Startseite 5-HT systems: emergent targets for memory formation and memory alterations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

5-HT systems: emergent targets for memory formation and memory alterations

  • Alfredo Meneses

    PhD on Physiological sciences (1996) from UNAM. Postdoctoral stay in the NIA, USA 1997–1998. Currently, full Professor in the Department of Pharmacobiology of CINVESTAV. Expert Workshop “Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology” (23rd September 2013, Rome). Projects referee: Neuroscience and Mental Health Board Medical Research Council, London UK (July 2006); Earth & Life Sciences Veni round 2012 (Holland). External Reviewer Research Foundation – Flanders (Fonds Wetenschappelijk Onderzoek – Vlaanderen, FWO), March 2013. External Reviewer: Career Development Awards Human Frontier Science Program Organization, Jan 2013.

    EMAIL logo
Veröffentlicht/Copyright: 21. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.

Keywords: drugs; memory; serotonin

Corresponding author: Alfredo Meneses, Department of Pharmacobiology, CINVESTAV, Tenorios 235, Granjas Coapa, 14330 México City, México, e-mail:

About the author

Alfredo Meneses

PhD on Physiological sciences (1996) from UNAM. Postdoctoral stay in the NIA, USA 1997–1998. Currently, full Professor in the Department of Pharmacobiology of CINVESTAV. Expert Workshop “Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology” (23rd September 2013, Rome). Projects referee: Neuroscience and Mental Health Board Medical Research Council, London UK (July 2006); Earth & Life Sciences Veni round 2012 (Holland). External Reviewer Research Foundation – Flanders (Fonds Wetenschappelijk Onderzoek – Vlaanderen, FWO), March 2013. External Reviewer: Career Development Awards Human Frontier Science Program Organization, Jan 2013.

I thank Sofia Meneses-Goytia for revised language and Roberto Gonzalez for his expert assistance. This work was supported, in part, by CONACYT grant 80060.

References

Alleva, L., Tirelli, E., and Brabant, C. (2013). Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders. Behav. Brain Res. 237, 357–368.10.1016/j.bbr.2012.09.025Suche in Google Scholar PubMed

Aloyo, V.J., Berg, K.A., Spampinato, U., Clarke, W.P., and Harvey, J.A. (2009). Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol. Ther. 121, 160–173.10.1016/j.pharmthera.2008.10.010Suche in Google Scholar PubMed

Andrade, R. and Haj-Dahmane, S. (2013). Serotonin neuron diversity in the dorsal raphe. ACS Chem. Neurosci. 4, 22–25. doi: 10.1021/cn300224n.10.1021/cn300224nSuche in Google Scholar PubMed PubMed Central

Aubert, Y., Allers, K.A., Sommer, B., de Kloet, E.R., Abbott, D.H., and Datson, N.A. (2013). Brain region-specific transcriptomic markers of serotonin-1A receptor agonist action mediating sexual rejection and aggression in female marmoset monkeys. J. Sex Med. 10, 1461–1475.10.1111/jsm.12131Suche in Google Scholar PubMed

Ballaz, S.J., Ail, H., and Watson, S.J. (2007). Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neuroscience 147, 428–438.10.1016/j.neuroscience.2007.04.024Suche in Google Scholar PubMed

Barnes, N.M. (2011). 5-HT: the promiscuous and happy hormone! Curr. Opin. Pharmacol. 11, 1–2.10.1016/j.coph.2011.03.001Suche in Google Scholar PubMed

Barnes, N.M., Hales, T.G., Lummis, S.C., and Peters, J.A. (2009). The 5-HT3 receptor — the relationship between structure and function. Neuropharmacology 56, 273–284.10.1016/j.neuropharm.2008.08.003Suche in Google Scholar PubMed PubMed Central

Batsikadze, G., Paulus, W., Kuo, M.F., Nitsche, M.A. (2013). Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex. Neuropsychopharmacology 38, 2260–2267.10.1038/npp.2013.127Suche in Google Scholar PubMed PubMed Central

Belcher, A.M., O’Dell, S.J., and Marshall, J.F. (2005). Impaired object recognition memory following methamphetamine, but not p-chloroamphetamine- or d-amphetamine-induced neurotoxicity. Neuropsychopharmacology 30, 2026–2034.10.1038/sj.npp.1300771Suche in Google Scholar PubMed

Bert, B., Fink, H., Rothe, J., Walstab, J., and Bönisch, H. (2008). Learning and memory in 5-HT1A-receptor mutant mice. Behav. Brain Res. 195, 78–85.10.1016/j.bbr.2008.02.028Suche in Google Scholar PubMed

