Home Why calcium channel blockers could be an elite choice in the treatment of Alzheimer’s disease: a comprehensive review of evidences
Article
Licensed
Unlicensed Requires Authentication

Why calcium channel blockers could be an elite choice in the treatment of Alzheimer’s disease: a comprehensive review of evidences

  • Ponne Saravanaraman

    Ponne Saravanaraman has a Master’s degree in Genetic Engineering from Bharathiar University, India. With a junior research fellowship (JRF), she began her doctoral research at the Department of Biotechnology in Bharathiar University. Earlier in her research she investigated the role of SNPs in acetylcholinesterase protein in differential drug response of individuals during Alzheimer’s disease treatment. Recently her research has been focused on repurposing calcium channel blockers, a class of antihypertensive drugs in the first-line treatment of Alzheimer’s disease.

    , Raj Kumar Chinnadurai

    Rajkumar Chinnadurai received his Master’s degree in Biotechnology from Bharathiar University, India. He is currently doing his doctoral programme at the same University at the Department of Biotechnology. Having explored the subject of in silico biology, he has proposed the trafficking mechanism of substrates such as the peculiar activity of acetylcholinesterase protein known as the aryl acylamidase (AAA) activity. Recently he has been involved in identifying the role of AAA activity in bone development and differentiation.

    and Rathanam Boopathy

    Rathanam Boopathy, PhD was previously a Professor and a Principal Investigator at the Department of Biotechnology. His research always revolved around proteins and his major contributions to the field of cholinesterases are identifying a silent mutation (L307P) in butyrylcholinesterase protein especially in the Vysya community of India, characterization of AAA activity of acetylcholinesterase (AChE) protein and identifying the zinc binding site in AChE protein. He was also involved in identification of biomarker(s) for high altitude pulmonary edema (HAPE) susceptibility and screening of better inhibitors of AChE to improvise the treatment of Alzheimer’s disease. He has published about 50 articles in peer-reviewed journals.

    EMAIL logo
Published/Copyright: February 25, 2014
Become an author with De Gruyter Brill

Abstract

The universality and vitality of calcium ions are implicit from its diverse physiological functions, from regulation of enzymes to synaptic plasticity and memory. However, overloading of these ions could result in life-threatening degenerative disorders. Calcium channels, which are involved in the transport of calcium ions, are targeted and blocked to prevent its overload, favoring vascular relaxation. Besides this primary action, calcium channel blockers (CCBs) also genuinely exhibit cognitive-enhancing abilities and reduce the risk of dementia, especially of Alzheimer’s type. Alzheimer’s disease (AD) is triggered by the disruption of calcium homeostasis, which underlies the observed progressive cognitive decline that occurs in this neurodegenerative disorder. Fortunately, CCB is expected to offer neuroprotection and additionally demonstrate antiamyloid, antitau, antiphospholipase, antiplatelet, antioxidant, and anti-inflammatory activity, a solitary solution to all the subcellular physiological complications that are observed in AD. Therefore, the aim of this review was to unearth the prospective of CCB against cognitive frailty with a sole purpose of elucidating CCB as cognitive enhancers, which could find its use as a drug in prevention or treatment of AD.


Corresponding author: Rathanam Boopathy, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India, e-mail:

About the authors

Ponne Saravanaraman

Ponne Saravanaraman has a Master’s degree in Genetic Engineering from Bharathiar University, India. With a junior research fellowship (JRF), she began her doctoral research at the Department of Biotechnology in Bharathiar University. Earlier in her research she investigated the role of SNPs in acetylcholinesterase protein in differential drug response of individuals during Alzheimer’s disease treatment. Recently her research has been focused on repurposing calcium channel blockers, a class of antihypertensive drugs in the first-line treatment of Alzheimer’s disease.

Raj Kumar Chinnadurai

Rajkumar Chinnadurai received his Master’s degree in Biotechnology from Bharathiar University, India. He is currently doing his doctoral programme at the same University at the Department of Biotechnology. Having explored the subject of in silico biology, he has proposed the trafficking mechanism of substrates such as the peculiar activity of acetylcholinesterase protein known as the aryl acylamidase (AAA) activity. Recently he has been involved in identifying the role of AAA activity in bone development and differentiation.

Rathanam Boopathy

Rathanam Boopathy, PhD was previously a Professor and a Principal Investigator at the Department of Biotechnology. His research always revolved around proteins and his major contributions to the field of cholinesterases are identifying a silent mutation (L307P) in butyrylcholinesterase protein especially in the Vysya community of India, characterization of AAA activity of acetylcholinesterase (AChE) protein and identifying the zinc binding site in AChE protein. He was also involved in identification of biomarker(s) for high altitude pulmonary edema (HAPE) susceptibility and screening of better inhibitors of AChE to improvise the treatment of Alzheimer’s disease. He has published about 50 articles in peer-reviewed journals.

Acknowledgment

P.S. and R.K.C. are thankful to the Department of Science and Technology, New Delhi, for providing research fellowships (DST-INSPIRE and DST-PURSE).

References

Amenta, F., Mignini, F., Rabbia, F., Tomassoni, D., and Veglio, F. (2002). Protective effect of anti-hypertensive treatment on cognitive function in essential hypertension: analysis of published clinical data. J. Neurol. Sci. 203–204, 147–151.10.1016/S0022-510X(02)00281-2Search in Google Scholar

Anekonda, T.S. and Quinn, J.F. (2011). Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim. Biophys. Acta 1812, 1584–1590.10.1016/j.bbadis.2011.08.013Search in Google Scholar PubMed PubMed Central

Anekonda, T.S., Quinn, J.F., Harris, C., Frahler, K., Wadsworth, T.L., and Woltjer, R.L. (2011). L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol. Dis. 41, 62–70.10.1016/j.nbd.2010.08.020Search in Google Scholar PubMed PubMed Central

Applegate, W.B., Pressel, S., Wittes, J., Luhr, J., Shekelle, R.B., Camel, G.H., Greenlick, M.R., Hadley, E., Moye, L., Perry, H.M. Jr., et al. (1994). Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program. Arch. Intern. Med. 154, 2154–2160.10.1001/archinte.1994.00420190047006Search in Google Scholar

Bachmeier, C., Beaulieu-Abdelahad, D., Mullan, M., and Paris, D. (2011). Selective dihydropyiridine compounds facilitate the clearance of β-amyloid across the blood-brain barrier. Eur. J. Pharmacol. 659, 124–129.10.1016/j.ejphar.2011.03.048Search in Google Scholar PubMed

Baker, K.D., Edwards, T.M., and Rickard, N.S. (2013). The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci. Biobehav. Rev. 37, 1211–1239.10.1016/j.neubiorev.2013.04.011Search in Google Scholar PubMed

Ban, T.A., Morey, L., Aguglia, E., Azzarelli, O., Balsano, F., Marigliano, V., Caglieris, N., Sterlicchio, M., Capurso, A.,Tomasi, N.A., et al. (1990). Nimodipine in the treatment of old age dementias. Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 525–551.Search in Google Scholar

