The functional role of all postsynaptic potentials examined from a first-person frame of reference
Abstract
When assigning a central role to the neuronal firing, a large number of incoming postsynaptic potentials not utilized during both supra- and subthreshold neuronal activations are not given any functional significance. Local synaptic potentials at the apical dendrites get attenuated as they arrive at the soma to nearly a twentieth of what a synapse proximal to the soma produces. Conservation of these functions necessitates searching for their functional roles. Potentials induced at the postsynapses of neurons of all the neuronal orders activated by sensory inputs carry small bits of sensory information. The activation of these postsynapses by any means other than the activation from their corresponding presynaptic terminals, that also contribute to oscillating potentials, induce the semblance of the arrival of activity from their presynaptic terminals. This is a candidate mechanism for inducing the first-person internal sensory elements of various higher brain functions as a systems property. They also contribute to the firing of subthreshold-activated neurons, including motor neurons. Operational mechanism of inter-postsynaptic functional LINKs can provide necessary structural requirements for these functions. The functional independence of the distal dendritic compartment and recent evidence for in vivo dendritic spikes indicate their independent role in the formation of internal sensory elements. In these contexts, a neuronal soma is flanked by a large number of quasi-functional internal sensory processing units operated using very little energy, even when a neuron is not firing. A large number of possible combinations of internal sensory units explains the corresponding number of specific memory retrievals by the system in response to various cue stimuli.
Acknowledgments
I thank Selena Beckman-Harned for reading the original manuscript. Partial funding was provided by Neurosearch Center, Toronto (grant number: 3:24/2014).
References
Abbas, A.K., Villers, A., and Ris, L. (2015). Temporal phases of long-term potentiation (LTP): myth or fact? Rev. Neurosci. 26, 507–546.Suche in Google Scholar
Abeles, M. (1991). Corticonics, Neural Circuits of the Cerebral Cortex (Cambridge: Cambridge University Press).10.1017/CBO9780511574566Suche in Google Scholar
Adolfsen, B., Saraswati, S., Yoshihara, M., and Littleton, J.T. (2004). Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. J. Cell Biol. 166, 249–260.10.1083/jcb.200312054Suche in Google Scholar PubMed PubMed Central
Alberini, C.M. and Kandel, E.R. (2014). The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021741.10.1101/cshperspect.a021741Suche in Google Scholar PubMed PubMed Central
Alivisatos, A.P., Chun, M., Church, G.M., Greenspan, R.J., Roukes, M.L., and Yuste, R. (2012). The brain activity map project and the challenge of functional connectomics. Neuron 74, 970–974.10.1016/j.neuron.2012.06.006Suche in Google Scholar PubMed PubMed Central
Alkire, M.T., Hudetz, A.G., and Tononi, G. (2008). Consciousness and anesthesia. Science 322, 876–880.10.1126/science.1149213Suche in Google Scholar PubMed PubMed Central
Antic, S.D., Zhou, W.L., Moore, A.R., Short, S.M., and Ikonomu, K.D. (2010). The decade of the dendritic NMDA spike. J. Neurosci. Res. 88, 2991–3001.10.1002/jnr.22444Suche in Google Scholar PubMed PubMed Central
Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsáki, G., Cauli, B., Defelipe, J., and Fairén, A., et al. (2008). Petilla terminology, nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568.10.1038/nrn2402Suche in Google Scholar PubMed PubMed Central
Baker, L.R. (2011). First-person aspects of agency. Metaphilosophy 42, 1–16.10.1111/j.1467-9973.2010.01677.xSuche in Google Scholar