Blasi, G., De Virgilio, C., Papazacharias, A., Taurisano, P., Gelao, B., Fazio, L., Ursini, G., Sinibaldi, L., Andriola, I., Masellis, R., et al. (2013). Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment. J. Am. Med. Assoc. Psychiatr. 70, 921–930.10.1001/jamapsychiatry.2013.1378Suche in Google Scholar PubMed

Bockaert, J., Claeysen, S., Sebben, M., and Dumuis, A. (1998). 5-HT4receptors: gene, transduction and effects on olfactory memory. Ann. N. Y. Acad. Sci. 861, 1–15.10.1111/j.1749-6632.1998.tb10167.xSuche in Google Scholar PubMed

Bockaert, J., Claeysen, S., Bécamel, C., Dumuis, A., and Marin, P. (2006). Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 326, 553–572.10.1007/s00441-006-0286-1Suche in Google Scholar PubMed

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2008). 5-HT4 receptors: history, molecular pharmacology and brain functions. Neuropharmacology 55, 922–931.10.1016/j.neuropharm.2008.05.013Suche in Google Scholar PubMed

Bockaert, J., Perroy, J., Bécamel, C., Marin, P., and Fagni, L. (2010). GPCR interacting proteins (GIPs) in the nervous system: roles in physiology and pathologies. Annu. Rev. Pharmacol. Toxicol. 50, 89–109.10.1146/annurev.pharmtox.010909.105705Suche in Google Scholar PubMed

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2011). 5-HT4 receptors, a place in the sun: act two. Curr. Opin. Pharmacol. 11, 87–93.10.1016/j.coph.2011.01.012Suche in Google Scholar PubMed

Boess, F.G., de Vry, J., Erb, C., Flessner, T., Hendrix, M., Luithle, J., Methfessel, C., Schnizler, K., van der Staay, F.J., van Kampen, M., et al. (2013). Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology (Berl) 227, 1–17.10.1007/s00213-012-2933-4Suche in Google Scholar PubMed

Bombardi, C. and Di Giovanni, G. (2013). Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp. Brain Res. 230, 427–439.10.1007/s00221-013-3512-6Suche in Google Scholar PubMed

Borg, J. (2008). Molecular imaging of the 5-HT1Areceptor in relation to human cognition. Behav. Brain Res. 195, 103–111.10.1016/j.bbr.2008.06.011Suche in Google Scholar PubMed

Borroni, B., Costanzi, C., and Padovani, A. (2010). Genetic susceptibility to behavioural and psychological symptoms in Alzheimer disease. Curr. Alzheimer Res. 7, 158–164.10.2174/156720510790691173Suche in Google Scholar PubMed

Bosch, O.G., Wagner, M., Jessen, F., Kühn, K.U., Joe, A., Seifritz, E., Maier, W., Biersack, H.J., and Quednow, B.B. (2013). Verbal memory deficits are correlated with prefrontal hypometabolism in (18)FDG PET of recreational MDMA users. PLoS One 8, e61234.10.1371/journal.pone.0061234Suche in Google Scholar

Boulougouris, V. and Robbins, T.W. (2010). Enhancement of spatial reversal learning by 5-HT2Creceptor antagonism is neuroanatomically specific. J. Neurosci. 30, 930–938.10.1523/JNEUROSCI.4312-09.2010Suche in Google Scholar

Briand, L.A., Gritton, H., Howe, W.M., Young, D.A., and Sarter, M. (2007). Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog. Neurobiol. 83, 69–91.10.1016/j.pneurobio.2007.06.007Suche in Google Scholar

Buhot, M.C., Wolff, M., Savova, M., Malleret, G., Hen, R., and Segu, L. (2003a). Protective effect of 5-HT1B receptor gene deletion on the age-related decline in spatial learning abilities in mice. Behav. Brain Res. 142, 135–142.10.1016/S0166-4328(02)00400-XSuche in Google Scholar

Buhot, M.C., Wolff, M., Benhassine, N., Costet, P., Hen, R., and Segu, L. (2003b). Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learn. Mem. 10, 466–477.10.1101/lm.60203Suche in Google Scholar PubMed

Buhot, M.C., Wolff, M., and Segu, L. (2003c). Serotonin. Memories are made of these: from messengers to molecules. In: Riedel, G. and Platt, B., eds., (Eurekah.com and Kluwer Academic/Plenum Publishers), pp. 1–19.Suche in Google Scholar

Burghardt, N.S. and Bauer, E.P. (2013). Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits. Neuroscience 247, 253–272.10.1016/j.neuroscience.2013.05.050Suche in Google Scholar PubMed

