Startseite The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia

  • Agnieszka Nikiforuk EMAIL logo
Veröffentlicht/Copyright: 6. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In addition to positive and negative symptoms, cognitive deficits are increasingly being recognized as a core feature of schizophrenia. Neurocognitive impairments are strongly associated with functional outcomes; thus, the treatment of cognitive impairments is of central importance. A large body of evidence suggests that the serotonin 6 (5-HT6) receptors may be potential targets for cognitive improvement. Clinical and preclinical studies have supported the notion that using 5-HT6 receptor antagonists is a promising component in the treatment of cognitive dysfunctions associated with aging and Alzheimer’s disease. However, less is known about the efficacy of this strategy in the treatment of schizophrenia-like cognitive disturbances. The purpose of this review is to summarize existing data on the effects of 5-HT6 receptor antagonists in animal experiments, utilizing tasks that assess cognitive domains that are relevant to the cognitive deficits characterizing schizophrenia. This review focuses primarily on animal models of schizophrenia that are based on the blockade of N-methyl-d-aspartate receptors; however, when relevant, data obtained in other models are also discussed. The putative procognitive actions of 5-HT6 agonists are also reviewed. Finally, the mechanisms that are putatively responsible for the procognitive effects of 5-HT6 receptor ligands are briefly discussed.


Corresponding author: Agnieszka Nikiforuk, Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland, e-mail:

Acknowledgments

This study was supported by the Statutory Funds of the Institute of Pharmacology, Polish Academy of Sciences and project ‘Prokog’, UDA-POIG.01.03.01-12-063/09-00, co-financed by the European Union from the European Fund of Regional Development (EFRD).

References

Antunes, M. and Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process 13, 93–110.10.1007/s10339-011-0430-zSuche in Google Scholar

Arnt, J. and Olsen, C.K. (2011). 5-HT6 receptor ligands and their antipsychotic potential. Int. Rev. Neurobiol. 96, 141–161.10.1016/B978-0-12-385902-0.00006-1Suche in Google Scholar

Arnt, J. and Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? a review of the evidence. Neuropsychopharmacology 18, 63–101.10.1016/S0893-133X(97)00112-7Suche in Google Scholar

Arnt, J., Bang-Andersen, B., Grayson, B., Bymaster, F.P., Cohen, M.P., DeLapp, N.W., Giethlen, B., Kreilgaard, M., McKinzie, D.L., Neill, J.C., et al. (2010). Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int. J. Neuropsychopharmacol. 13, 1021–1033.10.1017/S1461145710000659Suche in Google Scholar PubMed

Bari, A., Dalley, J.W., and Robbins, T.W. (2008). The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3, 759–767.10.1038/nprot.2008.41Suche in Google Scholar PubMed

Birrell, J.M. and Brown, V.J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320–4324.10.1523/JNEUROSCI.20-11-04320.2000Suche in Google Scholar

Bissonette, G.B. and Powell, E.M. (2012). Reversal learning and attentional set-shifting in mice. Neuropharmacology 62, 1168–1174.10.1016/j.neuropharm.2011.03.011Suche in Google Scholar PubMed PubMed Central

Braff, D.L. (1993). Information processing and attention dysfunctions in schizophrenia. Schizophr. Bull. 19, 233–259.10.1093/schbul/19.2.233Suche in Google Scholar PubMed

Braff, D.L. and Light, G.A. (2004). Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology (Berl) 174, 75–85.10.1007/s00213-004-1848-0Suche in Google Scholar PubMed

Broberg, B.V., Dias, R., Glenthoj, B.Y., and Olsen, C.K. (2008). Evaluation of a neurodevelopmental model of schizophrenia – Early postnatal PCP treatment in attentional set-shifting. Behav. Brain Res. 190, 160–163.10.1016/j.bbr.2008.02.020Suche in Google Scholar PubMed

Broberg, B.V., Glenthoj, B.Y., Dias, R., Larsen, D.B., and Olsen, C.K. (2009). Reversal of cognitive deficits by an ampakine (CX516) and sertindole in two animal models of schizophrenia--sub-chronic and early postnatal PCP treatment in attentional set-shifting. Psychopharmacology (Berl) 206, 631–640.10.1007/s00213-009-1540-5Suche in Google Scholar PubMed

Buckley, P.F., Miller, B.J., Lehrer, D.S., and Castle, D.J. (2009). Psychiatric comorbidities and schizophrenia. Schizophr. Bull. 35, 383–402.10.1093/schbul/sbn135Suche in Google Scholar PubMed PubMed Central

Burnham, K.E., Baxter, M.G., Bainton, J.R., Southam, E., Dawson, L.A., Bannerman, D.M., and Sharp, T. (2010). Activation of 5-HT(6) receptors facilitates attentional set shifting. Psychopharmacology (Berl) 208, 13–21.10.1007/s00213-009-1701-6Suche in Google Scholar PubMed