Behabadi, B.F. and Mel, B.W. (2014). Mechanisms underlying subunit independence in pyramidal neuron dendrites. Proc. Natl. Acad. Sci. USA 111, 498–503.10.1073/pnas.1217645111Suche in Google Scholar PubMed PubMed Central
Benardo, L. (1997). Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J. Neurophysiol. 77, 3134–3144.10.1152/jn.1997.77.6.3134Suche in Google Scholar PubMed
Benavides-Piccione, R., Fernaud-Espinosa, I., Robles, V., Yuste, R., and DeFelipe, J. (2013). Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb. Cortex 23, 1798–1810.10.1093/cercor/bhs154Suche in Google Scholar PubMed PubMed Central
Burette, A.C., Lesperance, T., Crum, J., Martone, M., Volkmann, N., Ellisman, M.H., and Weinberg, R.J. (2012). Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697–2711.10.1002/cne.23067Suche in Google Scholar PubMed PubMed Central
Burgess, S.W., McIntosh, T.J., and Lentz, B.R. (1992). Modulation of poly(ethylene glycol)-induced fusion by membrane hydration, importance of interbilayerseparation. Biochemistry 31, 2653–2661.10.1021/bi00125a004Suche in Google Scholar PubMed
Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer, J.A. 3rd, Liu, Z., et al. (2014). Lattice light-sheet microscopy, imaging molecules to embryos at high spatiotemporal resolution. Science 346, 439–452.10.1126/science.1257998Suche in Google Scholar PubMed PubMed Central
Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782–788.10.1038/nature03012Suche in Google Scholar PubMed
Cichon, J. and Gan, W.B. (2015). Branch-specific dendritic Ca (2+) spikes cause persistent synaptic plasticity. Nature 520, 180–185.10.1038/nature14251Suche in Google Scholar PubMed PubMed Central
Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., and Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–98.10.1038/378075a0Suche in Google Scholar PubMed
Cohen, F.S. and Melikyan, G.B. (2004). The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14.10.1007/s00232-004-0669-8Suche in Google Scholar PubMed
Cragg, B.G. (1967). The density of synapses and neurons in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654.Suche in Google Scholar
de Wit, J., Sylwestrak, E, O’Sullivan, M.L., Otto, S., Tiglio, K., Savas, J.N., Yates, J.R. 3rd, Comoletti, D., Taylor, P., and Ghosh, A. (2009). LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron 64, 799–806.10.1016/j.neuron.2009.12.019Suche in Google Scholar PubMed PubMed Central
Draguhn, A., Traub, R.D., Schmitz, D., and Jefferys, J.G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189–192.10.1038/28184Suche in Google Scholar PubMed
Ecker, A.S., Berens, P., Keliris, G.A., Bethge, M., Logothetis, N.K., and Tolias, A.S. (2010). Decorrelated neuronal firing in the cortical microcircuits. Science 327, 584–587.10.1126/science.1179867Suche in Google Scholar
Floyd, D.L., Ragains, J.R., Skehel, J.J., Harrison, S.C., and van Oijen, A.M. (2008). Single-particle kinetics of influenza virus membrane fusion Proc. Natl. Acad. Sci. USA 105, 15382.Suche in Google Scholar
Floyd, D.L., Harrison, S.C., and van Oijen, A.M. (2009). Method for measurement of viral fusion kinetics at the single particle level. J. Vis. Exp. 31, e1484.10.3791/1484Suche in Google Scholar
Fratti, R.A., Jun, Y., Merz, A.J., Margolis, N., and Wickner, W. (2004). Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 167, 1087–1098.10.1083/jcb.200409068Suche in Google Scholar
Freund, T.F. and Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus 6, 347–470.10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-ISuche in Google Scholar
Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., and Holtmaat, A. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119.10.1038/nature13664Suche in Google Scholar
Gidon, A. and Segev, I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron 75, 330–341.10.1016/j.neuron.2012.05.015Suche in Google Scholar