Bussey, T.J., Holmes, A., Lyon, L., Mar, A.C., McAllister, K.A., Nithianantharajah, J., Oomen, C.A., and Saksida, L.M. (2012). New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203.10.1016/j.neuropharm.2011.04.011Suche in Google Scholar PubMed PubMed Central

Cahir, M., Ardis, T., Reynolds, G.P., and Cooper, S.J. (2007). Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT2A receptor binding in the rat. Psychopharmacology (Berl) 190, 497–506.10.1007/s00213-006-0635-5Suche in Google Scholar PubMed

Cahir, M., Ardis, T.C., Elliott, J.J., Kelly, C.B., Reynolds, G.P., and Cooper, S.J. (2008). Acute tryptophan depletion does not alter central or plasma brain-derived neurotrophic factor in the rat. Eur. Neuropsychopharmacol. 18, 317–322.10.1016/j.euroneuro.2007.07.006Suche in Google Scholar PubMed

Cai, X., Kallarackal, A.J., Kvarta, M.D., Goluskin, S., Gaylor, K., Bailey, A.M., Lee, H.K., Huganir, R.L., and Thompson, S.M. (2013). Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat. Neurosci. 16, 464–472.10.1038/nn.3355Suche in Google Scholar PubMed PubMed Central

Calcagno, E., Carli, M., and Invernizzi, R.W. (2006). The 5-HT1A receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J. Neurochem. 96, 853–860.10.1111/j.1471-4159.2005.03600.xSuche in Google Scholar

Callaghan, C.K., Hok, V., Della-Chiesa, A., Virley, D.J., Upton, N., and O’Mara, S.M. (2012). Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457. Neuropharmacology 63, 890–897.10.1016/j.neuropharm.2012.06.034Suche in Google Scholar

Campan, V., Zhou, M., Grailhe, R., Gazzara, R.A., Martin, R., Gingrich, J., Dumuis, A., Brunner, D., Bockaert, J., and Hen, R. (2004). Attenuated responses to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J. Neurosci. 24, 412–419.10.1523/JNEUROSCI.2806-03.2004Suche in Google Scholar

Cano-Colino, M., Almeida, R., and Compte, A. (2013). Serotonergic modulation of spatial working memory: predictions from a computational network model. Front Integr. Neurosci, 7, 71.10.3389/fnint.2013.00071Suche in Google Scholar

Carli, M. and Samanin, R. (1992). 8-Hydroxy-2- (di-n-propylamino) tetralin impairs spatial learning in a water maze: role of postsynaptic 5-HT1A. Br. J. Pharmacol. 105, 720–726.10.1111/j.1476-5381.1992.tb09045.xSuche in Google Scholar

Carli, M. and Samanin, R. (2000). The 5-HT1A receptor agonist 8-OH-DPAT reduces rats’ accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT1A receptors. Psychopharmacology (Berl) 149, 259–268.10.1007/s002139900368Suche in Google Scholar

Carli, M., Luschi, R., Garofalo, P., and Samanin, R. (1995). 8-OH-DPAT impairs spatial but not visual learning in a water maze by stimulating 5-HT1A receptors in the hippocampus. Behav. Brain Res. 67, 67–74.10.1016/0166-4328(94)00105-OSuche in Google Scholar

Carli, M., Bonalumi, P., and Samanin, R. (1997). WAY 100635, a 5-HT1Areceptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal administration of scopolamine or 7-chloro-kynurenic acid. Brain Res. 774, 167–174.10.1016/S0006-8993(97)81700-3Suche in Google Scholar

Carli, M., Bonalumi, P., and Samanin, R. (1998). Stimulation of 5-HT1A receptors in the dorsal raphe reverses the impairment caused by intrahippocampal scopolamine in rats. Eur. J. Neurosci. 10, 221–230.10.1046/j.1460-9568.1998.00034.xSuche in Google Scholar

Carli, M., Silva, S., Balducci, C., and Samanin, R. (1999a). WAY 100635, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by blockade of hippocampal NMDA receptors. Neuropharmacology 38, 1165–1173.10.1016/S0028-3908(99)00038-6Suche in Google Scholar

Carli, M., Balducci, C., Millan, M.J., Bonalumi, P., and Samanin, R. (1999b). S 15535, a benzodioxopiperazine acting as presynaptic agonist and postsynaptic 5-HT1Areceptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal scopolamine. Br. J. Pharmacol. 128, 1207–1214.10.1038/sj.bjp.0702915Suche in Google Scholar

