkinson, C.A., Lencz, T., Burdick, K.E., Kane, J.M., Goldman, D., and Malhotra, A.K. (2007). Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol. Psychiatry 61, 1208–1210.10.1016/j.biopsych.2006.07.023Suche in Google Scholar PubMed
Deserno, L., Boehme, R., Heinz, A., and Schlagenhauf, F. (2013). Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry 4, 172.10.3389/fpsyt.2013.00172Suche in Google Scholar PubMed PubMed Central
Diwadkar, V.A., Goradia, D., Hosanagar, A., Mermon, D., Montrose, D.M., Birmaher, B., Axelson, D., Rajarathinem, R., Haddad, L., Amirsadri, A., et al. (2011). Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: comparing vulnerability markers. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1349–1354.10.1016/j.pnpbp.2011.04.009Suche in Google Scholar PubMed PubMed Central
Dunn, L.A., Atwater, G.E., and Kilts, C.D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112, 315–323.10.1007/BF02244927Suche in Google Scholar PubMed
Eich, T.S., Nee, D.E., Insel, C., Malapani, C., and Smith, E.E. (2014). Neural correlates of impaired cognitive control over working memory in schizophrenia. Biol. Psychiatry 76, 146–153.10.1016/j.biopsych.2013.09.032Suche in Google Scholar PubMed PubMed Central
Elvevag, B. and Goldberg, T.E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol. 14, 1–21.10.1615/CritRevNeurobiol.v14.i1.10Suche in Google Scholar
Evans, L.H., Gray, N.S., and Snowden, R.J. (2007). A new continuous within-participants latent inhibition task: examining associations with schizotypy dimensions, smoking status and gender. Biol. Psychol. 74, 365–373.10.1016/j.biopsycho.2006.09.007Suche in Google Scholar
Farde, L., Wiesel, F.A., Halldin, C., and Sedvall, G. (1988). Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch. Gen. Psychiatry 45, 71–76.10.1001/archpsyc.1988.01800250087012Suche in Google Scholar
Farkas, M., Polgar, P., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C.E., Gluck, M.A., and Kéri, S. (2008). Associative learning in deficit and nondeficit schizophrenia. Neuroreport 19, 55–58.10.1097/WNR.0b013e3282f2dff6Suche in Google Scholar
Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., and Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophr. Res. 158, 156–162.10.1016/j.schres.2014.06.034Suche in Google Scholar
Feldon, J. and Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol. Psychiatry 29, 635–646.10.1016/0006-3223(91)90133-7Suche in Google Scholar
Fervaha, G., Agid, O., Foussias, G., and Remington, G. (2013). Impairments in both reward and punishment guided reinforcement learning in schizophrenia. Schizophr. Res. 150, 592–593.10.1016/j.schres.2013.08.012Suche in Google Scholar PubMed
Fink-Jensen, A. (2000). Novel pharmacological approaches to the treatment of schizophrenia. Dan. Med. Bull. 47, 151–167.10.1080/080394800448291Suche in Google Scholar
Fiorillo, C.D. (2011). Transient activation of midbrain dopamine neurons by reward risk. Neuroscience 197, 162–171.10.1016/j.neuroscience.2011.09.037Suche in Google Scholar PubMed PubMed Central
Fiorillo, C.D., Tobler, P.N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902.10.1126/science.1077349Suche in Google Scholar PubMed
Fitton, A. and Heel, R.C. (1990). Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia. Drugs 40, 722–747.10.2165/00003495-199040050-00007Suche in Google Scholar PubMed
Fletcher, P.C. and Frith, C.D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci 10, 48–58.10.1038/nrn2536Suche in Google Scholar PubMed
Foerde, K., Poldrack, R.A., Khan, B.J., Sabb, F.W., Bookheimer, S.Y., Bilder, R.M., Guthrie, D., Granholm, E., Nuechterlein, K.H., Marder, S.R., et al. (2008). Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology 22, 100–109.10.1037/0894-4105.22.1.100Suche in Google Scholar PubMed
Forbes, N.F., Carrick, L.A., McIntosh, A.M., and Lawrie, S.M. (2009). Working memory in schizophrenia: a meta-analysis. Psychol. Med. 39, 889–905.10.1017/S0033291708004558Suche in Google Scholar PubMed
Friston, K. (2003). Learning and inference in the brain. Neural Networks 16, 1325–1352.10.1016/j.neunet.2003.06.005Suche in Google Scholar PubMed
Frith, C.D. (1979). Consciousness, information processing and schizophrenia. Br. J. Psychiatry 134, 225–235.10.1192/bjp.134.3.225Suche in Google Scholar PubMed
Frith, C.D. and Done, D.J. (1988). Towards a neuropsychology of schizophrenia. Br. J. Psychiatry 153, 437–443.10.1192/bjp.153.4.437Suche in Google Scholar PubMed
Frith, C.D. and Done, D.J. (1989). Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychol. Med. 19, 359–363.10.1017/S003329170001240XSuche in Google Scholar PubMed