Giraudo, C.G., Hu, C., You, D., Slovic, A.M., Mosharov, E.V., Sulzer, D., Melia, T.J., and Rothman, J.E. (2005). SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260.10.1083/jcb.200501093Suche in Google Scholar
Grienberger, C., Chen, X., and Konnerth, A. (2014). NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81, 1274–1281.10.1016/j.neuron.2014.01.014Suche in Google Scholar
Gruber, A.J., Hussain, R.J., and O’Donnell, P. (2009). The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS One 4, e5062.10.1371/journal.pone.0005062Suche in Google Scholar
Hardie, J. and Spruston, N. (2009). Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J. Neurosci. 29, 3233–3241.10.1523/JNEUROSCI.6000-08.2009Suche in Google Scholar
Harris, K.D., Henze, D.A., Hirase, H., Leinekugel, X., Dragoi, G., Czurkó, A., and Buzsáki, G. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417, 738–741.10.1038/nature00808Suche in Google Scholar PubMed
Henley, J.M., Barker, E.A., and Glebov, O.O. (2011). Routes, destinations and delays, recent advances in AMPA receptor trafficking. Trends. Neurosci. 34, 258–268.10.1016/j.tins.2011.02.004Suche in Google Scholar PubMed PubMed Central
Hinton, G. (2014). Where do features come from? Cog. Science 38, 1079–1101.Suche in Google Scholar
Hofmann, M.W., Peplowska, K., Rohde, J., Poschner, B.C., Ungermann, C., and Langosch, D. (2006). Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition, J. Mol. Biol. 364, 1048–1060.10.1016/j.jmb.2006.09.077Suche in Google Scholar PubMed
Howell, R.J. (2013). Perception from the first-person perspective. Eur. J. Philos. doi: 10.1111/ejop.12065.10.1111/ejop.12065Suche in Google Scholar
Ison, M.J., QuianQuiroga, R., and Fried, I. (2015). Rapid encoding of new memories by individual neurons in the human brain. Neuron 87, 220–230.10.1016/j.neuron.2015.06.016Suche in Google Scholar PubMed PubMed Central
Jacob, A.L. and Weinberg, R.J. (2014). The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25, 798–812.10.1002/hipo.22404Suche in Google Scholar PubMed PubMed Central
Jadi, M., Polsky, A., Schiller, J., and Mel, B.W. (2012). Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. PLoS Comput. Biol. 8, e1002550.10.1371/journal.pcbi.1002550Suche in Google Scholar PubMed PubMed Central
Jurado, S., Goswami, D., Zhang, Y., Molina, A.J., Südhof, T.C., and Malenka, R.C. (2013). LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77, 542–558.10.1016/j.neuron.2012.11.029Suche in Google Scholar PubMed PubMed Central
Karunakaran, S. and Fratti, R.A. (2003). The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 6, 650–662.Suche in Google Scholar
Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A.L., Dhawale, A.K., and Kampff, A.R., and Ölveczky, B.P. (2015). Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812.10.1016/j.neuron.2015.03.024Suche in Google Scholar PubMed PubMed Central
Kitanishi, T., Ujita, S., Fallahnezhad, M., Kitanishi, N., Ikegaya, Y., and Tashiro, A. (2015). Novelty-induced phase-locked firing to slow gamma oscillations in the hippocampus, requirement of synaptic plasticity. Neuron 86, 1265–1276.10.1016/j.neuron.2015.05.012Suche in Google Scholar PubMed
Koob, G. (1996). Hedonic valence, dopamine and motivation. Mol. Psychiatry 1, 186.Suche in Google Scholar
Kopec, C.D., Li, B., Wei, W., Boehm, J., and Malinow R. (2006). Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009.10.1523/JNEUROSCI.3918-05.2006Suche in Google Scholar
Kozlov, M.M., McMahon, H.T., and Chernomordik, L.V. (2010). Protein-driven membrane stresses infusion and fission. Trends Biochem. Sci. 35, 699–706.10.1016/j.tibs.2010.06.003Suche in Google Scholar
Kramer, R.H., Fortin, D.L., and Trauner, D. (2009). New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552.10.1016/j.conb.2009.09.004Suche in Google Scholar