Barhwal, K., Hota, S.K., Baitharu, I., Prasad, D., Singh, S.B., and Ilavazhagan, G. (2009). Isradipine antagonizes hypobaric hypoxia induced CA1 damage and memory impairment: complementary roles of L-type calcium channel and NMDA receptors. Neurobiol. Dis. 34, 230–244.10.1016/j.nbd.2009.01.008Search in Google Scholar PubMed

Bauer, E.P., Schafe, G.E., and LeDoux, J.E. (2002). NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249.10.1523/JNEUROSCI.22-12-05239.2002Search in Google Scholar

Becker, C., Jick, S.S., and Meier, C.R. (2008). Use of antihypertensives and the risk of Parkinson disease. Neurology 70, 1438–1444.10.1212/01.wnl.0000303818.38960.44Search in Google Scholar PubMed

Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.10.1038/35036035Search in Google Scholar PubMed

Biala, G. and Kruk, M. (2009). Influence of bupropion and calcium channel antagonists on the nicotine-induced memory-related response of mice in the elevated plus maze. Pharmacol. Rep. 61, 236–244.10.1016/S1734-1140(09)70027-1Search in Google Scholar

Biala, G., Kruk-Slomka, M., and Jozwiak, K. (2013). Influence of acute or chronic calcium channel antagonists on the acquisition and consolidation of memory and nicotine-induced cognitive effects in mice. Naunyn Schmiedebergs Arch. Pharmacol. 386, 651–664.10.1007/s00210-013-0866-zSearch in Google Scholar PubMed PubMed Central

Bonci, A., Grillner, P., Mercuri, N.B., and Bernardi, G. (1998). L-type calcium channels mediate a slow excitatory synaptic transmission in rat midbrain dopaminergic neurons. J. Neurosci. 18, 6693–6703.10.1523/JNEUROSCI.18-17-06693.1998Search in Google Scholar

Breckenridge, A. (1991). Angiotensin converting enzyme inhibitors and quality of life. Am. J. Hypertens. 4, 79S–82S.10.1093/ajh/4.1.79SSearch in Google Scholar

Cahalan, M.D., Wulff, H., and Chandy, K.G. (2001). Molecular properties and physiological roles of ion channels in the immune system. J. Clin. Immunol. 21, 235–252.10.1023/A:1010958907271Search in Google Scholar

Camacho, I.E., Serneels, L., Spittaels, K., Merchiers, P., Dominguez, D., and De Strooper, B. (2004). Peroxisome-proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J. Neurosci. 24, 10908–10917.10.1523/JNEUROSCI.3987-04.2004Search in Google Scholar PubMed PubMed Central

Casley, C.S., Canevari, L., Land, J.M., Clark, J.B., and Sharpe, M.A. (2002). β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100.10.1046/j.0022-3042.2001.00681.xSearch in Google Scholar PubMed

Catterall, W.A., Perez-Reyes, E., Snutch, T.P., and Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425.10.1124/pr.57.4.5Search in Google Scholar PubMed

Chan, C.S., Guzman, J.N., Ilijic, E., Mercer, J.N., Rick, C., Tkatch, T., Meredith, G.E., and Surmeier. D.J. (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447, 1081–1086.10.1038/nature05865Search in Google Scholar PubMed

Chang, J., Blazek, E., and Carlson, R.P. (1987). Inhibition of phospholipase A2 (PLA2) activity by nifedipine and nisoldipine is independent of their calcium-channel-blocking activity. Inflammation 11, 353–364.10.1007/BF00915839Search in Google Scholar PubMed

Cohen, C., Perrault, G., and Sanger, D.J. (1997). Assessment of the antidepressant-like effects of L-type voltage-dependent channel modulators. Behav. Pharmacol. 8, 629–638.10.1097/00008877-199711000-00019Search in Google Scholar

Dalmolin, G.D., Silva, C.R., Rigo, F.K., Gomes, G.M., Cordeiro Mdo, N., Richardson, M., Silva, M.A.R., Prado, M.A. M., Gomez M.V., and Ferreira, J. (2011). Antinociceptive effect of Brazilian armed spider venom toxin Tx3-3 in animal models of neuropathic pain. Pain 152, 2224–2232.10.1016/j.pain.2011.04.015Search in Google Scholar

Das, R., Burke, T., Van Wagoner, D.R., and Plow, E.F. (2009). L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages. Circ. Res. 105, 167–175.10.1161/CIRCRESAHA.109.200311Search in Google Scholar

Davidson, R.M., Shajenko, L., and Donta, T.S. (1994). Amyloid β-peptide (A β P) potentiates a nimodipine-sensitive L-type barium conductance in N1E-115 neuroblastoma cells. Brain Res. 643, 324–327.10.1016/0006-8993(94)90041-8Search in Google Scholar

Denolle, T., Sassano, P., Allain, H., Bentue-Ferrer, D., Breton, S., Cimarosti, I., Ouatara, B., Merienne, M., and Gandon, J.M. (2002). Effects of nicardipine and clonidine on cognitive functions and electroencephalography in hypertensive patients. Fundam. Clin. Pharmacol. 16, 527–535.10.1046/j.1472-8206.2002.00110.xSearch in Google Scholar

Dietrich, D., Kirschstein, T., Kukley, M., Pereverzev, A., von der Brelie, C., Schneider, T., and Beck, H. (2003). Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39, 483–496.10.1016/S0896-6273(03)00430-6Search in Google Scholar

Espuny-Camacho, I., Dominguez, D., Merchiers, P., Van Rompaey, L., Selkoe, D., and De Strooper, B. (2010). Peroxisome proliferator-activated receptor γ enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-β clearance. J. Alzheimers Dis. 20, 1119–1132.10.3233/JAD-2010-091633Search in Google Scholar

Evans, C.G., Jinwal, U.K., Makley, L.N., Dickey, C.A., and Gestwicki, J.E. (2011). Identification of dihydropyridines that reduce cellular tau levels. Chem. Commun. (Camb) 47, 529–531.10.1039/C0CC02253ESearch in Google Scholar

Fedrizzi, L. and Carafoli, E. (2011). Ca2+ dysfunction in neurodegenerative disorders: Alzheimer’s disease. Biofactors 37, 189–196.10.1002/biof.157Search in Google Scholar

Finger, S., Green, L., Tarnoff, M.E., Mortman, K.D., and Andersen, A. (1990). Nimodipine enhances new learning after hippocampal damage. Exp. Neurol. 109, 279–285.10.1016/S0014-4886(05)80018-4Search in Google Scholar

Fleckenstein, A. (1983). History of calcium antagonists. Circ. Res. 52, I3–I16.Search in Google Scholar

Fogari, R., Mugellini, A., Zoppi, A., Marasi, G., Pasotti, C., Poletti, L., Rinaldi, A., and Preti, P. (2004). Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur. J. Clin. Pharmacol. 59, 863–868.10.1007/s00228-003-0717-9Search in Google Scholar

Forette, F., Seux, M.L., Staessen, J.A., Thijs, L., Birkenhager, W.H., Babarskiene, M.R., Babeanu, S., Bossini, A., Gil-Extremera, B., Girerd, X., et al. (1998). Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352, 1347–1351.10.1016/S0140-6736(98)03086-4Search in Google Scholar