Frydecka, D., Eissa, A.M., Hewedi, D.H., Ali, M., Drapala, J., Misiak, B., Klosinska, E., Phillips, J.R., and Moustafa, A.A. (2014). Impairments of working memory in schizophrenia and bipolar disorder: the effect of history of psychotic symptoms and different aspects of cognitive task demands. Front. Behav. Neurosci. 8, 416.10.3389/fnbeh.2014.00416Suche in Google Scholar PubMed PubMed Central
Fujimaki, K., Takahashi, T., and Morinobu, S. (2012). Association of typical versus atypical antipsychotics with symptoms and quality of life in schizophrenia. PLoS One 7, e37087.10.1371/journal.pone.0037087Suche in Google Scholar PubMed PubMed Central
Glahn, D.C., Ragland, J.D., Abramoff, A., Barrett, J., Laird, A.R., Bearden, C.E., and Velligan, D.I. (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum. Brain. Mapp. 25, 60–69.10.1002/hbm.20138Suche in Google Scholar PubMed PubMed Central
Gold, J.M., Fuller, R.L., Robinson, B.M., McMahon, R.P., Braun, E.L., and Luck, S.J. (2006). Intact attentional control of working memory encoding in schizophrenia. J. Abnorm. Psychol. 115, 658–673.10.1037/0021-843X.115.4.658Suche in Google Scholar PubMed
Goldman-Rakic, P.S. (1994). Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6, 348–357.10.1176/jnp.6.4.348Suche in Google Scholar PubMed
Goldman-Rakic, P.S., Castner, S.A., Svensson, T.H., Siever, L.J., and Williams, G.V. (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174, 3–16.10.1007/s00213-004-1793-ySuche in Google Scholar PubMed
Goldman, M.B. and Mitchell, C.P. (2004). What is the functional significance of hippocampal pathology in schizophrenia? Schizophr. Bull. 30, 367–392.10.1093/oxfordjournals.schbul.a007086Suche in Google Scholar PubMed
Golembiewski, J. (2013). The subcortical confinement hypothesis for schizotypal hallucinations. Curēus 5, e118.Suche in Google Scholar
Gouzoulis-Mayfrank, E., Heekeren, K., Voss, T., Moerth, D., Thelen, B., and Meincke, U. (2004). Blunted inhibition of return in schizophrenia-evidence from a longitudinal study. Prog Neuropsychopharmacol. Biol. Psychiatry 28, 389–396.10.1016/j.pnpbp.2003.11.010Suche in Google Scholar PubMed
Gouzoulis-Mayfrank, E., Balke, M., Hajsamou, S., Ruhrmann, S., Schultze-Lutter, F., Daumann, J., and Heekeren, K. (2007). Orienting of attention in unmedicated patients with schizophrenia, prodromal subjects and healthy relatives. Schizophr. Res. 97, 35–42.10.1016/j.schres.2007.06.028Suche in Google Scholar PubMed
Grace, A.A. (2010). Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox. Res. 18, 367–376.10.1007/s12640-010-9154-6Suche in Google Scholar PubMed PubMed Central
Gray, J.A., Feldon, J., Rawlins, J.N.P., Hemsley, D.R., and Smith, A.D. (1991a). The neuropsychology of schizophrenia. Behav. Brain Sci. 14, 1–20.10.1017/S0140525X00065055Suche in Google Scholar
Gray, J.A., Feldon, J., Rawlins, J.N.P., Hemsley, D., and Smith, A.D. (1991b). The neurophysiology of schizophrenia. Behav. Brain Sci. 14, 1–84.10.1017/S0140525X00065055Suche in Google Scholar
Gray, N.S., Pickering, A.D., Hemsley, D.R., Dawling, S., and Gray, J.A. (1992). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl) 107, 425–430.10.1007/BF02245170Suche in Google Scholar
Gray, N.S., Fernandez, M., Williams, J., Ruddle, R.A., and Snowden, R.J. (2002). Which schizotypal dimensions abolish latent inhibition? Br. J. Clin. Psychol. 41(Pt 3), 271–284.10.1348/014466502760379136Suche in Google Scholar
Guillin, O., Abi-Dargham, A., and Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol. 78, 1–39.10.1016/S0074-7742(06)78001-1Suche in Google Scholar
Harris, M.S., Wiseman, C.L., Reilly, J.L., Keshavan, M.S., and Sweeney, J.A. (2009). Effects of risperidone on procedural learning in antipsychotic-naive first-episode schizophrenia. Neuropsychopharmacology 34, 468–476.10.1038/npp.2008.79Suche in Google Scholar PubMed PubMed Central
Hazy, T.E., Frank, M.J., and O’Reilly R.C. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1601–1613.10.1017/CBO9780511731525.016Suche in Google Scholar
Heckers, S., Goff, D., Schacter, D.L., Savage, C.R., Fischman, A.J., Alpert, N.M., and Rauch, S.L. (1999). Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch. Gen. Psychiatry 56, 1117–1123.10.1001/archpsyc.56.12.1117Suche in Google Scholar PubMed
Heinz, A. and Schlagenhauf, F. (2010). Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr. Bull. 36, 472–485.10.1093/schbul/sbq031Suche in Google Scholar PubMed PubMed Central
Hill, S.K., Reilly, J.L., Keefe, R.S., Gold, J.M., Bishop, J.R., Gershon, E.S., Tamminga, C.A., Pearlson, G.D., Keshavan, M.S., and Sweeney, J.A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am. J. Psychiatry 170, 1275–1284.10.1176/appi.ajp.2013.12101298Suche in Google Scholar PubMed PubMed Central
Ho, B.C., Andreasen, N.C., Ziebell, S., Pierson, R., and Magnotta, V. (2011). Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch. Gen. Psychiatry 68, 128–137.10.1001/archgenpsychiatry.2010.199Suche in Google Scholar PubMed PubMed Central