Kuwajima, M., Mendenhall, J.M., Lindsey, L.F., and Harris, K.M. (2013). Automated transmission-mode scanning electron microscopy (tSEM) for large volume analysis at nanoscale resolution. PLoS One 8, e59573.10.1371/journal.pone.0059573Suche in Google Scholar
Larkum, M.E., Waters, J., Sakmann, B., and Helmchen, F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J.Neurosci. 27, 8999–9008.10.1523/JNEUROSCI.1717-07.2007Suche in Google Scholar
Larkum, M.E., Nevian, T., Sandler, M., Polsky, A., and Schiller, J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons, a new unifying principle. Science 325, 756–760.10.1126/science.1171958Suche in Google Scholar
Laurén, J., Airaksinen, M.S., Saarma, M., and Timmusk, T. (2003). A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 81, 411–421.10.1016/S0888-7543(03)00030-2Suche in Google Scholar
Lee, D., Lin, B.J., and Lee, A.K. (2012). Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853.10.1126/science.1221489Suche in Google Scholar
Leikin, S.L., Kozlov, M.M., Chernomordik, L.V., Markin, V.S., and Chizmadzhev, Y.A. (1987). Membrane fusion, overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 129, 411–425.10.1016/S0022-5193(87)80021-8Suche in Google Scholar
Lisman, J.E. (1997). Bursts as a unit of neural information, making unreliable synapses reliable. Trends Neurosci. 20, 38–43.10.1016/S0166-2236(96)10070-9Suche in Google Scholar
Lisman, J. and Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bull. 34, 974–980.10.1093/schbul/sbn060Suche in Google Scholar PubMed PubMed Central
Liu, T., Wang, T., Chapman, E.R., and Weisshaar, J.C. (2008). Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J. 94, 1303–1314.10.1529/biophysj.107.107896Suche in Google Scholar PubMed PubMed Central
Lledo, P.M., Zhang, X., Südhof, T.C., Malenka, R.C., and Nicoll, R.A. (1998). Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403.10.1126/science.279.5349.399Suche in Google Scholar PubMed
Lorincz, A. and Nusser, Z. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science 328, 906–909.10.1126/science.1187958Suche in Google Scholar PubMed PubMed Central
Losonczy, A. and Magee, J.C. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.10.1016/j.neuron.2006.03.016Suche in Google Scholar PubMed
Machamer, P., Darden, L., and Craver, C.F. (2000). Thinking about mechanisms. Philos. Sci. 67, 1–25.10.1086/392759Suche in Google Scholar
Magee, J.C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624.10.1523/JNEUROSCI.18-19-07613.1998Suche in Google Scholar
Magee, J., Hoffman, D., Colbert, C., and Johnston, D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346.10.1146/annurev.physiol.60.1.327Suche in Google Scholar PubMed
Makino, H. and Malinow, R. (2009). AMPA receptor incorporation into synapses during LTP, the role of lateral movement and exocytosis. Neuron 64, 381–390.10.1016/j.neuron.2009.08.035Suche in Google Scholar PubMed PubMed Central
Martens, S. and McMahon, H.T. (2008). Mechanisms of membrane fusion, disparate players and common principles. Nat. Rev. Mol. Cell. Biol. 9, 543–556.10.1038/nrm2417Suche in Google Scholar PubMed
Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., and Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092.10.1038/nn736Suche in Google Scholar
Mattila, J.P., Shnyrova, A.V, Sundborger, A.C., Hortelano, E.R., Fuhrmans, M., Neumann, S., Müller, M., Hinshaw, J.E., Schmid, S.L., and Frolov, V.A. (2015). A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524, 109–116.10.1038/nature14509Suche in Google Scholar
McDonnell, M.D., Boahen, K., Ijspeert, A., and Sejnowski, T.J. (2014). Engineering intelligent electronic systems based on computational neuroscience. Proc. IEEE 102, 646–651.10.1109/JPROC.2014.2314776Suche in Google Scholar