Forette, F., Seux, M.L., Staessen, J.A., Thijs, L., Babarskiene, M.R., Babeanu, S., Bossini, A., Fagard, R., Gil-Extremera, B., Laks, T., et al. (2002). The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch. Intern. Med. 162, 2046–2052.10.1001/archinte.162.18.2046Search in Google Scholar

Foster, T.C. (1999). Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res. Brain Res. Rev. 30, 236–249.10.1016/S0165-0173(99)00017-XSearch in Google Scholar

Foster, T.C. (2007). Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell. 6, 319–325.10.1111/j.1474-9726.2007.00283.xSearch in Google Scholar PubMed

Fujinishi, A., Takahara, K., Ohba, C., Nakashima, Y., and Kuroiwa, A. (1997). Effects of nisoldipine on cytosolic calcium, platelet aggregation, and coagulation/fibrinolysis in patients with coronary artery disease. Angiology 48, 515–521.10.1177/000331979704800606Search in Google Scholar PubMed

Fydrych, A., Moir, R.D., Huang, C., Shi, Y., Rogers, J.T., and Huang, X. (2008). Amyloid-targeted metal chelation, anti-oxidative stress, and anti- inflammation as potential Alzheimer’s therapies. Curr. Bioact. Comp. 4, 140–149.10.2174/157340708786305989Search in Google Scholar

Gao, F., Gong, B., Christopher, T.A., Lopez, B.L., Karasawa, A., and Ma, X.L. (2001). Anti-apoptotic effect of benidipine, a long-lasting vasodilating calcium antagonist, in ischaemic/reperfused myocardial cells. Br. J. Pharmacol. 132, 869–878.10.1038/sj.bjp.0703881Search in Google Scholar PubMed PubMed Central

Gholamipour-Badie, H., Naderi, N., Khodagholi, F., Shaerzadeh, F., and Motamedi, F. (2013). L-type calcium channel blockade alleviates molecular and reversal spatial learning and memory alterations induced by entorhinal amyloid pathology in rats. Behav. Brain Res. 237, 190–199.10.1016/j.bbr.2012.09.045Search in Google Scholar PubMed

Gomora, J.C., Xu, L., Enyeart, J.A., and Enyeart, J.J. (2000). Effect of mibefradil on voltage-dependent gating and kinetics of T-type Ca2+ channels in cortisol-secreting cells. J. Pharmacol. Exp. Ther. 292, 96–103.Search in Google Scholar

González-González, J.A. and Lozano, R. (2000). A study of the tolerability and effectiveness of nicardipine retard in cognitive deterioration of vascular origin. Rev Neurol. 30, 719–728.Search in Google Scholar

Guo, Z., Fratiglioni, L., Zhu, L., Fastbom, J., Winblad, B., and Viitanen, M. (1999). Occurrence and progression of dementia in a community population aged 75 years and older: relationship of antihypertensive medication use. Arch. Neurol. 56, 991–996.10.1001/archneur.56.8.991Search in Google Scholar PubMed

Haile, M., Limson, F., Gingrich, K., Li, Y.S., Quartermain, D., Blanck, T., and Bekker A. (2009). Nimodipine prevents transient cognitive dysfunction after moderate hypoxia in adult mice. J. Neurosurg. Anesthesiol. 21, 140–144.10.1097/ANA.0b013e3181920d28Search in Google Scholar

Hajjar, I., Catoe, H., Sixta, S., Boland, R., Johnson, D., Hirth, V., Wieland, D., and Eleazer, P. (2005). Cross-sectional and longitudinal association between antihypertensive medications and cognitive impairment in an elderly population. J. Gerontol. A. Biol. Sci. Med. Sci. 60, 67–73.10.1093/gerona/60.1.67Search in Google Scholar

Hanon, O. and Forette, F. (2004). Prevention of dementia: lessons from SYST-EUR and PROGRESS. J. Neurol. Sci. 226, 71–74.10.1016/j.jns.2004.09.015Search in Google Scholar

Hanon, O., Pequignot, R., Seux, M.L., Lenoir, H., Bune, A., Rigaud, A.S., Forette, F., and Girerd, X. (2006). Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J. Hypertens. 24, 2101–2107.10.1097/01.hjh.0000244961.69985.05Search in Google Scholar

Hanyu, H., Hirao, K., Shimizu, S., Sato, T., Kiuchi, A., and Iwamoto, T. (2007). Nilvadipine prevents cognitive decline of patients with mild cognitive impairment. Int. J. Geriatr. Psychiatry. 22, 1264–1266.10.1002/gps.1851Search in Google Scholar

Hardingham, G.E., Arnold, F.J., and Bading, H. (2001). Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267.10.1038/85109Search in Google Scholar

Hirning, L.D., Fox, A.P., McCleskey, E.W., Olivera, B.M., Thayer, S.A., Miller, R.J., and Tsien, R.W. (1988). Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239, 57–61.10.1126/science.2447647Search in Google Scholar

Hvarfner, A., Bergstrom, R., Morlin, C., Wide, L., and Ljunghall, S. (1987). Relationships between calcium metabolic indices and blood pressure in patients with essential hypertension as compared with a healthy population. J. Hypertens. 5, 451–456.10.1097/00004872-198708000-00010Search in Google Scholar

in’t Veld, B.A., Ruitenberg, A., Hofman, A., Stricker, B.H., and Breteler, M.M. (2001). Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol. Aging. 22, 407–412.10.1016/S0197-4580(00)00241-4Search in Google Scholar

Ingole, S.R., Rajput, S.K., and Sharma, S.S. (2008). Cognition enhancers: current strategies and future perspectives. CRIPS. 9, 42–48.Search in Google Scholar

Ingram, D.K., Joseph, J.A., Spangler, E.L., Roberts, D., Hengemihle, J., and Fanelli, R.J. (1994). Chronic nimodipine treatment in aged rats: analysis of motor and cognitive effects and muscarinic-induced striatal dopamine release. Neurobiol. Aging 15, 55–61.10.1016/0197-4580(94)90144-9Search in Google Scholar

Ishii, N., Matsumura, T., Kinoshita, H., Fukuda, K., Motoshima, H., Senokuchi, T., Nakao, S., Tsutsumi, A., Kim-Mitsuyama, S., Kawada, T., et al. (2010). Nifedipine induces peroxisome proliferator-activated receptor-γ activation in macrophages and suppresses the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 30, 1598–1605.10.1161/ATVBAHA.109.202309Search in Google Scholar

Ishikawa, K., Fujigasaki, H., Saegusa, H., Ohwada, K., Fujita, T., Iwamoto, H., Komatsuzaki, Y., Toru, S., Toriyama, H., Watanabe, M., et al. (1999). Abundant expression and cytoplasmic aggregations of α1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 8, 1185–1193.10.1093/hmg/8.7.1185Search in Google Scholar

Iwasaki, Y., Asai, M., Yoshida, M., Nigawara, T., Kambayashi, M., Oiso, Y., and Nakashima, N. (2004). Nilvadipine inhibits nuclear factor-κB-dependent transcription in hepatic cells. Clin. Chim. Acta. 350, 151–157.10.1016/j.cccn.2004.07.012Search in Google Scholar