Holmes, A.J., MacDonald, A., 3rd, Carter, C.S., Barch, D.M., Andrew Stenger, V., and Cohen, J.D. (2005). Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr. Res. 76, 199–206.10.1016/j.schres.2005.01.021Suche in Google Scholar PubMed
Horacek, J., Bubenikova-Valesova, V., Kopecek, M., Palenicek, T., Dockery, C., Mohr, P., and Höschl, C. (2006). Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 20, 389–409.10.2165/00023210-200620050-00004Suche in Google Scholar PubMed
Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr. Bull. 35, 549–562.10.1093/schbul/sbp006Suche in Google Scholar PubMed PubMed Central
Javitt, D.C. (2009). Sensory processing in schizophrenia: neither simple nor intact. Schizophr. Bull. 35, 1059–1064.10.1093/schbul/sbp110Suche in Google Scholar PubMed PubMed Central
Javitt, D.C., Shelley, A.M., Silipo, G., and Lieberman, J.A. (2000). Deficits in auditory and visual context-dependent processing in schizophrenia: defining the pattern. Arch. Gen. Psychiatry 57, 1131–1137.10.1001/archpsyc.57.12.1131Suche in Google Scholar PubMed
Jones, H.M. (2004). On biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 161, 376–377; author reply 377–378.10.1176/appi.ajp.161.2.376-bSuche in Google Scholar PubMed
Joseph, M.H., Frith, C.D., and Waddington, J.L. (1979). Dopaminergic mechanisms and cognitive deficit in schizophrenia. A neurobiological model. Psychopharmacology (Berl) 63, 273–280.10.1007/BF00433561Suche in Google Scholar PubMed
Juckel, G., Schlagenhauf, F., Koslowski, M., Filonov, D., Wustenberg, T., Villringer, A., Knutson, B., Kienast, T., Gallinat. J., Wrase. J., et al. (2006). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl) 187, 222–228.10.1007/s00213-006-0405-4Suche in Google Scholar PubMed
Kane, J., Honigfeld, G., Singer, J., and Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789–796.10.1001/archpsyc.1988.01800330013001Suche in Google Scholar PubMed
Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23.10.1176/appi.ajp.160.1.13Suche in Google Scholar PubMed
Kapur, S., Mizrahi, R., and Li, M. (2005). From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 79, 59–68.10.1016/j.schres.2005.01.003Suche in Google Scholar PubMed
Kathmann, N., von Recum, S., Haag, C., and Engel, R.R. (2000). Electrophysiological evidence for reduced latent inhibition in schizophrenic patients. Schizophr. Res. 45, 103–114.10.1016/S0920-9964(99)00172-3Suche in Google Scholar
Keedy, S.K., Reilly, J.L., Bishop, J.R., Weiden, P.J., and Sweeney, J.A. (2015). Impact of Antipsychotic treatment on attention and motor learning systems in first-episode schizophrenia. Schizophr. Bull. 41, 355–365.10.1093/schbul/sbu071Suche in Google Scholar PubMed PubMed Central
Keefe, R.S. and Fenton, W.S. (2007). How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr. Bull. 33, 912–920.10.1093/schbul/sbm046Suche in Google Scholar PubMed PubMed Central
Keefe, R.S., Silva, S.G., Perkins, D.O., and Lieberman, J.A. (1999). The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr. Bull. 25, 201–222.10.1093/oxfordjournals.schbul.a033374Suche in Google Scholar PubMed
Keefe, R.S., Bilder, R.M., Davis, S.M., Harvey, P.D., Palmer, B.W., Gold, J.M., Meltzer, H.Y., Green, M.F., Capuano, G., Stroup, T.S., et al. (2007a). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 633–647.10.1001/archpsyc.64.6.633Suche in Google Scholar PubMed
Keefe, R.S., Sweeney, J.A., Gu, H., Hamer, R.M., Perkins, D.O., McEvoy, J.P., and Lieberman, J.A. (2007b). Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am. J. Psychiatry 164, 1061–1071.10.1176/ajp.2007.164.7.1061Suche in Google Scholar PubMed
Kegeles, L.S., Slifstein, M., Xu, X., Urban, N., Thompson, J.L., Moadel, T., Harkavy-Friedman, JM., Gil, R., Laruelle, M., and Abi-Dargham, A. (2010). Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with [18F]fallypride positron emission tomography. Biol. Psychiatry 68, 634–641.10.1016/j.biopsych.2010.05.027Suche in Google Scholar PubMed PubMed Central
Kempton, M.J., Stahl, D., Williams, S.C., and DeLisi, L.E. (2010). Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr. Res. 120, 54–62.10.1016/j.schres.2010.03.036Suche in Google Scholar PubMed
Keri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neurosci. Biobehav. Rev. 32, 206–218.10.1016/j.neubiorev.2007.07.003Suche in Google Scholar PubMed
Kessler, R.M., Woodward, N.D., Riccardi, P., Li, R., Ansari, M.S., Anderson, S., Dawant, B., Zald, D., and Meltzer, H.Y. (2009). Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol. Psychiatry 65, 1024–1031.10.1016/j.biopsych.2008.12.029Suche in Google Scholar PubMed PubMed Central
Klemm, E., Grunwald, F., Kasper, S., Menzel, C., Broich, K., Danos, P., Reichmann, K., Krappel, C., Rieker, O., Briele, B., et al. (1996). [123I]IBZM SPECT for imaging of striatal D2 dopamine receptors in 56 schizophrenic patients taking various neuroleptics. Am. J. Psychiatry 153, 183–190.10.1176/ajp.153.2.183Suche in Google Scholar