Mel, B.W. (1994). Information processing in dendritic trees. Neural Comput. 6, 1031–1085.10.1162/neco.1994.6.6.1031Suche in Google Scholar
Melikyan, G.B. and Chernomordik, L.V. (1997). Membrane rearrangements in fusion mediated by viral proteins. Trends Microbiol. 5, 349–355.10.1016/S0966-842X(97)01107-4Suche in Google Scholar
Mercer, A. (2012). Electrically coupled excitatory neurones in cortical regions. Brain Res. 1487, 192–197.10.1016/j.brainres.2012.03.069Suche in Google Scholar PubMed
Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., et al. (2014). Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673.10.1126/science.1254642Suche in Google Scholar PubMed
Minsky, M. (1980). K-lines, a theory of memory. Cogn. Sci. 4, 117–133.10.1207/s15516709cog0402_1Suche in Google Scholar
Mori, Y. and Fukuda, M. (2011). Synaptotagmin IV acts as a multi-functional regulator of Ca2+ dependent exocytosis. Neurochem. Res. 36, 1222–1227.10.1007/s11064-010-0352-7Suche in Google Scholar PubMed
Nicoll, R.A. and Roche, K.W. (2013). Long-term potentiation, peeling the onion. Neuropharmacology 74, 18–22.10.1016/j.neuropharm.2013.02.010Suche in Google Scholar PubMed PubMed Central
Northoff, G. and Heinzel, A. (2006). First-person neuroscience, a new methodological approach for linking mental and neuronal states. Philos. Ethics Humanit. Med. 1, E3.10.1186/1747-5341-1-3Suche in Google Scholar
O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.10.1016/0006-8993(71)90358-1Suche in Google Scholar
Opazo, P., Sainlos, M., and Choquet, D. (2012). Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr. Opin. Neurobiol. 22, 453–460.10.1016/j.conb.2011.10.010Suche in Google Scholar
Overgaard, M., Gallagher, S., and Ramsøy, T.Z. (2008). An integration of first-person methodologies in cognitive science. J. Consciousness Stud. 15, 100–120.Suche in Google Scholar
Palmer, L., Murayama, M., and Larkum, M. (2012). Inhibitory regulation of dendritic activity in vivo. Front. Neural Circuit. 6, 26.10.3389/fncir.2012.00026Suche in Google Scholar
Palmer, L.M., Shai, A.S., Reeve, J.E., Anderson, H.L, Paulsen, O., and Larkum, M.E. (2014). NMDA spikes enhance action potential generation during sensory input. Nat. Neurosci. 17, 383–390.10.1038/nn.3646Suche in Google Scholar
Papp, E., Leinekugel, X., Henze, D.A., Lee, J., and Buzsáki, G. (2001). The apical shaft of CA1 pyramidal cells is under GABAergic interneuronal control. Neuroscience 102, 715–721.10.1016/S0306-4522(00)00584-4Suche in Google Scholar
Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A., and Ehlers, M.D. (2004). Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975.10.1126/science.1102026Suche in Google Scholar PubMed
Passafaro, M., Piech, V., and Sheng M. (2001). Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926.10.1038/nn0901-917Suche in Google Scholar PubMed
Polsky, A., Mel, B.W., and Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627.10.1038/nn1253Suche in Google Scholar PubMed
Polsky, A., Mel, B., and Schiller, J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J. Neurosci. 29, 11891–11903.10.1523/JNEUROSCI.5250-08.2009Suche in Google Scholar PubMed PubMed Central
Regehr, W., Kehoe, J.S., Ascher, P., and Armstrong, C. (1993). Synaptically triggered action potentials in dendrites. Neuron 11, 145–151.10.1016/0896-6273(93)90278-YSuche in Google Scholar
Reisel, D., Bannerman, D.M., Schmitt, W.B., Deacon, R.M., Flint, J., Borchardt, T., Seeburg, P.H., and Rawlins, J.N. (2002). Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868–873.10.1038/nn910Suche in Google Scholar PubMed
Robison, A.J. and Nestler, E.J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12, 623–637.10.1038/nrn3111Suche in Google Scholar PubMed PubMed Central
Royer, S., Zemelman, B.V., Losonczy, A., Kim, J., Chance, F., Magee, J.C., and Buzsáki, G. (2012). Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775.10.1038/nn.3077Suche in Google Scholar PubMed PubMed Central