Carli, M., Balducci, C., and Samanin, R. (2001). Stimulation of 5-HT1A receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology (Berl) 158, 39–47.10.1007/s002130100837Suche in Google Scholar

Carli, M., Baviera, M., Invernizzi, R.W., and Balducci, C. (2006). Dissociable contribution of 5-HT1A and 5-HT2Areceptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31, 757–767.10.1038/sj.npp.1300893Suche in Google Scholar

Cassel, J.C. (2010). Experimental studies on the role(s) of serotonin in learning and memory functions. Vol. 21. In: Muller, C.P. and Jacobs, G.L., eds., Handbook of the Behavioral Neurobiology of Serotonin, (Amsterdam, the Netherlands: Academic Press), pp. 429–447.10.1016/S1569-7339(10)70094-1Suche in Google Scholar

Castillo, C., Ibarra, M., Márquez, J.A., Villalobos-Molina, R., and Hong, E. (1993). Pharmacological evidence for interactions between 5-HT1A receptor agonists and subtypes of alpha 1-adrenoceptors on rabbit aorta. Eur. J. Pharmacol. 241, 141–148.10.1016/0014-2999(93)90195-NSuche in Google Scholar

Chou, Y.H., Wang, S.J., Lirng, J.F., Lin, C.L., Yang, K.C., Chen, C.K., Yeh, C.B., and Liao, M.H. (2012). Impaired cognition in bipolar I disorder: the roles of the serotonin transporter and brain-derived neurotrophic factor. J. Affect. Disord. 143, 131–137.10.1016/j.jad.2012.05.043Suche in Google Scholar PubMed

Chow, T.W., Pllock, B.G., and Milgram, N.W. (2007). Potential cognitive enhancing and disease modification effects of SSRIs for Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 3, 627–36.Suche in Google Scholar

Cifariello, A., Pompili, A., and Gasbarri, A. (2008). 5-HT7 receptors in the modulation of cognitive processes. Behav. Brain Res. 195, 171–179.10.1016/j.bbr.2007.12.012Suche in Google Scholar PubMed

Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S.F., Marin, P., Bockaert, J., Dumuis, A., and Claeysen, S. (2013). 5HT4receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem. Neurosci. 4, 130−140.Suche in Google Scholar

Cook, R.G., Geller, A.I., Zhang, G.R., and Gowda, R. (2004). Touchscreen-enhanced visual learning in rats. Behav. Res. Methods Instrum. Comput. 36, 101–106.10.3758/BF03195555Suche in Google Scholar

Costall, B. (1993). The breadth of action of the 5-HT3 receptor antagonists. Int. Clin. Psychopharmacol. 8(Suppl 2), 3–9.10.1097/00004850-199311002-00001Suche in Google Scholar PubMed

Cowen, P. and Sherwood, A.C. (2013). The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J. Psychopharmacol. 27, 575–583.10.1177/0269881113482531Suche in Google Scholar PubMed

Curtin, P.C.P., Medan, V., Neumeister, H., Bronson, D.R., and Preuss, T. (2013). The 5-HT5A receptor regulates excitability in the auditory startle circuit: functional implications for sensorimotor gating. J. Neurosci. 33, 10011–10020.10.1523/JNEUROSCI.4733-12.2013Suche in Google Scholar PubMed PubMed Central

Da Silva Costa-Aze, V., Quiedeville, A., Boulouard, M., and Dauphin, F. (2012). 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology (Berl) 222, 99–115.10.1007/s00213-011-2627-3Suche in Google Scholar PubMed

Dayan, P. and Huys, Q.J. (2009). Serotonin in affective control. Annu. Rev. Neurosci. 32, 95–126.10.1146/annurev.neuro.051508.135607Suche in Google Scholar PubMed

Dougherty, J.P. and Oristaglio, J. (2013). Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice. Neurobiol. Learn. Mem. 103, 50–63.10.1016/j.nlm.2013.04.002Suche in Google Scholar PubMed

Drago, A., Alboni, S., Brunello, N., De Ronchi, D., and Serretti, A. (2009). HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur. J. Clin. Pharmacol. 66, 5–27. doi: 10.1007/s00228-009-0724-6. Review. Erratum in: Eur. J. Clin. Pharmacol. 66, 105, 2010.Suche in Google Scholar

Eid, C.N., Jr. and Rose, G.M. (1999). Cognition enhancement strategies by ion channel modulation of neurotransmission. Curr. Pharm. Des. 5, 345–361.10.2174/138161280504230110100800Suche in Google Scholar