Carr, G.V., Schechter, L.E., and Lucki, I. (2011). Antidepressant and anxiolytic effects of selective 5-HT6 receptor agonists in rats. Psychopharmacology (Berl) 213, 499–507.10.1007/s00213-010-1798-7Suche in Google Scholar PubMed PubMed Central

Chuang, A.T.T., Foley, A., Pugh, P.L., Sunter, D., Tong X, Regan, C., and Dawson, L.A. (2006). 5-HT6 receptor antagonist SB-742457 as a novel cognitive enhancing agent for Alzheimer’s disease. Alzheimer’s Dementia 2, S631–S632.10.1016/j.jalz.2006.05.2128Suche in Google Scholar

Cochran, S.M., Kennedy, M., McKerchar, C.E., Steward, L.J., Pratt, J.A., and Morris, B.J. (2003). Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28, 265–275.10.1038/sj.npp.1300031Suche in Google Scholar PubMed

Codony, X., Burgueno, J., Ramirez, M.J., and Vela, J.M. (2010). 5-HT6 receptor signal transduction second messenger systems. Int. Rev. Neurobiol. 94, 89–110.10.1016/B978-0-12-384976-2.00004-6Suche in Google Scholar PubMed

Couture, S.M., Penn, D.L., and Roberts, D.L. (2006). The functional significance of social cognition in schizophrenia: a review. Schizophr. Bull. 32 (Suppl 1), S44–S63.10.1093/schbul/sbl029Suche in Google Scholar PubMed PubMed Central

Da Silva Costa-Aze, V., Dauphin, F., and Boulouard, M. (2011). Serotonin 5-HT6 receptor blockade reverses the age-related deficits of recognition memory and working memory in mice. Behav. Brain Res. 222, 134–140.10.1016/j.bbr.2011.03.046Suche in Google Scholar PubMed

Da Silva Costa-Aze, V., Quiedeville, A., Boulouard, M., and Dauphin, F. (2012). 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology (Berl) 222, 99–115.10.1007/s00213-011-2627-3Suche in Google Scholar PubMed

Damgaard, T., Larsen, D.B., Hansen, S.L., Grayson, B., Neill, J.C., and Plath, N. (2010). Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats. Behav. Brain Res. 207, 144–150.10.1016/j.bbr.2009.09.048Suche in Google Scholar

Dawson, L.A. (2011). The central role of 5-HT6 receptors in modulating brain neurochemistry. Int. Rev. Neurobiol. 96, 1–26.10.1016/B978-0-12-385902-0.00001-2Suche in Google Scholar

Dawson, L.A., Nguyen, H.Q., and Li, P. (2000). In vivo effects of the 5-HT(6) antagonist SB-271046 on striatal and frontal cortex extracellular concentrations of noradrenaline, dopamine, 5-HT, glutamate and aspartate. Br. J. Pharmacol. 130, 23–26.10.1038/sj.bjp.0703288Suche in Google Scholar

Dawson, L.A., Nguyen, H.Q., and Li, P. (2001). The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25, 662–668.10.1016/S0893-133X(01)00265-2Suche in Google Scholar

Dawson, N., Thompson, R.J., McVie, A., Thomson, D.M., Morris, B.J., and Pratt, J.A. (2012). Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr. Bull. 38, 457–474.10.1093/schbul/sbq090Suche in Google Scholar PubMed PubMed Central

de Bruin, N.M., McCreary, A.C., van Loevezijn, A., de Vries, T.J., Venhorst, J., van Drimmelen, M., and Kruse, C.G. (2013a). A novel highly selective 5-HT6 receptor antagonist attenuates ethanol and nicotine seeking but does not affect inhibitory response control in Wistar rats. Behav. Brain Res. 236, 157–165.10.1016/j.bbr.2012.08.048Suche in Google Scholar PubMed

de Bruin, N.M., van Drimmelen, M., Kops, M., van Elk, J., Middelveld-van de Wetering, M., and Schwienbacher, I. (2013b). Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats. Behav. Brain Res. 244, 15–28.10.1016/j.bbr.2013.01.035Suche in Google Scholar PubMed

Didriksen, M., Skarsfeldt, T., and Arnt, J. (2007). Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics. Psychopharmacology (Berl) 193, 225–233.10.1007/s00213-007-0774-3Suche in Google Scholar PubMed

Dudchenko, P.A., Wood, E.R., and Eichenbaum, H. (2000). Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. J. Neurosci. 20, 2964–2977.10.1523/JNEUROSCI.20-08-02964.2000Suche in Google Scholar