Sanchez-Vives, M.V. and McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034.10.1038/79848Suche in Google Scholar PubMed
Sasaki, T., Leutgeb, S., and Leutgeb, J.K. (2015). Spatial and memory circuits in the medial entorhinal cortex. Curr. Opin. Neurobiol. 32, 16–23.10.1016/j.conb.2014.10.008Suche in Google Scholar PubMed PubMed Central
Schiller, J., Helmchen, F., and Sakmann, B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurons. J. Physiol. 487.3, 583–600.10.1113/jphysiol.1995.sp020902Suche in Google Scholar PubMed PubMed Central
Sejnowski, T.J., Poizner, H., Lynch. G., Gepshtein, S., and Greenspan, R.J. (2014). Prospective Optimization. Proc. IEEE 102, 799–811.10.1109/JPROC.2014.2314297Suche in Google Scholar PubMed PubMed Central
Selimbeyoglu, A. and Parvizi, J. (2010). Electrical stimulation of the human brain, perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46.10.3389/fnhum.2010.00046Suche in Google Scholar PubMed PubMed Central
Sheffield, M.E. and Dombeck, D.A. (2015). Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517, 200–204.10.1038/nature13871Suche in Google Scholar PubMed PubMed Central
Shepherd, G.M. (1991). Foundations of the Neuron Doctrine (New York: Oxford University Press).Suche in Google Scholar
Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K., and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816.10.1126/science.284.5421.1811Suche in Google Scholar PubMed
Soler-Llavina, G.J., Arstikaitis, P., Morishita, W., Ahmad, M., Südhof, T.C, and Malenka, R.C. (2013). Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. Neuron 79, 439–446.10.1016/j.neuron.2013.06.007Suche in Google Scholar PubMed PubMed Central
Spruston, N. (2008). Pyramidal neurons, dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221.10.1038/nrn2286Suche in Google Scholar PubMed
Stenner, M.P., Litvak, V., Rutledge, R.B., Zaehle, T., Schmitt, F.C., Voges, J., Heinze, H.J., and Dolan, R.J. (2015). Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection. J. Neurophysiol. 114, 29–39.10.1152/jn.00988.2014Suche in Google Scholar PubMed PubMed Central
Stuart, G., Schiller, J., and Sakmann, B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505, 617–632.10.1111/j.1469-7793.1997.617ba.xSuche in Google Scholar PubMed PubMed Central
Tang, C.M. and Thompson, S.M. (2012) Perturbations of Dendritic Excitability in Epilepsy. Jasper’s Basic Mechanisms of The Epilepsies (Internet). J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, A.V. Delgado-Escueta, eds. 4th ed. (Bethesda, MD: National Center for Biotechnology Information), pp. 1–14.10.1093/med/9780199746545.003.0037Suche in Google Scholar
Tse, D., Langston, R.F., Kakeyama, M., Bethus, I., Spooner, P.A., Wood, E.R., Witter, M.P., and Morris, R.G. (2007). Schemas and memory consolidation. Science 316, 76–82.10.1126/science.1135935Suche in Google Scholar PubMed
Tye, K.M., Stuber, G.D., de Ridder, B., Bonci, A., and Janak, P.H. (2008). Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453, 1253–1257.10.1038/nature06963Suche in Google Scholar PubMed PubMed Central
Vadakkan, K.I. (2007). Semblance of activity at the shared postsynapses and extracellular matrices – A structure function hypothesis of memory. iUniverse publishers. ISBN: 978-0-595-47002-0.Suche in Google Scholar
Vadakkan, K.I. (2010). Framework of consciousness from semblance of activity at functionally LINKed postsynaptic membranes. Front. Psychol. 1, 168.10.3389/fpsyg.2010.00168Suche in Google Scholar PubMed PubMed Central
Vadakkan, K.I. (2011). Processing semblances induced through inter-postsynaptic functional LINKs, presumed biological parallels of K-Lines proposed for building artificial intelligence. Front. Neuroeng. 4, 8.10.3389/fneng.2011.00008Suche in Google Scholar PubMed PubMed Central