Jing, X., Li, D.Q., Olofsson, C.S., Salehi, A., Surve, V.V., Caballero, J., Ivarsson, R., Lundquist, I., Pereverzev, A., Schneider, T., et al. (2005). CaV2.3 calcium channels control second-phase insulin release. J. Clin. Invest. 115, 146–154.10.1172/JCI200522518Search in Google Scholar

Joels, M., Velzing, E., Nair, S., Verkuyl, J.M., and Karst, H. (2003). Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur. J. Neurosci. 18, 1315–1324.10.1046/j.1460-9568.2003.02845.xSearch in Google Scholar

Johnson, G.J., Leis, L.A., and Francis, G.S. (1986). Disparate effects of the calcium-channel blockers, nifedipine and verapamil, on α2-adrenergic receptors and thromboxane A2-induced aggregation of human platelets. Circulation 73, 847–854.10.1161/01.CIR.73.4.847Search in Google Scholar

Kagawa, H., Nomura, S., Ozaki, Y., Nagahama, M., and Fukuhara, S. (1999). Effects of nilvadipine on cytokine-levels and soluble factors in collagen disease complicated with essential hypertension. Clin. Exp. Hypertens. 21, 1177–1188.10.3109/10641969909052196Search in Google Scholar

Kario, K. and Pickering, T.G. (1999). Calcium antagonist and prevention of dementia in elderly people. Lancet 353, 1184.10.1016/S0140-6736(05)74402-0Search in Google Scholar

Kataoka, C., Egashira, K., Ishibashi, M., Inoue, S., Ni, W., Hiasa, K., Kitamoto, S., Usui, M., and Takeshita, A. (2004). Novel anti-inflammatory actions of amlodipine in a rat model of arteriosclerosis induced by long-term inhibition of nitric oxide synthesis. Am. J. Physiol. Heart Circ. Physiol. 286, H768–H774.10.1152/ajpheart.00937.2002Search in Google Scholar

Kawahara, M. and Kuroda, Y. (2000). Molecular mechanism of neurodegeneration induced by Alzheimer’s β-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53, 389–397.10.1016/S0361-9230(00)00370-1Search in Google Scholar

Kennelly, S., Abdullah, L., Kenny, R.A., Mathura, V., Luis, C.A., Mouzon, B., Crawford, F., Mullan, M., and Lawlor, B. (2011a). Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients – an open-label trial. Int. J. Geriatr. Psychiatry 27, 415–422.10.1002/gps.2735Search in Google Scholar

Kennelly, S.P., Abdullah, L., Paris, D., Parish, J., Mathura, V., Mullan, M., Crawford, F., Lawlor, B.A., and Kenny, R.A. (2011b). Demonstration of safety in Alzheimer’s patients for intervention with an anti-hypertensive drug Nilvadipine: results from a 6-week open label study. Int. J. Geriatr. Psychiatry. 26, 1038–1045.10.1002/gps.2638Search in Google Scholar

Khachaturian, A.S., Zandi, P.P., Lyketsos, C.G., Hayden, K.M., Skoog, I., Norton, M.C., Tschanz, J.T., Mayer, L.S., Welsh-Bohmer, K.A., and Breitner, J.C. (2006). Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch. Neurol. 63, 686–692.10.1001/archneur.63.5.noc60013Search in Google Scholar

Knight, Y.E., Bartsch, T., Kaube, H., and Goadsby, P.J. (2002). P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J. Neurosci. 22, RC213.10.1523/JNEUROSCI.22-05-j0002.2002Search in Google Scholar

Komoda, H., Inoue, T., and Node, K. (2010). Anti-inflammatory properties of azelnidipine, a dihydropyridine-based calcium channel blocker. Clin. Exp. Hypertens. 32, 121–128.10.3109/10641960903254414Search in Google Scholar

Korenkov, A.I., Pahnke, J., Frei, K., Warzok, R., Schroeder, H.W., Frick, R., Muljana, L., Piek, J., Yonekawa, Y., Gaab, M.R. (2000). Treatment with nimodipine or mannitol reduces programmed cell death and infarct size following focal cerebral ischemia. Neurosurg. Rev. 23, 145–150.10.1007/PL00011946Search in Google Scholar

Levere, T.E. and Walker, A. (1992). Old age and cognition: enhancement of recent memory in aged rats by the calcium channel blocker nimodipine. Neurobiol. Aging. 13, 63–66.10.1016/0197-4580(92)90010-USearch in Google Scholar

Levy, A., Kong, R.M., Stillman, M.J., Shukitt-Hale, B., Kadar, T., Rauch, T.M., and Lieberman H.R. (1991). Nimodipine improves spatial working memory and elevates hippocampal acetylcholine in young rats. Pharmacol. Biochem. Behav. 39, 781–786.10.1016/0091-3057(91)90164-WSearch in Google Scholar

Lithell, H., Hansson, L., Skoog, I., Elmfeldt, D., Hofman, A., Olofsson, B., Trenkwalder, P., Zanchetti, A.; SCOPE Study Group. (2003). The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J. Hypertens. 21, 875–886.10.1097/00004872-200305000-00011Search in Google Scholar PubMed

Llinas, R. and Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305, 171–195.10.1113/jphysiol.1980.sp013357Search in Google Scholar PubMed PubMed Central

Llinas, R., Sugimori, M., Lin, J. W., and Cherksey, B. (1989). Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA. 86, 1689–1693.10.1073/pnas.86.5.1689Search in Google Scholar

Lopez-Arrieta, J.M. and Birks, J. (2002). Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst. Rev. CD000147.Search in Google Scholar

Luiten, P.G., Douma, B.R., Van der Zee, E.A., and Nyakas, C. (1995). Neuroprotection against NMDA induced cell death in rat nucleus basalis by Ca2+ antagonist nimodipine, influence of aging and developmental drug treatment. Neurodegeneration 4, 307–314.10.1016/1055-8330(95)90020-9Search in Google Scholar

Madden, D.J., Blumenthal, J.A., Ekelund, L.G., Krantz, D.S., Light, K.C., and McKee, D.C. (1986). Memory performance by mild hypertensives following β-adrenergic blockade. Psychopharmacology (Berl). 89, 20–24.10.1007/BF00175183Search in Google Scholar

Maggi, C.A., Tramontana, M., Cecconi, R., and Santicioli, P. (1990). Neurochemical evidence for the involvement of N-type calcium channels in transmitter secretion from peripheral endings of sensory nerves in guinea pigs. Neurosci. Lett. 114, 203–206.10.1016/0304-3940(90)90072-HSearch in Google Scholar

Mak, I.T. and Weglicki, W.B. (1990). Comparative antioxidant activities of propranolol, nifedipine, verapamil, and diltiazem against sarcolemmal membrane lipid peroxidation. Circ. Res. 66, 1449–1452.10.1161/01.RES.66.5.1449Search in Google Scholar PubMed