Dudchenko, P.A., Talpos, J., Young, J., and Baxter, M.G. (2013). Animal models of working memory: A review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia. Neurosci. Biobehav. Rev. 37, 2111–2124.10.1016/j.neubiorev.2012.03.003Suche in Google Scholar PubMed

Eisenberg, D.P. and Berman, K.F. (2010). Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35, 258–277.10.1038/npp.2009.111Suche in Google Scholar

Elvevag, B. and Goldberg, T.E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev. Neurobiol. 14, 1–21.10.1615/CritRevNeurobiol.v14.i1.10Suche in Google Scholar

Engelmann, M., Wotjak, C.T., and Landgraf, R. (1995). Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol Behav. 58, 315–321.10.1016/0031-9384(95)00053-LSuche in Google Scholar

Ennaceur, A. and Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31, 47–59.10.1016/0166-4328(88)90157-XSuche in Google Scholar

Fijal, K., Popik, P., and Nikiforuk, A. (2014). Co-administration of 5-HT6 receptor antagonists with clozapine, risperidone, and a 5-HT2A receptor antagonist: effects on prepulse inhibition in rats. Psychopharmacology (Berl) 231, 269–281.10.1007/s00213-013-3234-2Suche in Google Scholar PubMed PubMed Central

Foley, A.G., Murphy, K.J., Hirst, W.D., Gallagher, H.C., Hagan, J.J., Upton, N., Walsh, F.S., and Regan, C.M. (2004). The 5-HT(6) receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology 29, 93–100.10.1038/sj.npp.1300332Suche in Google Scholar PubMed

Foley, A.G., Hirst, W.D., Gallagher, H.C., Barry, C., Hagan, J.J., Upton, N., Walsh, F.S., Hunter, A.J., and Regan, C.M. (2008). The selective 5-HT6 receptor antagonists SB-271046 and SB-399885 potentiate NCAM PSA immunolabeling of dentate granule cells, but not neurogenesis, in the hippocampal formation of mature Wistar rats. Neuropharmacology 54, 1166–1174.10.1016/j.neuropharm.2008.03.012Suche in Google Scholar PubMed

Fone, K.C. (2008). An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function. Neuropharmacology 55, 1015–1022.10.1016/j.neuropharm.2008.06.061Suche in Google Scholar PubMed

Gilmour, G., Arguello, A., Bari, A., Brown, V.J., Carter, C., Floresco, S.B., Jentsch, D.J., Tait, D.S., Young, J.W., and Robbins, T.W. (2013). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neurosci. Biobehav. Rev. 37, 2125–2140.10.1016/j.neubiorev.2012.04.006Suche in Google Scholar PubMed

Goetghebeur, P. and Dias, R. (2009). Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set – shifting impairment following subchronic PCP administration in the rat-a back translational study. Psychopharmacology (Berl). 202, 287–293.10.1007/s00213-008-1132-9Suche in Google Scholar PubMed

Gold, J.M., Hahn, B., Zhang, W.W., Robinson, B.M., Kappenman, E.S., Beck, V.M., and Luck, S.J. (2010). Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Arch. Gen. Psychiatry 67, 570–577.10.1001/archgenpsychiatry.2010.65Suche in Google Scholar PubMed PubMed Central

Gravius, A., Laszy, J., Pietraszek, M., Saghy, K., Nagel, J., Chambon, C., Wegener, N., Valastro, B., Danysz, W., and Gyertyan, I. (2011). Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behav. Pharmacol. 22, 122–135.10.1097/FBP.0b013e328343d804Suche in Google Scholar PubMed

Green, M.F., Kern, R.S., and Heaton, R.K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 72, 41–51.10.1016/j.schres.2004.09.009Suche in Google Scholar PubMed

Harvey, P.D. and Keefe, R.S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am. J. Psychiatry 158, 176–184.10.1176/appi.ajp.158.2.176Suche in Google Scholar PubMed

Hatcher, P.D., Brown, V.J., Tait, D.S., Bate, S., Overend, P., Hagan, J.J., and Jones, D.N. (2005). 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology (Berl) 181, 253–259.10.1007/s00213-005-2261-zSuche in Google Scholar PubMed

Heal, D., Gosden, J., and Smith, S. (2011). The 5-HT6 receptor as a target for developing novel antiobesity drugs. Int. Rev. Neurobiol. 96, 73–109.10.1016/B978-0-12-385902-0.00004-8Suche in Google Scholar PubMed

Heal, D.J., Smith, S.L., Fisas, A., Codony, X., and Buschmann, H. (2008). Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol. Ther. 117, 207–231.10.1016/j.pharmthera.2007.08.006Suche in Google Scholar PubMed

Hirst, W.D., Moss S.F., Bromidge S.M., Riley G., Stean T.O., Rogers D.C., Sunter D., Lacroix L.P., Atkins A.R., Dawson L.A., and Upton N. (2003a). Characterisation of SB-399885, a potent and selective 5-HT6 receptorantagonist. Society for Neuroscience Abstracts 576.7.Suche in Google Scholar