Koch, K., Schachtzabel, C., Wagner, G., Schikora, J., Schultz, C., Reichenbach, J.R., Sauer, H., and Schlösser, R.G. (2010). Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage 50, 223–232.10.1016/j.neuroimage.2009.12.031Suche in Google Scholar
Konopaske, G.T., Dorph-Petersen, K.A., Sweet, R.A., Pierri, J.N., Zhang, W., Sampson, A.R., and Lewis, D.A. (2008). Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol. Psychiatry 63, 759–765.10.1016/j.biopsych.2007.08.018Suche in Google Scholar
Krieckhaus, E.E., Donahoe, J.W., and Morgan, M.A. (1992). Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biol. Psychiatry 31, 560–570.10.1016/0006-3223(92)90242-RSuche in Google Scholar
Laruelle, M. and Abi Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371.10.1177/026988119901300405Suche in Google Scholar
Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., and Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56–72.10.1016/S0006-3223(99)00067-0Suche in Google Scholar
Lee, J. and Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. J. Abnorm. Psychol. 114, 599–611.10.1037/0021-843X.114.4.599Suche in Google Scholar PubMed
Lee, J. and Park, S. (2006). The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophr. Res. 81, 191–197.10.1016/j.schres.2005.08.015Suche in Google Scholar PubMed
Leysen, J.E., Gommeren, W., Eens, A., de Chaffoy de Courcelles, D., Stoof, J.C., and Janssen, P.A. (1988). Biochemical profile of risperidone, a new antipsychotic. J. Pharmacol. Exp. Ther. 247, 661–670.Suche in Google Scholar
Lubow, R.E. (1973). Latent inhibition. Psychol. Bull. 79, 398–407.10.1037/h0034425Suche in Google Scholar PubMed
Lubow, R.E. (1989). Latent Inhibition and Conditioned Attention Theory. (Cambridge, UK: Cambridge University Press).10.1017/CBO9780511529849Suche in Google Scholar
Lubow, R.E. (1992). Latent inhibition in low and high “psychotic-prone” normal subjects. Pers. Indiv. Differ. 13, 563–572.10.1016/0191-8869(92)90197-WSuche in Google Scholar
Lubow, R.E., Kaplan, O., Abramovich, P., Rudnick, A., and Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophr. Res. 45, 145–156.10.1016/S0920-9964(99)00188-7Suche in Google Scholar
Luck, S.J. and Gold, J.M. (2008). The construct of attention in schizophrenia. Biol. Psychiatry 64, 34–39.10.1016/j.biopsych.2008.02.014Suche in Google Scholar
Lynch, M.R. (1992). Schizophrenia and the D1 receptor: focus on negative symptoms. Prog. Neuropsychopharmacol. Biol. Psychiatry 16, 797–832.10.1016/0278-5846(92)90102-KSuche in Google Scholar
MacDonald, A.W., Pogue-Geile, M.F., Johnson, M.K., and Carter, C.S. (2003). A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Arch. Gen. Psychiatry 60, 57–65.10.1001/archpsyc.60.1.57Suche in Google Scholar
MacDonald, P.A., MacDonald, A.A., Seergobin, K.N., Tamjeedi, R., Ganjavi, H., Provost, J.S., and Monchi, O. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain 134(Pt 5), 1447–1463.10.1093/brain/awr075Suche in Google Scholar
Malhotra, A.K., Kestler, L.J., Mazzanti, C., Bates, J.A., Goldberg, T., and Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am. J. Psychiatry 159, 652–654.10.1176/appi.ajp.159.4.652Suche in Google Scholar
Manoach, D.S., Greve, D.N., Lindgren, K.A., and Dale, A.M. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 20, 1670–1684.10.1016/j.neuroimage.2003.08.002Suche in Google Scholar
Martins Serra, A., Jones, S.H., Toone, B., and Gray, J.A. (2001). Impaired associative learning in chronic schizophrenics and their first-degree relatives: a study of latent inhibition and the Kamin blocking effect. Schizophr. Res. 48, 273–289.10.1016/S0920-9964(00)00141-9Suche in Google Scholar
McClure, M.M., Barch, D.M., Flory, J.D., Harvey, P.D., and Siever, L.J. (2008). Context processing in schizotypal personality disorder: evidence of specificity of impairment to the schizophrenia spectrum. J. Abnorm. Psychol. 117, 342–354.10.1037/0021-843X.117.2.342Suche in Google Scholar PubMed PubMed Central
McIntosh, A.M., Gow, A., Luciano, M., Davies, G., Liewald, D.C., Harris, S.E., Corley, J., Hall, J., Starr, J.M., Porteous, D.J., et al. (2013). Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol. Psychiatry 73, 938–943.10.1016/j.biopsych.2013.01.011Suche in Google Scholar
Meisenzahl, E.M., Schmitt, G.J., Scheuerecker, J., and Moller, H.J. (2007). The role of dopamine for the pathophysiology of schizophrenia. Int. Rev. Psychiatry 19, 337–345.10.1080/09540260701502468Suche in Google Scholar
Meltzer, H.Y., Park, S., and Kessler, R. (1999). Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc. Natl. Acad. Sci. USA 96, 13591–13593.10.1073/pnas.96.24.13591Suche in Google Scholar