Mak, I.T., Boehme, P., and Weglicki, W.B. (1992). Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. Circ. Res. 70, 1099–1103.10.1161/01.RES.70.6.1099Search in Google Scholar

Malmberg, A.B. and Yaksh, T.L. (1994). Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J. Neurosci. 14, 4882–4890.10.1523/JNEUROSCI.14-08-04882.1994Search in Google Scholar

Marco-Contelles, J., Leon, R., de Los Rios, C., Guglietta, A., Terencio, J., Lopez, M.G., García, A.G., Villarroya, M. (2006). Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 49, 7607–7610.10.1021/jm061047jSearch in Google Scholar PubMed

Marco-Contelles, J., Leon, R., de los Rios, C., Samadi, A., Bartolini, M., Andrisano, V., Huertas, O., Barril, X., Luque, F.J., Rodríguez-Franco, M.I., et al. (2009). Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer’s disease. J. Med. Chem. 52, 2724–2732.10.1021/jm801292bSearch in Google Scholar PubMed

Martin, L.J., Fournier, N.M., Galic, M.A., and Emond, M.H. (2004). Chronic administration of the L-type calcium channel blocker nimodipine can facilitate the acquisition of sequence learning in a radial-arm maze. Behav. Pharmacol. 15, 133–139.10.1097/00008877-200403000-00005Search in Google Scholar PubMed

Mason, R.P. and Trumbore, M.W. (1996). Differential membrane interactions of calcium channel blockers. Implications for antioxidant activity. Biochem. Pharmacol. 51, 653–660.10.1016/S0006-2952(95)02238-4Search in Google Scholar

Mason, R.P., Mak, I.T., Walter, M.F., Tulenko, T.N., and Mason, P.E. (1998). Antioxidant and cytoprotective activities of the calcium channel blocker mibefradil. Biochem. Pharmacol. 55, 1843–1852.10.1016/S0006-2952(98)00070-7Search in Google Scholar

Mason, R.P., Leeds, P.R., Jacob, R.F., Hough, C.J., Zhang, K.G., Mason, P.E., and Chuang, D.M. (1999). Inhibition of excessive neuronal apoptosis by the calcium antagonist amlodipine and antioxidants in cerebellar granule cells. J. Neurochem. 72, 1448–1456.10.1046/j.1471-4159.1999.721448.xSearch in Google Scholar

Matsui, T., Yamagishi, S., Takeuchi, M., Ueda, S., Fukami, K., and Okuda, S. (2009). Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-γ activation. Biochem. Biophys. Res. Commun. 385, 269–272.10.1016/j.bbrc.2009.05.061Search in Google Scholar

Mattson, M.P. and Chan, S.L. (2001). Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J. Mol. Neurosci. 17, 205–224.10.1385/JMN:17:2:205Search in Google Scholar

Maxwell, C.J., Hogan, D.B., and Ebly, E.M. (1999). Calcium-channel blockers and cognitive function in elderly people: results from the Canadian Study of Health and Aging. CMAJ. 161, 501–506.Search in Google Scholar

McCarron, D.A., Yung, N.N., Ugoretz, B.A., and Krutzik, S. (1981). Disturbances of calcium metabolism in the spontaneously hypertensive rat. Hypertension 3, I162–I167.10.1161/01.HYP.3.3_Pt_2.I162Search in Google Scholar

McCleskey, E.W., Fox, A.P., Feldman, D., and Tsien, R.W. (1986). Different types of calcium channels. J. Exp. Biol. 124, 177–190.10.1242/jeb.124.1.177Search in Google Scholar

McMonagle-Strucko, K. and Fanelli, R.J. (1993). Enhanced acquisition of reversal training in a spatial learning task in rats treated with chronic nimodipine. Pharmacol. Biochem. Behav. 44, 827–835.10.1016/0091-3057(93)90013-JSearch in Google Scholar

Mehta, J.L. (1985). Influence of calcium-channel blockers on platelet function and arachidonic acid metabolism. Am. J. Cardiol. 55, 158B–164B.10.1016/0002-9149(85)90626-5Search in Google Scholar

Milani, D., Malgaroli, A., Guidolin, D., Fasolato, C., Skaper, S.D., Meldolesi, J., Pozzan, T. (1990). Ca2+ channels and intracellular Ca2+ stores in neuronal and neuroendocrine cells. Cell Calcium 11, 191–199.10.1016/0143-4160(90)90070-BSearch in Google Scholar

Miwa, H., Koh, J., Kajimoto, Y., and Kondo, T. (2011). Effects of T-type calcium channel blockers on a parkinsonian tremor model in rats. Pharmacol. Biochem. Behav. 97, 656–659.10.1016/j.pbb.2010.11.014Search in Google Scholar

Molto, J.M., Falip, R., Martin, R., Insa, R., Pastor, I., and Matias-Guiu, J. (1995). Comparative study of nicardipine versus placebo in the prevention of cognitive deterioration in patients with transient ischemic attack. Rev. Neurol. 23, 54–58.Search in Google Scholar

Morich, F.J., Bieber, F. Lewis, J.M., Kaiser, L., Cutler, N.R., Escobar, J.I., Willmer, J., Petersen, R.C., Reisberg, B. (1996). Nimodipine in the treatment of probable Alzheimer’s disease. Clin. Drug Invest 11, 185–195.10.2165/00044011-199611040-00001Search in Google Scholar

Muldoon, M.F., Waldstein, S.R., Ryan, C.M., Jennings, J.R., Polefrone, J.M., Shapiro, A.P., and Manuck, S.B. (2002). Effects of six anti-hypertensive medications on cognitive performance. J. Hypertens. 20, 1643–1652.10.1097/00004872-200208000-00028Search in Google Scholar

Murphy, T.H., Worley, P.F., and Baraban, J.M. (1991). L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635.10.1016/0896-6273(91)90375-ASearch in Google Scholar

Murray, M.D., Lane, K.A., Gao, S., Evans, R.M., Unverzagt, F.W., Hall, K.S., and Hendrie, H. (2002). Preservation of cognitive function with antihypertensive medications: a longitudinal analysis of a community-based sample of African Americans. Arch. Intern. Med. 162, 2090–2096.10.1001/archinte.162.18.2090Search in Google Scholar

Nachman-Clewner, M., St Jules, R., and Townes-Anderson, E. (1999). L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J. Comp. Neurol. 415, 1–16.10.1002/(SICI)1096-9861(19991206)415:1<1::AID-CNE1>3.0.CO;2-GSearch in Google Scholar

Nelson, M.T., Todorovic, S.M., and Perez-Reyes, E. (2006). The role of T-type calcium channels in epilepsy and pain. Curr. Pharm. Des. 12, 2189–2197.10.2174/138161206777585184Search in Google Scholar

O’Nuallain, B., Freir, D.B., Nicoll, A.J., Risse, E., Ferguson, N., Herron, C.E., Collinge, J., and Walsh, D.M. (2010). Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. J. Neurosci. 30, 14411–14419.10.1523/JNEUROSCI.3537-10.2010Search in Google Scholar