Hirst, W.D., Abrahamsen, B., Blaney, F.E., Calver, A.R., Aloj, L., Price, G.W., and Medhurst, A.D. (2003b). Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol. Pharmacol. 64, 1295–1308.10.1124/mol.64.6.1295Suche in Google Scholar PubMed

Hirst, W.D., Stean, T.O., Rogers, D.C., Sunter, D., Pugh, P., Moss, S.F., Bromidge, S.M., Riley, G., Smith, D.R., Bartlett, S., et al. (2006). SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur. J. Pharmacol. 553, 109–119.10.1016/j.ejphar.2006.09.049Suche in Google Scholar PubMed

Hughes, R.N. (2004). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci. Biobehav. Rev. 28, 497–505.10.1016/j.neubiorev.2004.06.006Suche in Google Scholar PubMed

Idris, N., Neill, J., Grayson, B., Bang-Andersen, B., Witten, L.M., Brennum, L.T., and Arnt, J. (2010). Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacology (Berl) 208, 23–36.10.1007/s00213-009-1702-5Suche in Google Scholar PubMed

Jentsch, J.D., Redmond, D.E., Jr., Elsworth, J.D., Taylor, J.R., Youngren, K.D., and Roth, R.H. (1997). Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277, 953–955.10.1126/science.277.5328.953Suche in Google Scholar PubMed

Jones, C.A., Watson, D.J., and Fone, K.C. (2011). Animal models of schizophrenia. Br. J. Pharmacol. 164, 1162–1194.10.1111/j.1476-5381.2011.01386.xSuche in Google Scholar PubMed PubMed Central

Karper, L.P., Freeman, G.K., Grillon, C., Morgan, C.A., III, Charney, D.S., and Krystal, J.H. (1996). Preliminary evidence of an association between sensorimotor gating and distractibility in psychosis. J. Neuropsychiatry Clin. Neurosci. 8, 60–66.10.1176/jnp.8.1.60Suche in Google Scholar PubMed

Keeler, J.F. and Robbins, T.W. (2011). Translating cognition from animals to humans. Biochem. Pharmacol. 81, 1356–1366.10.1016/j.bcp.2010.12.028Suche in Google Scholar PubMed

Kendall, I., Slotten, H.A., Codony, X., Burgueno, J., Pauwels, P.J., Vela, J.M., and Fone, K.C. (2011). E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl) 213, 413–430.10.1007/s00213-010-1854-3Suche in Google Scholar PubMed

King, M.V., Sleight, A.J., Woolley, M.L., Topham, I.A., Marsden, C.A., and Fone, K.C. (2004). 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation–an effect sensitive to NMDA receptor antagonism. Neuropharmacology 47, 195–204.10.1016/j.neuropharm.2004.03.012Suche in Google Scholar PubMed

King, M., Fone, K.F., Shacham S., and Gannon, K.S. (2007). PRX-07034, a 5-HT6 antagonist, reduces weight gain and enhances memory in a neurodevelopmental model of schizophrenia. Society for Neuroscience Abstracts 499.25.Suche in Google Scholar

Kos, T., Nikiforuk, A., Rafa, D., and Popik, P. (2011). The effects of NMDA receptor antagonists on attentional set-shifting task performance in mice. Psychopharmacology (Berl) 214, 911–921.10.1007/s00213-010-2102-6Suche in Google Scholar PubMed PubMed Central

Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers, M.B., Jr., and Charney, D.S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214.10.1001/archpsyc.1994.03950030035004Suche in Google Scholar PubMed

Lacroix, L.P., Dawson, L.A., Hagan, J.J., and Heidbreder, C.A. (2004). 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse 51, 158–164.10.1002/syn.10288Suche in Google Scholar PubMed

Leng, A., Ouagazzal, A., Feldon, J., and Higgins, G.A. (2003). Effect of the 5-HT6 receptor antagonists Ro04-6790 and Ro65-7199 on latent inhibition and prepulse inhibition in the rat: comparison to clozapine. Pharmacol. Biochem. Behav. 75, 281–288.10.1016/S0091-3057(03)00082-0Suche in Google Scholar

Lesem, M. (2007). A randomized, placebo-controlled phase IIa trial of sgs518 for treating cognitive impairment associated with schizophrenia. Schizophrenia Bulletin 33, 441.Suche in Google Scholar

Lewis, D.A. and Gonzalez-Burgos, G. (2008). Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33, 141–165.10.1038/sj.npp.1301563Suche in Google Scholar PubMed

Li, Z., Huang, M., Prus, A.J., Dai, J., and Meltzer, H.Y. (2007). 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Res. 1134, 70–78.10.1016/j.brainres.2006.11.060Suche in Google Scholar PubMed