Elvander-Tottie, E., Eriksson, T.M., Sandin, J., and Ogren, S.O. (2009). 5-HT1Aand NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning. Hippocampus 19, 1187–1198.10.1002/hipo.20596Suche in Google Scholar PubMed

Engelborghs, S., Sleegers, K., Van der Mussele, S., Le Bastard, N., Brouwers, N., Van Broeckhoven, C., and De Deyn, P.P. (2013). Brain-specific tryptophan hydroxylase, TPH2, and 5-HTTLPR are associated with frontal lobe symptoms in Alzheimer’s disease. J. Alzheimer Dis. 35, 67–73.10.3233/JAD-101305Suche in Google Scholar PubMed

Eppinger, B., Hämmerer, D., and Li, S.C. (2012). Neuromodulation of reward-based learning and decision making in human aging. Ann. NY Acad. Sci. 1235, 1–17.10.1111/j.1749-6632.2011.06230.xSuche in Google Scholar PubMed PubMed Central

Eriksson, T.M., Madjid, N., Elvander-Tottie, E., Stiedl, O., Svenningsson, P., and Ogren, S.O. (2008). Blockade of 5-HT1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology 54, 1041–1050.10.1016/j.neuropharm.2008.02.007Suche in Google Scholar PubMed

Eriksson, T.M., Holst, S., Stan, T.L., Hager, T., Sjögren, B., Ogren, S.O., Svenningsson, P., and Stiedl, O. (2012a). 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology 63, 1150–1160.10.1016/j.neuropharm.2012.06.061Suche in Google Scholar PubMed

Eriksson, T.M., Alvarsson, A., Stan, T.L., Zhang, X., Hascup, K.N., Hascup, E.R., Kehr, J., Gerhardt, G.A., Warner-Schmidt, J., Arango-Lievano, M., et al. (2012b). Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol. Psychiatry. 18, 1096–1105.10.1038/mp.2012.130Suche in Google Scholar PubMed PubMed Central

Eriksson, T.M., Delagrange, P., Spedding, M., Popoli, M., Mathé, A.A., Ögren, S.O., and Svenningsson, P. (2012c). Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol. Psychiatry 17, 173–184.10.1038/mp.2010.131Suche in Google Scholar PubMed PubMed Central

Ersche, K.D., Roiser, J.P., Lucas, M., Domenici, E., Robbins, T.W., and Bullmore, E.T. (2011). Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment. Psychopharmacology (Berl) 214, 779–789.10.1007/s00213-010-2087-1Suche in Google Scholar PubMed PubMed Central

Fink, K.B. and Göthert, M. (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 59, 360–417.10.1124/pr.59.07103Suche in Google Scholar

Flagel, S.B., Watson, S.J., Akil, H., and Robinson, T.E. (2008). Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav. Brain Res. 186, 48–56.10.1016/j.bbr.2007.07.022Suche in Google Scholar PubMed PubMed Central

Foley, A.G., Murphy, K.J., Hirst, W.D., Gallagher, H.C., Hagan, J.J., Upton, N., Walsh, F.S., and Regan, C.M. (2004). The 5-HT6 receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology 9, 93–100.10.1038/sj.npp.1300332Suche in Google Scholar PubMed

Fone, K.C. (2006). Selective 5-HT6 compounds as a novel approach to the treatment of Alzheimer disease. J. Pharmacol. Sci. 101(Suppl 1), 53.Suche in Google Scholar

Fournet, V., de Lavilléon, G., Schweitzer, A., Giros, B., Andrieux, A., and Martres, M.P. (2012). Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood-status of STOP/MAP6 KO mice. J. Neurochem. 123, 982–996.10.1111/jnc.12027Suche in Google Scholar PubMed

Francis, P.T., Ramırez, M.J., and Lai, M.K. (2010). Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology 59, 221–229.10.1016/j.neuropharm.2010.02.010Suche in Google Scholar PubMed

Frauenknecht, K., Katzav, A., Grimm, C., Chapman, J., and Sommer, C.J. (2013). Neurological impairment in experimental antiphospholipid syndrome is associated with increased ligand binding to hippocampal and cortical serotonergic 5-HT1A receptors. Immunobiology 218, 517–526.10.1016/j.imbio.2012.06.011Suche in Google Scholar PubMed

Freret, T., Paizanis, E., Beaudet, G., Gusmao-Montaigne, A., Nee, G., Dauphin, F., Bouet, V., and Boulouard, M. (2013). Modulation of 5-HT7/sub> receptor: effect on object recognition performances in mice. Psychopharmacology (Berl). Epub ahead of print.Suche in Google Scholar