Ogihara, T., Nakagawa, M., Ishikawa, H., Mikami, H., Takeda, K., Nonaka, H., and Inzitari, D. (1992). Effect of manidipine, a novel calcium channel blocker, on quality of life in hypertensive patients. Blood Press 3(Suppl.), 135–139.Search in Google Scholar

Oh, M.M., Oliveira, F.A., Waters, J., and Disterhoft, J.F. (2013). Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons. J. Neurosci. 33, 7905–7911.10.1523/JNEUROSCI.5457-12.2013Search in Google Scholar

Onoda, J.M., Sloane, B.F., and Honn, K.V. (1984). Antithrombogenic effects of calcium channel blockers: synergism with prostacyclin and thromboxane synthase inhibitors. Thromb. Res. 34, 367–378.10.1016/0049-3848(84)90241-XSearch in Google Scholar

Pantoni, L., Bianchi, C., Beneke, M., Inzitari, D., Wallin, A., and Erkinjuntti, T. (2000). The Scandinavian Multi-Infarct Dementia Trial: a double-blind, placebo-controlled trial on nimodipine in multi-infarct dementia. J. Neurol. Sci. 175, 116–123.10.1016/S0022-510X(00)00301-4Search in Google Scholar

Pantoni, L., del Ser, T., Soglian, A.G., Amigoni, S., Spadari, G., Binelli, D., Inzitari, D. (2005). Efficacy and safety of nimodipine in subcortical vascular dementia: a randomized placebo-controlled trial. Stroke 36, 619–624.10.1161/01.STR.0000155686.73908.3eSearch in Google Scholar

Paran, E., Anson, O., and Lowenthal, D.T. (2010). Cognitive function and antihypertensive treatment in the elderly: a 6-year follow-up study. Am. J. Ther. 17, 358–364.10.1097/MJT.0b013e3181bf325cSearch in Google Scholar

Paris, D., Bachmeier, C., Patel, N., Quadros, A., Volmar, C.H., Laporte, V., Ganey, J., Beaulieu-Abdelahad, D., Ait-Ghezala, G., Crawford, F., et al. (2011). Selective antihypertensive dihydropyridines lower Aβ accumulation by targeting both the production and the clearance of Aβ across the blood-brain barrier. Mol. Med. 17, 149–162.10.2119/molmed.2010.00180Search in Google Scholar

Parnetti, L., Senin, U., Carosi, M., and Baasch, H. (1993). Mental deterioration in old age: results of two multicenter, clinical trials with nimodipine. The Nimodipine Study Group. Clin. Ther. 15, 394–406.Search in Google Scholar

Pasternak, B., Svanstrom, H., Nielsen, N.M., Fugger, L., Melbye, M., and Hviid, A. (2012). Use of calcium channel blockers and Parkinson’s disease. Am. J. Epidemiol. 175, 627–635.10.1093/aje/kwr362Search in Google Scholar

Pauwels, P.J., Van Assouw, H.P., Peeters, L., and Leysen, J.E. (1990). Neurotoxic action of veratridine in rat brain neuronal cultures: mechanism of neuroprotection by Ca++ antagonists nonselective for slow Ca++ channels. J. Pharmacol. Exp. Ther. 255, 1117–1122.10.1016/0014-2999(90)94358-5Search in Google Scholar

Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 83, 117–161.10.1152/physrev.00018.2002Search in Google Scholar

Perez-Reyes, E., Van Deusen, A.L., and Vitko, I. (2009). Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs. J. Pharmacol. Exp. Ther. 328, 621–627.10.1124/jpet.108.145672Search in Google Scholar

Prince, M.J., Bird, A.S., Blizard, R.A., and Mann, A.H. (1996). Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the Medical Research Council’s trial of hypertension in older adults. BMJ 312, 801–805.10.1136/bmj.312.7034.801Search in Google Scholar

Quartermain, D., Hawxhurst, A., Ermita, B., and Puente, J. (1993). Effect of the calcium channel blocker amlodipine on memory in mice. Behav. Neural Biol. 60, 211–219.10.1016/0163-1047(93)90390-4Search in Google Scholar

Quartermain, D., deSoria, V.G., and Kwan, A. (2001). Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice. Neurobiol. Learn. Mem. 75, 77–90.10.1006/nlme.1999.3958Search in Google Scholar

Quevedo, J., Vianna, M., Daroit, D., Born, A.G., Kuyven, C.R., Roesler, R., and Quillfeldt, J.A. (1998). L-type voltage-dependent calcium channel blocker nifedipine enhances memory retention when infused into the hippocampus. Neurobiol. Learn. Mem. 69, 320–325.10.1006/nlme.1998.3822Search in Google Scholar

Ritz, B., Rhodes, S.L., Qian, L., Schernhammer, E., Olsen, J.H., and Friis, S. (2010). L-type calcium channel blockers and Parkinson disease in Denmark. Ann. Neurol. 67, 600–606.Search in Google Scholar

Rossier, M.F., Ertel, E.A., Vallotton, M.B., and Capponi, A.M. (1998). Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells. J. Pharmacol. Exp. Ther. 287, 824–831.Search in Google Scholar

Rostagno, C., Abbate, R., Gensini, G.F., Coppo, M., Prisco, D., Boddi, M., Neri Serneri, G.G. (1991). In vitro effects of two novel calcium antagonists (nitrendipine and nisoldipine) on intraplatelet calcium redistribution, platelet aggregation and thromboxane A2 formation. Comparison with diltiazem, nifedipine and verapamil. Thromb. Res. 63, 457–462.10.1016/0049-3848(91)90232-LSearch in Google Scholar

Salminen, A., Ojala, J., Kauppinen, A., Kaarniranta, K., and Suuronen, T. (2009). Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181–194.10.1016/j.pneurobio.2009.01.001Search in Google Scholar

Sanchez-Mejia, R.O., Newman, J.W., Toh, S., Yu, G.Q., Zhou, Y., Halabisky, B., Cissé, M., Scearce-Levie, K., Cheng, I.H., Gan, L., et al. (2008). Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat. Neurosci. 11, 1311–1318.10.1038/nn.2213Search in Google Scholar

Sandin, M., Jasmin, S., and Levere, T.E. (1990). Aging and cognition: facilitation of recent memory in aged nonhuman primates by nimodipine. Neurobiol. Aging. 11, 573–575.10.1016/0197-4580(90)90120-OSearch in Google Scholar

Sanz, J.M., Chiozzi, P., Colaianna, M., Zotti, M., Ferrari, D., Trabace, L., Zuliani, G., and Di Virgilio, F. (2012). Nimodipine inhibits IL-1β release stimulated by amyloid β from microglia. Br. J. Pharmacol. 167, 1702–1711.10.1111/j.1476-5381.2012.02112.xSearch in Google Scholar PubMed PubMed Central

Sarsero, D., Fujiwara, T., Molenaar, P., and Angus, J.A. (1998). Human vascular to cardiac tissue selectivity of L- and T-type calcium channel antagonists. Br. J. Pharmacol. 125, 109–119.10.1038/sj.bjp.0702045Search in Google Scholar PubMed PubMed Central