Lisman, J.E., Coyle, J.T., Green, R.W., Javitt, D.C., Benes, F.M., Heckers, S., and Grace, A.A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234–242.10.1016/j.tins.2008.02.005Suche in Google Scholar PubMed PubMed Central

Liy-Salmeron, G. and Meneses, A. (2008). Effects of 5-HT drugs in prefrontal cortex during memory formation and the ketamine amnesia-model. Hippocampus 18, 965–974.10.1002/hipo.20459Suche in Google Scholar PubMed

Loiseau, F., Dekeyne, A., and Millan, M.J. (2008). Pro-cognitive effects of 5-HT6 receptor antagonists in the social recognition procedure in rats: implication of the frontal cortex. Psychopharmacology (Berl) 196, 93–104.10.1007/s00213-007-0934-5Suche in Google Scholar PubMed

Lundbeck (2008). Study ID: 12450A. ClinicalTrials.gov Identifier: 00810667. Title: Efficacy study exploring the effect of Lu AE58054 as augmentation therapy in patients with schizophrenia.Suche in Google Scholar

Marcos, B., Chuang, T.T., Gil-Bea, F.J., and Ramirez, M.J. (2008). Effects of 5-HT6 receptor antagonism and cholinesterase inhibition in models of cognitive impairment in the rat. Br. J. Pharmacol. 155, 434–440.10.1038/bjp.2008.281Suche in Google Scholar PubMed PubMed Central

Marcos, B., Gil-Bea, F.J., Hirst, W.D., Garcia-Alloza, M., and Ramirez, M.J. (2006). Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur. J. Neurosci. 24, 1299–1306.10.1111/j.1460-9568.2006.05003.xSuche in Google Scholar PubMed

McLean, S.L., Beck, J.P., Woolley, M.L., and Neill, J.C. (2008). A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav. Brain Res. 189, 152–158.10.1016/j.bbr.2007.12.029Suche in Google Scholar PubMed

Meffre, J., Chaumont-Dubel, S., Mannoury la, C.C., Loiseau, F., Watson, D.J., Dekeyne, A., Seveno, M., Rivet, J.M., Gaven, F., Deleris, P., et al. (2012). 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol. Med. 4, 1043–1056.10.1002/emmm.201201410Suche in Google Scholar PubMed PubMed Central

Meltzer, H.Y., Horiguchi, M., and Massey, B.W. (2011). The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 213, 289–305.10.1007/s00213-010-2137-8Suche in Google Scholar

Meneses, A. (2001). Effects of the 5-HT(6) receptor antagonist Ro 04-6790 on learning consolidation. Behav. Brain Res. 118, 107–110.10.1016/S0166-4328(00)00316-8Suche in Google Scholar

Meneses, A., Perez-Garcia, G., Liy-Salmeron, G., Flores-Galvez, D., Castillo, C., and Castillo, E. (2008). The effects of the 5-HT(6) receptor agonist EMD and the 5-HT(7) receptor agonist AS19 on memory formation. Behav. Brain Res. 195, 112–119.10.1016/j.bbr.2007.11.023Suche in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., and Castillo, C. (2011). 5-HT6 receptor memory and amnesia: behavioral pharmacology–learning and memory processes. Int. Rev. Neurobiol. 96, 27–47.10.1016/B978-0-12-385902-0.00002-4Suche in Google Scholar PubMed

Mitchell, E.S. (2011). 5-HT6 receptor ligands as antidementia drugs. Int. Rev. Neurobiol. 96, 163–187.10.1016/B978-0-12-385902-0.00007-3Suche in Google Scholar PubMed

Mitchell, E.S. and Neumaier, J.F. (2008). 5-HT6 receptor antagonist reversal of emotional learning and prepulse inhibition deficits induced by apomorphine or scopolamine. Pharmacol. Biochem. Behav. 88, 291–298.10.1016/j.pbb.2007.08.015Suche in Google Scholar PubMed PubMed Central

Moghaddam, B. and Adams, B.W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 1349–1352.10.1126/science.281.5381.1349Suche in Google Scholar PubMed

Mohler, E.G., Baker, P.M., Gannon, K.S., Jones, S.S., Shacham, S., Sweeney, J.A., and Ragozzino, M.E. (2012). The effects of PRX-07034, a novel 5-HT6 antagonist, on cognitive flexibility and working memory in rats. Psychopharmacology (Berl) 220, 687–696.10.1007/s00213-011-2518-7Suche in Google Scholar PubMed PubMed Central

Monsma, F.J., Shen, Y., Ward, R.P., Hamblin, M.W., and Sibley, D.R. (1993). Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol. 43, 320–327.Suche in Google Scholar