Vadakkan, K.I. (2013). A supplementary circuit rule-set for the neuronal wiring. Front. Hum. Neurosci. 1, 170.10.3389/fnhum.2013.00170Suche in Google Scholar PubMed PubMed Central
Vadakkan, K.I. (2014). An electronic circuit model of the interpostsynaptic functional LINK designed to study the formation of internal sensations in the nervous system. Adv. Artif. Neural Syst. 2014, 318390.10.1155/2014/318390Suche in Google Scholar
Vadakkan, K.I. (2015). A pressure-reversible cellular mechanism of general anesthetics capable of altering a possible mechanism for consciousness. SpringerPlus 4, 485.10.1186/s40064-015-1283-1Suche in Google Scholar PubMed PubMed Central
Varela, F.J. and Shear, J. (1999). First-person methodologies, What, Why, How? J. Consciousness Stud. 6, 1–14.Suche in Google Scholar
Wei, D.S., Mei, Y.A., Baga, A., Kao, J.P.Y., Thompson, S.M., and Tang, C.M. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275.10.1126/science.1061198Suche in Google Scholar PubMed
Wespatat, V., Tennigkeit, F., and Singer, W. (2004). Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J. Neurosci. 24, 9067–9075.10.1523/JNEUROSCI.2221-04.2004Suche in Google Scholar PubMed PubMed Central
Williams, S.R. and Stuart, G.J. (2000). Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182.10.1152/jn.2000.83.5.3177Suche in Google Scholar PubMed
Wilson, C.J., Groves, P.M., Kitai, S.T., and Linder, J.C. (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J. Neurosci. 3, 383–388.10.1523/JNEUROSCI.03-02-00383.1983Suche in Google Scholar
Wise, R.A. (2004). Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494.10.1038/nrn1406Suche in Google Scholar PubMed
Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S., and Kasai, H. (2014). A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620.10.1126/science.1255514Suche in Google Scholar PubMed PubMed Central
Yaron-Jakoubovitch, A., Koch, C., Segev, I., and Yarom, Y. (2013). The unimodal distribution of sub-threshold, ongoing activity in cortical networks. Front. Neural Circuits 7, 116.10.3389/fncir.2013.00116Suche in Google Scholar PubMed PubMed Central
Yatsenko, D., Josić, K., Ecker, A.S., Froudarakis, E., Cotton, R.J., and Tolias, A.S. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS Comput. Biol. 11, e1004083.10.1371/journal.pcbi.1004083Suche in Google Scholar PubMed PubMed Central
Zaidi, Q., Victor, J., McDermott, J., Geffen, M., Bensmaia, S., and Cleland, T.A. (2013). Perceptual spaces, mathematical structures to neural mechanisms. J. Neurosci. 33, 17597–17602.10.1523/JNEUROSCI.3343-13.2013Suche in Google Scholar PubMed PubMed Central
Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K.M., Köster, H.J., Borchardt, T., Worley, P., et al. (1999). Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811.10.1126/science.284.5421.1805Suche in Google Scholar PubMed
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Neurotransmitter receptor complexes: methods for bioanalysis, their potentials and limitations
- The multifunctional lateral geniculate nucleus
- The functional role of all postsynaptic potentials examined from a first-person frame of reference
- Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease
- Mild cognitive impairment affects motor control and skill learning
- The bridge between two worlds: psychoanalysis and fMRI
Artikel in diesem Heft
- Frontmatter
- Neurotransmitter receptor complexes: methods for bioanalysis, their potentials and limitations
- The multifunctional lateral geniculate nucleus
- The functional role of all postsynaptic potentials examined from a first-person frame of reference
- Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease
- Mild cognitive impairment affects motor control and skill learning
- The bridge between two worlds: psychoanalysis and fMRI