Schroeder, C.I., Doering, C.J., Zamponi, G.W., and Lewis, R.J. (2006). N-type calcium channel blockers: novel therapeutics for the treatment of pain. Med. Chem. 2, 535–543.10.2174/157340606778250216Search in Google Scholar PubMed

Schulla, V., Renstrom, E., Feil, R., Feil, S., Franklin, I., Gjinovci, A., Jing, X.J., Laux, D.,Lundquist, I., Magnuson, M.A. et al., (2003). Impaired insulin secretion and glucose tolerance in β cell-selective Ca(v)1.2 Ca2+ channel null mice. EMBO J. 22, 3844–3854.Search in Google Scholar

Schwartz, B.L., Fay-McCarthy, M., Kendrick, K., Rosse, R.B., and Deutsch, S.I. (1997). Effects of nifedipine, a calcium channel antagonist, on cognitive function in schizophrenic patients with tardive dyskinesia. Clin. Neuropharmacol. 20, 364–370.10.1097/00002826-199708000-00009Search in Google Scholar PubMed

Sendrowski, K., Rusak, M., Sobaniec, P., Ilendo, E., Dabrowska, M., Boćkowski, L., Koput, A., and Sobaniec, W. (2013). Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol. Rep. 65, 730–736.10.1016/S1734-1140(13)71052-1Search in Google Scholar

Seux, M.L., Staessen, J.A., and Forette, F. (1999). Treatment of isolated systolic arterial hypertension and prevention of dementia in aged patients. The Syst-Eur Multicenter Study. Arch. Mal. Coeur. Vaiss. 92, 1083–1087.Search in Google Scholar

Sevush, S., Jy, W., Horstman, L.L., Mao, W.-W., Kolodny, L., and Ahn, Y.S. (1998). Platelet activation in Alzheimer disease. Arch. Neurol. 55, 530–536.10.1001/archneur.55.4.530Search in Google Scholar

Shen, H., Zhang, B., Shin, J.H., Lei, D., Du, Y., Gao, X., Wang, Q., Ohlemiller, K.K., Piccirillo, J., and Bao J. (2007). Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss. Hear. Res. 226, 52–60.10.1016/j.heares.2006.12.011Search in Google Scholar

Simuni, T., Borushko, E., Avram, M.J., Miskevics, S., Martel, A., Zadikoff, C., Zadikoff, C., Videnovic, A., Weaver, F.M., Williams, K., et al. (2010). Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov. Disord. 25, 2863–2866.10.1002/mds.23308Search in Google Scholar

Skinner, M.H., Futterman, A., Morrissette, D., Thompson, L.W., Hoffman, B.B., and Blaschke, T.F. (1992). Atenolol compared with nifedipine: effect on cognitive function and mood in elderly hypertensive patients. Ann. Intern. Med. 116, 615–623.10.7326/0003-4819-116-8-615Search in Google Scholar

Solomon, S., Hotchkiss, E., Saravay, S.M., Bayer, C., Ramsey, P., and Blum, R.S. (1983). Impairment of memory function by antihypertensive medication. Arch. Gen. Psychiatry. 40, 1109–1112.10.1001/archpsyc.1983.01790090071011Search in Google Scholar

Sonkusare, S., Srinivasan, K., Kaul, C., and Ramarao, P. (2005). Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci. 77, 1–14.10.1016/j.lfs.2004.10.036Search in Google Scholar

Steiner, S.S., Friedhoff, A.J., Wilson, B.L., Wecker, J.R., and Santo, J.P. (1990). Antihypertensive therapy and quality of life: a comparison of atenolol, captopril, enalapril and propranolol. J. Hum. Hypertens. 4, 217–225.Search in Google Scholar

Stellos, K., Panagiota, V., Kogel, A., Leyhe, T., Gawaz, M., and Laske, C. (2010). Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 30, 1817–1820.10.1038/jcbfm.2010.140Search in Google Scholar

Stellos, K., Katsiki, N., Tatsidou, P., Bigalke, B., and Laske, C. (2012). Association of platelet activation with vascular cognitive impairment: implications in dementia development? Curr. Vasc. Pharmacol. 10, 1–3.Search in Google Scholar

Stephenson, D.T., Lemere, C.A., Selkoe, D.J., and Clemens, J.A. (1996). Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Dis. 3, 51–63.10.1006/nbdi.1996.0005Search in Google Scholar

Streufert, S., DePadova, A., McGlynn, T., Pogash, R., and Piasecki, M. (1988). Impact of β-blockade on complex cognitive functioning. Am. Heart J. 116, 311–315.10.1016/0002-8703(88)90106-8Search in Google Scholar

Suleyman, H., Halici, Z., Hacimuftuoglu, A., and Gocer, F. (2006). Role of adrenal gland hormones in antiinflammatory effect of calcium channel blockers. Pharmacol. Rep. 58, 692–699.Search in Google Scholar

Taya, K., Watanabe, Y., Kobayashi, H., and Fujiwara, M. (2000). Nimodipine improves the disruption of spatial cognition induced by cerebral ischemia. Physiol. Behav. 70, 19–25.10.1016/S0031-9384(00)00221-3Search in Google Scholar

Tedesco, M.A., Ratti, G., Mennella, S., Manzo, G., Grieco, M., Rainone, A.C., Iarussi, D., and Iacono, A. (1999). Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am. J. Hypertens. 12, 1130–1134.10.1016/S0895-7061(99)00156-9Search in Google Scholar

Thibault, O. and Landfield, P.W. (1996). Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272, 1017–1020.10.1126/science.272.5264.1017Search in Google Scholar

Thibault, O., Hadley, R., and Landfield, P.W. (2001). Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J. Neurosci. 21, 9744–9756.10.1523/JNEUROSCI.21-24-09744.2001Search in Google Scholar

Tisaire-Sanchez, J., Roma, J., Camacho-Azcargorta, I., Bueno-Gomez, J., Mora-Macia, J., and Navarro, A. (2006). Assessment of cognitive function in patients with essential hypertension treated with lercanidipine. Vasc. Health Risk Manag. 2, 491–498.10.2147/vhrm.2006.2.4.491Search in Google Scholar

Toba, H., Nakagawa, Y., Miki, S., Shimizu, T., Yoshimura, A., Inoue, R., Asayama, J., Kobara, M., and Nakata, T. (2005). Calcium channel blockades exhibit anti-inflammatory and antioxidative effects by augmentation of endothelial nitric oxide synthase and the inhibition of angiotensin converting enzyme in the N(G)-nitro-L-arginine methyl ester-induced hypertensive rat aorta: vasoprotective effects beyond the blood pressure-lowering effects of amlodipine and manidipine. Hypertens. Res. 28, 689–700.10.1291/hypres.28.689Search in Google Scholar

Todorovic, S.M., Perez-Reyes, E., and Lingle, C.J. (2000). Anticonvulsants but not general anesthetics have differential blocking effects on different T-type current variants. Mol. Pharmacol. 58, 98–108.10.1124/mol.58.1.98Search in Google Scholar

Tollefson, G.D. (1990). Short-term effects of the calcium channel blocker nimodipine (Bay-e-9736) in the management of primary degenerative dementia. Biol. Psychiatry 27, 1133–1142.10.1016/0006-3223(90)90050-CSearch in Google Scholar