Moore, H., Geyer, M.A., Carter, C.S., and Barch, D.M. (2013). Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci. Biobehav. Rev. 37, 2087–2091.10.1016/j.neubiorev.2013.09.011Suche in Google Scholar PubMed PubMed Central

Mork, A., Witten, L.M., and Arnt, J. (2009). Effect of sertindole on extracellular dopamine, acetylcholine, and glutamate in the medial prefrontal cortex of conscious rats: a comparison with risperidone and exploration of mechanisms involved. Psychopharmacology (Berl) 206, 39–49.10.1007/s00213-009-1578-4Suche in Google Scholar PubMed

Morozova, M.A., Beniashvili, A.G., Lepilkina, T.A., and Rupchev, G.E. (2012). Double-blind placebo-controlled randomized efficacy and safety trial of add-on treatment of dimebon plus risperidone in schizophrenic patients during transition from acute psychotic episode to remission. Psychiatr. Danub. 24, 159–166.Suche in Google Scholar

Murray, G.K., Cheng, F., Clark, L., Barnett, J.H., Blackwell, A.D., Fletcher, P.C., Robbins, T.W., Bullmore, E.T., and Jones, P.B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855.10.1093/schbul/sbn078Suche in Google Scholar PubMed PubMed Central

Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., and Belforte, J.E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62, 1574–1583.10.1016/j.neuropharm.2011.01.022Suche in Google Scholar PubMed PubMed Central

Neill, J.C., Barnes, S., Cook, S., Grayson, B., Idris, N.F., McLean, S.L., Snigdha, S., Rajagopal, L., and Harte, M.K. (2010). Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol. Ther. 128, 419–432.10.1016/j.pharmthera.2010.07.004Suche in Google Scholar PubMed

Nikiforuk, A. and Popik, P. (2012). Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl) 220, 65–74.10.1007/s00213-011-2487-xSuche in Google Scholar PubMed PubMed Central

Nikiforuk, A., Golembiowska, K., and Popik, P. (2010). Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats. Eur. Neuropsychopharmacol. 20, 37–48.10.1016/j.euroneuro.2009.08.001Suche in Google Scholar PubMed

Nikiforuk, A., Kos, T., Rafa, D., Behl, B., Bespalov, A., and Popik, P. (2011a). Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner. Neuropharmacology 61, 262–267.10.1016/j.neuropharm.2011.04.010Suche in Google Scholar PubMed

Nikiforuk, A., Kos, T., and Wesolowska, A. (2011b). The 5-HT6 receptor agonist EMD 386088 produces antidepressant and anxiolytic effects in rats after intrahippocampal administration. Psychopharmacology (Berl) 217, 411–418.10.1007/s00213-011-2297-1Suche in Google Scholar PubMed

Nikiforuk, A., Fijal, K., Potasiewicz, A., Popik, P., and Kos, T. (2013). The 5-hydroxytryptamine (serotonin) receptor 6 agonist EMD 386088 ameliorates ketamine-induced deficits in attentional set shifting and novel object recognition, but not in the prepulse inhibition in rats. J. Psychopharmacol. 27, 469–476.10.1177/0269881113480991Suche in Google Scholar PubMed

Nuechterlein, K.H., Barch, D.M., Gold, J.M., Goldberg, T.E., Green, M.F., and Heaton, R.K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 72, 29–39.10.1016/j.schres.2004.09.007Suche in Google Scholar PubMed

Nyhus, E. and Barcelo, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cogn 71, 437–451.10.1016/j.bandc.2009.03.005Suche in Google Scholar PubMed

Orellana, G. and Slachevsky, A. (2013). Executive functioning in schizophrenia. Front Psychiatry 4, 35.10.3389/fpsyt.2013.00035Suche in Google Scholar

Pelletier, M., Achim, A.M., Montoya, A., Lal, S., and Lepage, M. (2005). Cognitive and clinical moderators of recognition memory in schizophrenia: a meta-analysis. Schizophr. Res. 74, 233–252.10.1016/j.schres.2004.08.017Suche in Google Scholar

Perez-Garcia, G. and Meneses, A. (2005). Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharmacol. Biochem. Behav. 81, 673–682.10.1016/j.pbb.2005.05.005Suche in Google Scholar

Pitsikas, N., Zisopoulou, S., Pappas, I., and Sakellaridis, N. (2008). The selective 5-HT(6) receptor antagonist Ro 04-6790 attenuates psychotomimetic effects of the NMDA receptor antagonist MK-801. Behav. Brain Res. 188, 304–309.10.1016/j.bbr.2007.11.010Suche in Google Scholar

Polgar, P., Farkas, M., Nagy, O., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C.E., Gluck, M.A., and Keri, S. (2008). How to find the way out from four rooms? The learning of ‘chaining’ associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophr. Res. 99, 200–207.10.1016/j.schres.2007.06.027Suche in Google Scholar