Mesholam-Gately, R.I., Giuliano, A.J., Goff, K.P., Faraone, S.V., and Seidman, L.J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23, 315–336.10.1037/a0014708Suche in Google Scholar
Mikell, C.B., McKhann, G.M., Segal, S., McGovern, R.A., Wallenstein, M.B., and Moore, H. (2009). The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact. Funct. Neurosurg. 87, 256–265.10.1159/000225979Suche in Google Scholar
Miller, D.D., Perry, P.J., Cadoret, R.J., and Andreasen, N.C. (1994). Clozapine’s effect on negative symptoms in treatment-refractory schizophrenics. Compr. Psychiatry 35, 8–15.10.1016/0010-440X(94)90164-3Suche in Google Scholar
Milstein, J.A., Dalley, J.W., and Robbins, T.W. (2005). Neuropharmacology of Attention. In L. Itti, G. Rees and J.K. Tsotsos (Eds.), Neurobiology of Attention. e-publication (New York, NY: Elsevier Inc./Academic Press). pp. 57–62.10.1016/B978-012375731-9/50014-8Suche in Google Scholar
Monteleone, P., Di Lieto, A., Martiadis, V., Bartoli, L., and Maj, M. (2002). Correlations between negative symptoms and peripheral G protein levels in mononuclear leukocytes of deficit and nondeficit schizophrenics. Preliminary results. Eur. Arch. Psychiatry Clin. Neurosci. 252, 214–218.10.1007/s00406-002-0383-4Suche in Google Scholar PubMed
Morris, S.E., Heerey, E.A., Gold, J.M., and Holroyd, C.B. (2008). Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophr. Res. 99, 274–285.10.1016/j.schres.2007.08.027Suche in Google Scholar PubMed PubMed Central
Morris, R.W., Vercammen, A., Lenroot, R., Moore, L., Langton, J.M., Short, B., Kulkarni, J., Curtis, J., O’Donnell, M., Weickert, C.S., et al. (2012). Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol. Psychiatry 17, 235, 280–239.10.1038/mp.2011.75Suche in Google Scholar PubMed PubMed Central
Morris, R., Griffiths, O., Le Pelley, M.E., and Weickert, T.W. (2013). Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophr. Bull. 39, 575–582.10.1093/schbul/sbr192Suche in Google Scholar
Moser, P.C., Hitchcock, J.M., Lister, S., and Moran, P.M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res. Brain Res. Rev. 33, 275–307.10.1016/S0165-0173(00)00026-6Suche in Google Scholar
Moustafa, A.A. and Gluck, M.A. (2011). Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson’s disease an schizophrenia. Neural. Netw. 24, 575–591.10.1016/j.neunet.2011.02.006Suche in Google Scholar PubMed
Murray, G.K., Cheng, F., Clark, L., Barnett, J.H., Blackwell, A.D., Fletcher, P.C., Robbins, T.W., Bullmore, E.T., and Jones, P.B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855.10.1093/schbul/sbn078Suche in Google Scholar PubMed PubMed Central
Mushquash, A.R., Fawcett, J.M., and Klein, R.M. (2012). Inhibition of return and schizophrenia: a meta-analysis. Schizophr. Res. 135, 55–61.10.1016/j.schres.2011.11.034Suche in Google Scholar PubMed
Myers, C.E., Shohamy, D., Gluck, M.A., Grossman, S., Kluger, A., Ferris, S., Golomb, J., Schnirman, G., and Schwartz, R. (2003). Dissociating hippocampal versus basal ganglia contributions to learning and transfer. J. Cogn. Neurosci. 15, 185–193.10.1162/089892903321208123Suche in Google Scholar PubMed
Myers, C.E., Hopkins, R.O., DeLuca, J., Moore, N.B., Wolansky, L.J., Sumner, J.M., Golomb, J., Schnirman, G., and Schwartz, R. (2008). Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury. Neuropsychology 22, 681–686.10.1037/0894-4105.22.5.681Suche in Google Scholar PubMed
Neuhaus, A.H., Karl, C., Hahn, E., Trempler, N.R., Opgen-Rhein, C., Urbanek, C., Hahn, C., Ta, T.M., and Dettling, M. (2011). Dissection of early bottom-up and top-down deficits during visual attention in schizophrenia. Clin. Neurophysiol. 122, 90–98.10.1016/j.clinph.2010.06.011Suche in Google Scholar PubMed
Nielsen, M.O., Rostrup, E., Wulff, S., Bak, N., Broberg, B.V., Lublin, H., Kapur, S., and Glenthoj, B. (2012). Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Arch. Gen. Psychiatry 69, 1195–1204.10.1001/archgenpsychiatry.2012.847Suche in Google Scholar PubMed
Noudoost, B. and Moore, T. (2011). The role of neuromodulators in selective attention. Trends Cogn. Sci. 15, 585–591.10.1016/j.tics.2011.10.006Suche in Google Scholar PubMed PubMed Central
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., and Matsushima, E., et al. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634–636.10.1038/385634a0Suche in Google Scholar
Olabi, B., Ellison-Wright, I., McIntosh, A.M., Wood, S.J., Bullmore, E., and Lawrie, S.M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol. Psychiatry 70, 88–96.10.1016/j.biopsych.2011.01.032Suche in Google Scholar
Paquet, F., Soucy, J.P., Stip, E., Levesque, M., Elie, A., and Bedard, M.A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 16, 47–56.10.1176/jnp.16.1.47Suche in Google Scholar