Tomassoni, D., Lanari, A., Silvestrelli, G., Traini, E., and Amenta, F. (2008). Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin. Exp. Hypertens. 30, 744–766.10.1080/10641960802580232Search in Google Scholar PubMed

Trompet, S., Westendorp, R.G., Kamper, A.M., and de Craen, A.J. (2008). Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol. Aging. 29, 306–308.10.1016/j.neurobiolaging.2006.10.006Search in Google Scholar PubMed

Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R., and Fox, A.P. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438.10.1016/0166-2236(88)90194-4Search in Google Scholar

Tsukuda, K., Mogi, M., Li, J.M., Iwanami, J., Min, L.J., Sakata, A., Fujita, T., Iwai, M,, and Horiuchi, M. (2008). Diabetes-associated cognitive impairment is improved by a calcium channel blocker, nifedipine. Hypertension 51, 528–533.10.1161/HYPERTENSIONAHA.107.101634Search in Google Scholar

Tzourio, C., Anderson, C., Chapman, N., Woodward, M., Neal, B., MacMahon, S., Chalmers, J.; PROGRESS Collaborative Group. (2003). Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 163, 1069–1075.10.1001/archinte.163.9.1069Search in Google Scholar

Uchitel, O.D., Protti, D.A., Sanchez, V., Cherksey, B.D., Sugimori, M., and Llinas, R. (1992). P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc. Natl. Acad. Sci. USA 89, 3330–3333.10.1073/pnas.89.8.3330Search in Google Scholar

Ueda, K., Shinohara, S., Yagami, T., Asakura, K., and Kawasaki, K. (1997). Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J. Neurochem. 68, 265–271.10.1046/j.1471-4159.1997.68010265.xSearch in Google Scholar

Umemura, S., Smyth, D.D., Nicar, M., Rapp, J.P., and Pettinger, W.A. (1986). Altered calcium homeostasis in Dahl hypertensive rats: physiological and biochemical studies. J. Hypertens. 4, 19–26.10.1097/00004872-198602000-00004Search in Google Scholar

Vance, C.L., Begg, C.M., Lee, W.L., Haase, H., Copeland, T.D., and McEnery, M.W. (1998). Differential expression and association of calcium channel α1B and β subunits during rat brain ontogeny. J. Biol. Chem. 273, 14495–14502.10.1074/jbc.273.23.14495Search in Google Scholar

Vaseghi, G., Rabbani, M., and Hajhashemi, V. (2012). The effect of nimodipine on memory impairment during spontaneous morphine withdrawal in mice: corticosterone interaction. Eur. J. Pharmacol. 695, 83–87.10.1016/j.ejphar.2012.08.022Search in Google Scholar

Veng, L.M., Mesches, M.H., and Browning, M.D. (2003). Age-related working memory impairment is correlated with increases in the L-type calcium channel protein α1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. Brain Res. Mol. Brain Res. 110, 193–202.10.1016/S0169-328X(02)00643-5Search in Google Scholar

Wang, J., Ho, L., Chen, L., Zhao, Z., Zhao, W., Qian, X., Humala, N., Seror, I., Bartholomew, S., Rosendorff, C., et al. (2007). Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest. 117, 3393–3402.10.1172/JCI31547Search in Google Scholar PubMed PubMed Central

Watfa, G., Rossignol, P., Kearney-Schwartz, A., Fay, R., Bracard, S., Felblinger, J., Boivin, J.M., Lacolley, P., Zannad, F., and Benetos, A. (2010). Use of calcium channel blockers is associated with better cognitive performance in older hypertensive patients with subjective memory complaints. J. Hypertens. 28, 2485–2493.10.1097/HJH.0b013e32833e4108Search in Google Scholar PubMed

Weiss, J.H., Pike, C.J., and Cotman, C.W. (1994). Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62, 372–375.10.1046/j.1471-4159.1994.62010372.xSearch in Google Scholar PubMed

Wildburger, N.C., Lin-Ye, A., Baird, M.A., Lei, D., and Bao, J. (2009). Neuroprotective effects of blockers for T-type calcium channels. Mol. Neurodegener. 4, 44.10.1186/1750-1326-4-44Search in Google Scholar PubMed PubMed Central

Wu, L.G., Borst, J.G., and Sakmann, B. (1998). R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. USA 95, 4720–4725.10.1073/pnas.95.8.4720Search in Google Scholar PubMed PubMed Central

Yagami, T., Ueda, K., Sakaeda, T., Itoh, N., Sakaguchi, G., Okamura, N., Hori, Y., Fujimoto, M. (2004). Protective effects of a selective L-type voltage-sensitive calcium channel blocker, S-312-d, on neuronal cell death. Biochem. Pharmacol. 67, 1153–1165.10.1016/j.bcp.2003.11.005Search in Google Scholar PubMed

Yamada, H., Chen, Y.N., Aihara, M., and Araie, M. (2006). Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 1071, 75–80.10.1016/j.brainres.2005.11.072Search in Google Scholar PubMed

Yamakage, M. and Namiki, A. (2002). Calcium channels—basic aspects of their structure, function and gene encoding; anesthetic action on the channels—a review. Can. J. Anaesth. 49, 151–164.10.1007/BF03020488Search in Google Scholar PubMed

Yasar, S., Corrada, M., Brookmeyer, R., and Kawas, C. (2005). Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol Aging. 26, 157–163.10.1016/j.neurobiolaging.2004.03.009Search in Google Scholar PubMed

Yousef, W.M., Omar, A.H., Morsy, M.D., El-Wahed, M.M.A., and Ghanayem, N.M. (2005). The mechanism of action of calcium channel blockers in the treatment of diabetic nephropathy. Int. J. Diabet. Metab. 13, 76–82.10.1159/000497574Search in Google Scholar

Yu, J.T., Chang, R.C., and Tan, L. (2009). Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. Prog. Neurobiol. 89, 240–255.10.1016/j.pneurobio.2009.07.009Search in Google Scholar PubMed

Zhang, X.L., Zheng, S.L., Dong, F.R., and Wang, Z.M. (2012). Nimodipine improves regional cerebral blood flow and suppresses inflammatory factors in the hippocampus of rats with vascular dementia. J. Int. Med. Res. 40, 1036–1045.10.1177/147323001204000322Search in Google Scholar PubMed

Zhao, W., Wang, J., Ho, L., Ono, K., Teplow, D.B., and Pasinetti, G.M. (2009). Identification of antihypertensive drugs which inhibit amyloid-β protein oligomerization. J. Alzheimers Dis. 16, 49–57.10.3233/JAD-2009-0925Search in Google Scholar PubMed

Zornow, M.H. and Prough, D.S. (1996). Neuroprotective properties of calcium-channel blockers. New Horiz. 4, 107–114.Search in Google Scholar

Zundorf, G. and Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 14, 1275–1288.10.1089/ars.2010.3359Search in Google Scholar PubMed PubMed Central

Received: 2013-11-18
Accepted: 2014-1-26
Published Online: 2014-2-25
Published in Print: 2014-4-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0056/html?lang=en
Scroll to top button