Gacsályi, I., Nagy, K., Pallagi, K., Lévay, G., Hársing, L.G., Jr., Móricz, K., Kertész, S., Varga, P., Haller, J., Gigler, G., at al. (2013). Egis-11150: a candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology 64, 254–256.10.1016/j.neuropharm.2012.07.017Suche in Google Scholar PubMed

Gallistel, C.R. (2013). The importance of proving the null. Psychol. Rev. 116, 439–453.10.1037/a0015251Suche in Google Scholar PubMed PubMed Central

Garcia-Alloza, M., Hirst, W.D., Chen, C.P., Lasheras, B., Francis, P.T., and Ramírez, M.J. (2004). Differential involvement of 5-HT1B/1D and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology 29, 410–416.10.1038/sj.npp.1300330Suche in Google Scholar

Gasbarri, A., Cifariello, A., Pompili, A., and Meneses, A. (2008). Effect of 5-HT7 antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav. Brain Res. 195, 164–170.10.1016/j.bbr.2007.12.020Suche in Google Scholar

Geldenhuys, W.J. and Van der Schyf, C.J. (2009). The serotonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Exp. Rev. Neurother. 9, 1073–1085.10.1586/ern.09.51Suche in Google Scholar

Gellynck, E., Heyninck, K., Andressen, K.W., Haegeman, G., Levy, F.O., Vanhoenacker, P., and Van Craenenbroeck, K. (2013). The serotonin 5-HT7 receptors: two decades of research. Exp. Brain Res. 230, 555–568.10.1007/s00221-013-3694-ySuche in Google Scholar

Gerlai, R. (2001). Behavioral tests of hippocampal function: simple paradigms complex problems. Behav. Brain Res. 125, 269–277.10.1016/S0166-4328(01)00296-0Suche in Google Scholar

Gobert, A., Lejeune, F., Rivet, J.M., Audinot, V., Newman-Tancredi, A., and Millan, M.J. (1995). Modulation of the activity of central serotoninergic neurons by novel serotonin1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. J. Pharmacol. Exp. Ther. 273, 1032–1046.Suche in Google Scholar

Goghari, V.M., Smith, G.N., Honer, W.G., Kopala, L.C., Thornton, A.E., Su, W., Macewan, G.W., and Lang, D.J. (2013). Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naïve first-episode psychosis patients. Schizophr. Res. pii: S0920-9964(13)00325-3.Suche in Google Scholar

Gong, P., Zheng, Z., Chi, W., Lei, X., Wu, X., Chen, D., Zhang, K., Zheng, A., Gao, X., and Zhang, F. (2012). An association study of the genetic polymorphisms in 13 neural plasticity-related genes with semantic and episodic memories. J. Mol. Neurosci. 46, 352–361.10.1007/s12031-011-9592-5Suche in Google Scholar

Gonzalez, R., Chávez-Pascacio, K., and Meneses, A. (2013). Role of 5-HT5A receptors in the consolidation of memory. Behav. Brain Res. 252C, 246–251.10.1016/j.bbr.2013.05.051Suche in Google Scholar

Goodfellow, N.M., Bailey, C.D., and Lambe, E.K. (2012). The native serotonin 5-HT5A receptor: electrophysiological characterization in rodent cortex and 5-HT1A-mediated compensatory plasticity in the knock-out mouse. J. Neurosci. 32, 5804–5809.10.1523/JNEUROSCI.4849-11.2012Suche in Google Scholar

Gravius, A., Laszy, J., Pietraszek, M., Sághy, K., Nagel, J., Chambon, C., Wegener, N., Valastro, B., Danysz, W., and Gyertyán, I. (2011). Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behav. Pharmacol. 22, 122–135.10.1097/FBP.0b013e328343d804Suche in Google Scholar

Guan, Z., Giustetto, M., Lomvardas, S., Kim, J.H., Miniaci, M.C., Schwartz, J.H., Thanos, D., and Kandel, E.R. (2002). Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493.10.1016/S0092-8674(02)01074-7Suche in Google Scholar

Haahr, M.E., Fisher, P., Holst, K., Madsen, K., Jensen, C.G., Marner, L., Lehel, S., Baaré, W., Knudsen, G., and Hasselbalch, S. (2012). The 5-HT4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum. Brain Mapp. 34, 3066–3074.10.1002/hbm.22123Suche in Google Scholar

Haider, S., Khaliq, S., Tabassum, S., and Haleem, D.J. (2012). Role of somatodendritic and postsynaptic 5-HT1Areceptors on learning and memory functions in rats. Neurochem. Res. 37, 2161–2166.10.1007/s11064-012-0839-5Suche in Google Scholar