Perry, W., Heaton, R.K., Potterat, E., Roebuck, T., Minassian, A., and Braff, D.L. (2001). Working memory in schizophrenia: transient “online” storage versus executive functioning. Schizophr. Bull. 27, 157–176.10.1093/oxfordjournals.schbul.a006854Suche in Google Scholar
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J., and Frith, C.D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045.10.1038/nature05051Suche in Google Scholar
Polgar, P., Farkas, M., Nagy, O., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C.E., Gluck, M.A., and Kéri, S. (2008). How to find the way out from four rooms? The learning of “chaining” associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophr. Res. 99, 200–207.10.1016/j.schres.2007.06.027Suche in Google Scholar
Polgar, P., Rethelyi, J.M., Balint, S., Komlosi, S., Czobor, P., and Bitter, I. (2010). Executive function in deficit schizophrenia: what do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophr. Res. 122, 85–93.10.1016/j.schres.2010.06.007Suche in Google Scholar
Preuschoff, K., Bossaerts, P., and Quartz, S.R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51, 381–390.10.1016/j.neuron.2006.06.024Suche in Google Scholar
Purdon, S.E., Woodward, N., Lindborg, S.R., and Stip, E. (2003). Procedural learning in schizophrenia after 6 months of double-blind treatment with olanzapine, risperidone, and haloperidol. Psychopharmacology (Berl) 169, 390–397.10.1007/s00213-003-1505-zSuche in Google Scholar
Rascle, C., Mazas, O., Vaiva, G., Tournant, M., Raybois, O., Goudemand, M., and Thomas, P. (2001). Clinical features of latent inhibition in schizophrenia. Schizophr. Res. 51, 149–161.10.1016/S0920-9964(00)00162-6Suche in Google Scholar
Reichenberg, A. (2010). The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin. Neurosci. 12, 383–392.10.31887/DCNS.2010.12.3/areichenbergSuche in Google Scholar
Risch, S.C. (1996). Pathophysiology of schizophrenia and the role of newer antipsychotics. Pharmacotherapy 16(1 Pt 2), 11–14.Suche in Google Scholar
Rosenheck, R., Cramer, J., Xu, W., Thomas, J., Henderson, W., Frisman, L., Fye, C., and Charney, D. (1997). A comparison of clozapine and haloperidol in hospitalized patients with refractory schizophrenia. Department of Veterans Affairs Cooperative Study Group on Clozapine in Refractory Schizophrenia. N. Engl. J. Med. 337, 809–815.10.1056/NEJM199709183371202Suche in Google Scholar PubMed
Rossi, A., Daneluzzo, E., Tomassini, A., Struglia, F., Cavallaro, R., Smeraldi, E., and Stratta, P. (2006). The effect of verbalization strategy on Wisconsin Card Sorting Test performance in schizophrenic patients receiving classical or atypical antipsychotics. BMC Psychiatry 6, 3.10.1186/1471-244X-6-3Suche in Google Scholar PubMed PubMed Central
Rueter, L.E., Ballard, M.E., Gallagher, K.B., Basso, A.M., Curzon, P., and Kohlhaas, K.L. (2004). Chronic low dose risperidone and clozapine alleviate positive but not negative symptoms in the rat neonatal ventral hippocampal lesion model of schizophrenia. Psychopharmacology (Berl) 176, 312–319.10.1007/s00213-004-1897-4Suche in Google Scholar PubMed
Sapir, A., Dobrusin, M., Ben-Bashat, G., and Henik, A. (2007). Neuroleptics reverse attentional effects in schizophrenia patients. Neuropsychologia 45, 3263–3271.10.1016/j.neuropsychologia.2007.06.007Suche in Google Scholar PubMed
Scherer, H., Stip, E., Paquet, F., and Bedard, M.A. (2003). Mild procedural learning disturbances in neuroleptic-naive patients with schizophrenia. J. Neuropsychiatry Clin. Neurosci. 15, 58–63.10.1176/jnp.15.1.58Suche in Google Scholar PubMed
Scherer, H., Bedard, M.A., Stip, E., Paquet, F., Richer, F., Beriault, M., Rodriguez, J.P., and Motard, J.P. (2004). Procedural learning in schizophrenia can reflect the pharmacologic properties of the antipsychotic treatments. Cogn. Behav. Neurol. 17, 32–40.10.1097/00146965-200403000-00004Suche in Google Scholar PubMed
Schmajuk, N.A. (2001). Hippocampal dysfunction in schizophrenia. Hippocampus 11, 599–613.10.1002/hipo.1074Suche in Google Scholar PubMed
Schmajuk, N.A., Christiansen, B., and Cox, L. (2000). Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behav. Neurosci. 114, 659–670.10.1037/0735-7044.114.4.659Suche in Google Scholar
Schmidt-Hansen, M., Killcross, A.S., and Honey, R.C. (2009). Latent inhibition, learned irrelevance, and schizotypy: assessing their relationship. Cogn. Neuropsychiatry 14, 11–29.10.1080/13546800802664539Suche in Google Scholar PubMed
Schneider, K.K., Schote, A.B., Meyer, J., and Frings, C. (2015). Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. Cogn. Affect. Behav. Neurosci. 15, 104–116.10.3758/s13415-014-0320-9Suche in Google Scholar
Schooler, N.R. (1994). Negative symptoms in schizophrenia: assessment of the effect of risperidone. J. Clin. Psychiatry 55(Suppl.), 22–28.Suche in Google Scholar
Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593–1599.10.1126/science.275.5306.1593Suche in Google Scholar
Schwartz, M., Wiggins, O., Naudin, J., and Spitzer, M. (2005). Rebuilding reality: a phenomenology of aspects of chronic schizophrenia. Phenomenol. Cognit. Sci. 4, 91–115.10.1007/s11097-005-4738-ySuche in Google Scholar
Seeman, P. and Ulpian, C. (1983). Neuroleptics have identical potencies in human brain limbic and putamen regions. Eur. J. Pharmacol. 94, 145–148.10.1016/0014-2999(83)90452-1Suche in Google Scholar
Sereno, A.B. and Holzman, P.S. (1996). Spatial selective attention in schizophrenic, affective disorder, and normal subjects. Schizophr. Res. 20, 33–50.10.1016/0920-9964(95)00077-1Suche in Google Scholar
Serper, M.R. and Chou, J.C.Y. (1997). Novel neuroleptics improve attentional functioning in schizophrenic patients: ziprasidone and aripiprazole. CNS Spectrums 2, 56–59.10.1017/S1092852900005046Suche in Google Scholar
Shirazi-Southall, S., Rodriguez, D.E., and Nomikos, G.G. (2002). Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26, 583–594.10.1016/S0893-133X(01)00400-6Suche in Google Scholar
Shohamy, D., Myers, C.E., Kalanithi, J., and Gluck, M.A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci. Biobehav. Rev. 32, 219–236.10.1016/j.neubiorev.2007.07.008Suche in Google Scholar PubMed PubMed Central
Shohamy, D., Mihalakos, P., Chin, R., Thomas, B., Wagner, A.D., and Tamminga, C. (2009). Learning and generalization in schizophrenia: effects of disease and antipsychotic drug treatment. Biol. Psychiatry 67, 926–932.10.1016/j.biopsych.2009.10.025Suche in Google Scholar PubMed PubMed Central
Silverstein, S.M., Spaulding, W.D., Menditto, A.A., Savitz, A., Liberman, R.P., Berten, S., and Starobin, H. (2009). Attention shaping: a reward-based learning method to enhance skills training outcomes in schizophrenia. Schizophr. Bull. 35, 222–232.10.1093/schbul/sbm150Suche in Google Scholar PubMed PubMed Central
Smith, E.E., Eich, T.S., Cebenoyan, D., and Malapani, C. (2011). Intact and impaired cognitive-control processes in schizophrenia. Schizophr. Res. 126, 132–137.10.1016/j.schres.2010.11.022Suche in Google Scholar
Snyder, P.J., Jackson, C.E., Piskulic, D., Olver, J., Norman, T., and Maruff, P. (2008). Spatial working memory and problem solving in schizophrenia: the effect of symptom stabilization with atypical antipsychotic medication. Psychiatry Res. 160, 316–326.10.1016/j.psychres.2007.07.011Suche in Google Scholar
Somlai, Z., Moustafa, A.A., Keri, S., Myers, C.E., and Gluck, M.A. (2011). General functioning predicts reward and punishment learning in schizophrenia. Schizophr. Res. 127, 131–136.10.1016/j.schres.2010.07.028Suche in Google Scholar
Spencer, K.M., Nestor, P.G., Valdman, O., Niznikiewicz, M.A., Shenton, M.E., and McCarley, R.W. (2011). Enhanced facilitation of spatial attention in schizophrenia. Neuropsychology 25, 76–85.10.1037/a0020779Suche in Google Scholar
Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., and Friston, K. (2009). Bayesian model selection for group studies. Neuroimage 46, 1004–1017.10.1016/j.neuroimage.2009.03.025Suche in Google Scholar
Stip, E. (2006). [Cognition, schizophrenia and the effect of antipsychotics]. Encephale 32(3 Pt 1), 341–350.10.1016/S0013-7006(06)76162-0Suche in Google Scholar
Swerdlow, N.R., Braff, D.L., Hartston, H., Perry, W., and Geyer, M.A. (1996). Latent inhibition in schizophrenia. Schizophr. Res. 20, 91–103.10.1016/0920-9964(95)00097-6Suche in Google Scholar
Tamminga, C.A., Stan, A.D., and Wagner, A.D. (2010). The hippocampal formation in schizophrenia. Am. J. Psychiatry. 167, 1178–1193.10.1176/appi.ajp.2010.09081187Suche in Google Scholar PubMed
Tamrakar, S.M., Nepal, M.K., Koirala, N.R., Sharma, V.D., Gurung, C.K., and Adhikari, S.R. (2006). An open, randomized, comparative study of efficacy and safety of risperidone and haloperidol in schizophrenia. Kathmandu Univ. Med. J. 4, 152–160.Suche in Google Scholar
Tu, P.C., Yang, T.H., Kuo, W.J., Hsieh, J.C., and Su, T.P. (2006). Neural correlates of antisaccade deficits in schizophrenia, an fMRI study. J. Psychiatr. Res. 40, 606–612.10.1016/j.jpsychires.2006.05.012Suche in Google Scholar PubMed
Van Snellenberg, J.X., Torres, I.J., and Thornton, A.E. (2006). Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 20, 497–510.10.1037/0894-4105.20.5.497Suche in Google Scholar PubMed
van Veelen, N.M., Vink, M., Ramsey, N.F., and Kahn, R.S. (2010). Left dorsolateral prefrontal cortex dysfunction in medication-naive schizophrenia. Schizophr. Res. 123, 22–29.10.1016/j.schres.2010.07.004Suche in Google Scholar PubMed
Vita, A., De Peri, L., Deste, G., and Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2, e190.10.1038/tp.2012.116Suche in Google Scholar PubMed PubMed Central