Pouzet, B., Didriksen, M., and Arnt, J. (2002). Effects of the 5-HT(6) receptor antagonist, SB-271046, in animal models for schizophrenia. Pharmacol. Biochem. Behav. 71, 635–643.10.1016/S0091-3057(01)00743-2Suche in Google Scholar

Rajagopal, L., Massey, B.W., Huang, M., Oyamada, Y., and Meltzer, H.Y. (2013). The Novel Object Recogniton Test in Rodents in Relation to Cognitive Impairment in Schizophrenia. Curr. Pharm. Des. PMID: 24345269 [Epub ahead of print].Suche in Google Scholar

Riemer, C., Borroni, E., Levet-Trafit, B., Martin, J.R., Poli, S., Porter, R.H., and Bos, M. (2003). Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J. Med. Chem. 46, 1273–1276.10.1021/jm021085cSuche in Google Scholar PubMed

Roberts, A.C., Robbins, T.W., and Everitt, B.J. (1988). The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 40, 321–341.Suche in Google Scholar

Rodefer, J.S., Nguyen, T.N., Karlsson, J.J., and Arnt, J. (2008). Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33, 2657–2666.10.1038/sj.npp.1301654Suche in Google Scholar PubMed

Ruat, M., Traiffort, E., Arrang, J.M., Tardivel-Lacombe, J., Diaz, J., Leurs, R., and Schwartz, J.C. (1993). A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem. Biophys. Res Commun. 193, 268–276.10.1006/bbrc.1993.1619Suche in Google Scholar PubMed

Sams-Dodd, F. (1999). Phencyclidine in the social interaction test: An animal model of shizophrenia with face and predictive validity. Reviews in Neurosciences 10, 59–89.10.1515/REVNEURO.1999.10.1.59Suche in Google Scholar

Sarter, M., Lustig, C., and Taylor, S.F. (2012). Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology 62, 1544–1553.10.1016/j.neuropharm.2010.12.001Suche in Google Scholar

Schaffhauser, H., Mathiasen, J.R., DiCamillo, A., Huffman, M.J., Lu, L.D., McKenna, B.A., Qian, J., and Marino, M.J. (2009). Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem. Pharmacol. 78, 1035–1042.10.1016/j.bcp.2009.06.021Suche in Google Scholar

Schechter, L.E., Lin, Q., Smith, D.L., Zhang, G., Shan, Q., Platt, B., Brandt, M.R., Dawson, L.A., Cole, D., Bernotas, R., et al. (2008). Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33, 1323–1335.10.1038/sj.npp.1301503Suche in Google Scholar

Schreiber, R., Vivian, J., Hedley, L., Szczepanski, K., Secchi, R.L., Zuzow, M., van, L.S., Moreau, J.L., Martin, J.R., Sik, A., et al. (2007). Effects of the novel 5-HT(6) receptor antagonist RO4368554 in rat models for cognition and sensorimotor gating. Eur. Neuropsychopharmacol. 17, 277–288.10.1016/j.euroneuro.2006.06.009Suche in Google Scholar

Shirazi-Southall, S., Rodriguez, D.E., and Nomikos, G.G. (2002). Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26, 583–594.10.1016/S0893-133X(01)00400-6Suche in Google Scholar

Stean, T.O., Hirst, W.D., Thomas, D.R., Price, G.W., Rogers, D., Riley, G., Bromidge, S.M., Serafinowska, H.T., Smith, D.R., Bartlett, S., et al. (2002). Pharmacological profile of SB-357134: a potent, selective, brain penetrant, and orally active 5-HT(6) receptor antagonist. Pharmacol. Biochem. Behav. 71, 645–654.10.1016/S0091-3057(01)00742-0Suche in Google Scholar

Svenningsson, P., Tzavara, E.T., Qi, H., Carruthers, R., Witkin, J.M., Nomikos, G.G., and Greengard, P. (2007). Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J. Neurosci. 27, 4201–4209.10.1523/JNEUROSCI.3110-06.2007Suche in Google Scholar PubMed PubMed Central

Swerdlow, N.R., Braff, D.L., and Geyer, M.A. (2000). Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav. Pharmacol. 11, 185–204.10.1097/00008877-200006000-00002Suche in Google Scholar PubMed

Tait, D.S., Chase, E.A., and Brown, V.J. (2013). Attentional Set-Shifting in Rodents: a Review of Behavioural Methods and Pharmacological Results. Curr. Pharm. Des. PMID: 24345263 [Epub ahead of print].Suche in Google Scholar

Talpos, J.C., Wilkinson, L.S., and Robbins, T.W. (2006). A comparison of multiple 5-HT receptors in two tasks measuring impulsivity. J. Psychopharmacol. 20, 47–58.10.1177/0269881105056639Suche in Google Scholar PubMed