Waltz, J.A., Frank, M.J., Robinson, B.M., and Gold, J.M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol. Psychiatry 62, 756–764.10.1016/j.biopsych.2006.09.042Suche in Google Scholar PubMed PubMed Central
Waltz, J.A., Frank, M.J., Wiecki, T.V., and Gold, J.M. (2011). Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 25, 86–97.10.1037/a0020882Suche in Google Scholar PubMed PubMed Central
Wasserman, J.I., Barry, R.J., Bradford, L., Delva, N.J., and Beninger, R.J. (2012). Probabilistic classification and gambling in patients with schizophrenia receiving medication: comparison of risperidone, olanzapine, clozapine and typical antipsychotics. Psychopharmacology (Berl) 222, 173–183.10.1007/s00213-011-2634-4Suche in Google Scholar PubMed
Weickert, T.W. and Goldberg, T.E. (2005). First- and second-generation antipsychotic medication and cognitive processing in schizophrenia. Curr. Psychiatry Rep. 7, 304–310.10.1007/s11920-005-0085-5Suche in Google Scholar PubMed
Weickert, T.W., Terrazas, A., Bigelow, L.B., Malley, J.D., Hyde, T., Egan, M.F., Weinberger, D.R., and Goldberg, T.E. (2002). Habit and skill learning in schizophrenia: evidence of normal striatal processing with abnormal cortical input. Learn. Mem. 9, 430–442.10.1101/lm.49102Suche in Google Scholar PubMed PubMed Central
Weickert, T.W., Goldberg, T.E., Egan, M.F., Apud, J.A., Meeter, M., Myers, C.E., Gluck, M.A., and Weinberger, D.R. (2010). Relative risk of probabilistic category learning deficits in patients with schizophrenia and their siblings. Biol. Psychiatry 67, 948–955.10.1016/j.biopsych.2009.12.027Suche in Google Scholar PubMed PubMed Central
Weickert, T.W., Leslie, F., Rushby, J.A., Hodges, J.R., and Hornberger, M. (2013a). Probabilistic association learning in frontotemporal dementia and schizophrenia. Cortex 49, 101–106.10.1016/j.cortex.2011.09.011Suche in Google Scholar PubMed
Weickert, T.W., Mattay, V.S., Das, S., Bigelow, L.B., Apud, J.A., Egan, M.F., Weinberger, D.R., and Goldberg, T.E. (2013b). Dopaminergic therapy removal differentially effects learning in schizophrenia and Parkinson’s disease. Schizophr. Res. 149, 162–166.10.1016/j.schres.2013.06.028Suche in Google Scholar PubMed PubMed Central
Weinberger, D.R. (1999). Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry 45, 395–402.10.1016/S0006-3223(98)00331-XSuche in Google Scholar
Wiesel, F.A., Farde, L., Nordstrom, A.L., and Sedvall, G. (1990). Central D1- and D2-receptor occupancy during antipsychotic drug treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 759–767.10.1016/0278-5846(90)90046-JSuche in Google Scholar
Williams, J.H., Wellman, N.A., Geaney, D.P., Cowen, P.J., Feldon, J., and Rawlins, J.N. (1998). Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br. J. Psychiatry 172, 243–249.10.1192/bjp.172.3.243Suche in Google Scholar PubMed
Woodward, N.D., Purdon, S.E., Meltzer, H.Y., and Zald, D.H. (2005). A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int. J. Neuropsychopharmacol. 8, 457–472.10.1017/S146114570500516XSuche in Google Scholar PubMed
Zierhut, K., Bogerts, B., Schott, B., Fenker, D., Walter, M., Albrecht, D., Steiner, J., Schütze, H., Northoff, G., Düzel, E., et al. (2010). The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. Psychiatry Res. 183, 187–194.10.1016/j.pscychresns.2010.03.007Suche in Google Scholar PubMed
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape
- Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit
- Putative duality of presynaptic events
- Emotion regulation strategies in trauma-related disorders: pathways linking neurobiology and clinical manifestations
- Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far?
- Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth
- The mental time travel continuum: on the architecture, capacity, versatility and extension of the mental bridge into the past and future
- Cognitive function in schizophrenia: conflicting findings and future directions
- Recent progress on the role of GABAergic neurotransmission in the pathogenesis of Alzheimer’s disease
Artikel in diesem Heft
- Frontmatter
- The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape
- Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit
- Putative duality of presynaptic events
- Emotion regulation strategies in trauma-related disorders: pathways linking neurobiology and clinical manifestations
- Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far?
- Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth
- The mental time travel continuum: on the architecture, capacity, versatility and extension of the mental bridge into the past and future
- Cognitive function in schizophrenia: conflicting findings and future directions
- Recent progress on the role of GABAergic neurotransmission in the pathogenesis of Alzheimer’s disease