Tassone, A., Madeo, G., Schirinzi, T., Vita, D., Puglisi, F., Ponterio, G., Borsini, F., Pisani, A., and Bonsi, P. (2011). Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission. Neuropharmacology 61, 632–637.10.1016/j.neuropharm.2011.05.004Suche in Google Scholar PubMed

Thor, D.H. and Holloway, W.R. (1982). Social memory of the male laboratory rat. Journal of Comparative and Physiological Psychology 96, 1000–1006.10.1037/0735-7036.96.6.1000Suche in Google Scholar

Tripathy, R., McHugh, R.J., Bacon, E.R., Salvino, J.M., Morton, G.C., Aimone, L.D., Huang, Z., Mathiasen, J.R., DiCamillo, A., Huffman, M.J., et al. (2012). Discovery of 7-arylsulfonyl-1,2,3,4, 4a,9a-hexahydro-benzo[4,5]furo[2,3-c]pyridines: identification of a potent and selective 5-HT(6) receptor antagonist showing activity in rat social recognition test. Bioorg. Med. Chem. Lett. 22, 1421–1426.10.1016/j.bmcl.2011.12.026Suche in Google Scholar

Upton, N., Chuang, T.T., Hunter, A.J., and Virley, D.J. (2008). 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics. 5, 458–469.10.1016/j.nurt.2008.05.008Suche in Google Scholar

Valentini, V., Frau, R., Bordi, F., Borsini, F., and Di, C.G. (2011). A microdialysis study of ST1936, a novel 5-HT6 receptor agonist. Neuropharmacology 60, 602–608.10.1016/j.neuropharm.2010.12.006Suche in Google Scholar

van der Zwaal, E.M., Janhunen, S.K., la Fleur, S.E., and Adan, R.A. (2013). Modelling olanzapine-induced weight gain in rats. Int. J. Neuropsychopharmacol. 17, 1–18.Suche in Google Scholar

Wesolowska, A. and Jastrzebska-Wiesek, M. (2011). Behavioral pharmacology: potential antidepressant and anxiolytic properties. Int. Rev. Neurobiol. 96, 49–71.10.1016/B978-0-12-385902-0.00003-6Suche in Google Scholar

Wesolowska, A. and Nikiforuk, A. (2007). Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 52, 1274–1283.10.1016/j.neuropharm.2007.01.007Suche in Google Scholar

West, P.J., Marcy, V.R., Marino, M.J., and Schaffhauser, H. (2009). Activation of the 5-HT(6) receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience 164, 692–701.10.1016/j.neuroscience.2009.07.061Suche in Google Scholar

Woods, S., Clarke, N.N., Layfield, R., and Fone, K.C. (2012). 5-HT(6) receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br. J. Pharmacol. 167, 436–449.10.1111/j.1476-5381.2012.02022.xSuche in Google Scholar

Woolley, M.L., Bentley, J.C., Sleight, A.J., Marsden, C.A., and Fone, K.C. (2001). A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology. 41, 210–219.10.1016/S0028-3908(01)00056-9Suche in Google Scholar

Woolley, M.L., Marsden, C.A., and Fone, K.C. (2004). 5-ht6 receptors. Curr. Drug Targets. CNS. Neurol. Disord. 3, 59–79.10.2174/1568007043482561Suche in Google Scholar PubMed

Young, J.W., Powell, S.B., Risbrough, V., Marston, H.M., and Geyer, M.A. (2009). Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol. Ther. 122, 150–202.10.1016/j.pharmthera.2009.02.004Suche in Google Scholar PubMed PubMed Central

Young, J.W., Zhou, X., and Geyer, M.A. (2010). Animal models of schizophrenia. Curr. Top. Behav. Neurosci. 4, 391–433.10.1007/7854_2010_62Suche in Google Scholar PubMed

Yun, H.M., Kim, S., Kim, H.J., Kostenis, E., Kim, J.I., Seong, J.Y., Baik, J.H., and Rhim, H. (2007). The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J. Biol. Chem. 282, 5496–5505.10.1074/jbc.M606215200Suche in Google Scholar PubMed

Zhang, M.Y., Hughes, Z.A., Kerns, E.H., Lin, Q., and Beyer, C.E. (2007). Development of a liquid chromatography/tandem mass spectrometry method for the quantitation of acetylcholine and related neurotransmitters in brain microdialysis samples. J. Pharm. Biomed. Anal. 44, 586–593.10.1016/j.jpba.2007.02.024Suche in Google Scholar PubMed

Received: 2013-11-25
Accepted: 2014-1-10
Published Online: 2014-2-6
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2014-0005/html?lang=de
Button zum nach oben scrollen