Hajjo, R., Setola, V., Roth, B.L., and Tropsha, A. (2012). Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J. Med. Chem. 55, 5704–5719.10.1021/jm2011657Suche in Google Scholar

Hampel, H., Prvulovic, D., Teipel, S.J., and Bokde, A.L. (2011). Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer’s disease. Prog. Neurobiol. 95, 570–578.10.1016/j.pneurobio.2011.05.012Suche in Google Scholar

Hanks, J.B. and González-Maeso, J. (2013). Animal models of serotonergic psychedelics. ACS Chem. Neurosci. 4, 33–42.10.1021/cn300138mSuche in Google Scholar

Hannon, J. and Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behav. Brain Res. 195, 198–213.10.1016/j.bbr.2008.03.020Suche in Google Scholar

Harmer, C.J. and Cowen, P.J. (2013). ‘It’s the way that you look at it’ — a cognitive neuropsychological account of SSRI action in depression. Phil. Trans. R. Soc. B 368, 20120407.10.1098/rstb.2012.0407Suche in Google Scholar

Harvey, B.H., Naciti, C., Brand, L., and Stein, D.J. (2003). Endocrine, cognitive and hippocampal/cortical 5HT1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats. Brain Res. 983, 97–107.10.1016/S0006-8993(03)03033-6Suche in Google Scholar

Hawkins, R.D. (2013). Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain. Learn. Mem. 20, 580–591.10.1101/lm.031237.113Suche in Google Scholar PubMed PubMed Central

Hensler, J.G., Artigas, F., Bortolozzi, A., Daws, L.C., De Deurwaerdère, P., Milan, L., Navailles, S., and Koek, W. (2013). Catecholamine/Serotonin interactions: systems thinking for brain function and disease. Adv. Pharmacol. 68, 167–197.10.1016/B978-0-12-411512-5.00009-9Suche in Google Scholar PubMed PubMed Central

Hermann, A., Küpper, Y., Schmitz, A., Walter, B., Vaitl, D., Hennig, J., Stark, R., and Tabbert, K. (2012). Functional gene polymorphisms in the serotonin system and traumatic life events modulate the neural basis of fear acquisition and extinction. PLoS One 7, e44352.10.1371/journal.pone.0044352Suche in Google Scholar

Hernandez-Lopez, S., Garduño, J., and Mihailescu, S. (2013). Nicotinic modulation of serotonergic activity in the dorsal raphe nucleus. Rev. Neurosci. 24, 455–469.10.1515/revneuro-2013-0012Suche in Google Scholar

Herrick-Davis, K. (2013). Functional significance of serotonin receptor dimerization. Exp. Brain Res. 230, 375–386.10.1007/s00221-013-3622-1Suche in Google Scholar

Hindi Attar, C., Finckh, B., and Büchel, C. (2012). The influence of serotonin on fear learning. PLoS One 7, e42397.Suche in Google Scholar

Hirst, W.D., Andree, T.H., Aschmies, S., Childers, W.E., Comery, T.A., Dawson, L.A., Day, M., Feingold, I.B., Grauer, S.M., Harrison, B.L., et al. (2008). Correlating efficacy in rodent cognition models with in vivo 5-hydroxytryptamine1a receptor occupancy by a novel antagonist, (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)-cyclohexane carboxamide (WAY-101405). J. Pharmacol. Exp. Ther. 325, 134–145.10.1124/jpet.107.133082Suche in Google Scholar

Holenz, J., Pauwels, P.J., Díaz, J.L., Mercè, R., Codony, X., and Buschmann, H. (2006). Medicinal chemistry strategies to 5-HT6 receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov. Today 11, 283–299.10.1016/j.drudis.2006.02.004Suche in Google Scholar

Hong, E. and Meneses, A. (1996). Systemic injection of p-chloroamphetamine eliminates the effect of the 5-HT3 compounds on learning. Pharmacol. Biochem. Behav. 53, 765–769.10.1016/0091-3057(95)02104-3Suche in Google Scholar

Horisawa, T., Nishikawa, H., Toma, S., Ikeda, A., Horiguchi, M., Ono, M., Ishiyama, T., and Taiji, M. (2013). The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone. Behav. Brain Res. 244, 66–69.10.1016/j.bbr.2013.01.026Suche in Google Scholar PubMed

Hothersall, J.D., Moffat, C., and Connolly, C.N. (2013). Prolonged inhibition of 5-HT3 receptors by palonosetron results from surface receptor inhibition rather than inducing receptor internalization. Br. J. Pharmacol. 169, 1252–1262.10.1111/bph.12204Suche in Google Scholar PubMed PubMed Central

Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig, P.R., Martin, G.R., Mylecharane, E.J., Saxena, P.R., and Humphrey, P.P. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203.Suche in Google Scholar

Huang, M., Horiguchi, M., Felix, A.R., and Meltzer, H.Y. (2012). 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux. Neuroreport 23, 436–440.10.1097/WNR.0b013e328352de40Suche in Google Scholar PubMed

Huerta-Rivas, A., Perez-Garcia, G., Gonzalez, C., and Meneses, A. (2010). Time-course of 5-HT6 receptor mRNA expression during memory consolidation and amnesia. Neurobiol. Learn. Mem. 93, 99–110.10.1016/j.nlm.2009.08.009Suche in Google Scholar PubMed

Ivachtchenko, A.V. and Ivanenkov, Y.A. (2012). 5HT6 receptor antagonists: a patent update. Part 1. Sulfonyl derivatives. Expert Opin. Ther. Pat. 22, 917–964.10.1517/13543776.2012.709236Suche in Google Scholar

Ivachtchenko, A.V., Ivanenkov, Y.A., and Skorenko, A.V. (2012). 5-HT6 receptor modulators: a patent update. Part 2. Diversity in heterocyclic scaffolds. Expert Opin. Ther. Pat. 22, 1123–1168.10.1517/13543776.2012.722205Suche in Google Scholar

Izquierdo, I., Cunha, C., and Medina, J.H. (1990). Endogenous benzodiazepine modulation of memory processes. Neurosci. Biobehav. Rev. 14, 419–424.10.1016/S0149-7634(05)80064-8Suche in Google Scholar

Izquierdo, I., Medina, J.H., Izquierdo, L.A., Barros, D.M., de Souza, M.M., and Mello e Souza, T. (1998). Short- and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol. Learn. Mem. 69, 219–224.10.1006/nlme.1998.3825Suche in Google Scholar

Izquierdo, I., Medina, J.H., Vianna, M.R., Izquierdo, L.A., and Barros, D.M. (1999). Separate mechanisms for short- and long-term memory. Behav. Brain Res. 103, 1–11.10.1016/S0166-4328(99)00036-4Suche in Google Scholar

Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Da Silva, W.C., Medina, J.H., and Cammarota, M. (2006a). The connection between the hippocampal and the striatal memory systems of the brain: a review of recent findings. Neurotox. Res. 10, 113–121.10.1007/BF03033240Suche in Google Scholar PubMed

Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota, M. (2006b). Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505.10.1016/j.tins.2006.07.005Suche in Google Scholar PubMed

Jacobs, B.L., and Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229.10.1152/physrev.1992.72.1.165Suche in Google Scholar PubMed

Jarome, T.J. and Lubin, F.D. (2013). Histone lysine methylation: critical regulator of memory and behavior. Rev. Neurosci. 27, 1–13.10.1515/revneuro-2013-0008Suche in Google Scholar PubMed

Jen, C.J., Lin, L.C., Wu, F.S., Ho, Y.C., and Chen, H.I. (2008). Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Front. Hum. Neurosci. Conference Abstract: 10th International Conference on Cognitive Neuroscience. doi:10.3389/conf.neuro.09.2009.01.285.10.3389/conf.neuro.09.2009.01.285Suche in Google Scholar

Jensen, A.A., Plath, N., Pedersen, M.H., Isberg, V., Krall, J., Wellendorph, P., Stensbøl, T.B., Gloriam, D.E., Krogsgaard-Larsen, P., and Frølund, B. (2013). Design, synthesis, and pharmacological characterization of N- and O-substituted 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol analogues: novel 5-HT(2A)/5-HT(2C) receptor agonists with pro-cognitive properties. J. Med. Chem. 56, 1211–1227.10.1021/jm301656hSuche in Google Scholar

Johnson, C.N., Ahmed, M., and Miller, N.D. (2008). 5-HT6 receptor antagonists: prospects for the treatment of cognitive disorders including dementia. Curr. Opin. Drug Discov. Dev. 11, 642–654.Suche in Google Scholar

Jones, T. and Moller, M.D. (2011). Implications of hypothalamic-pituitary-adrenal axis functioning in posttraumatic stress disorder. J. Am. Psychiatr. Nurses Assoc. 17, 393–403.10.1177/1078390311420564Suche in Google Scholar

Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.10.1126/science.1067020Suche in Google Scholar

Kandel, E.R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 5, 14.10.1186/1756-6606-5-14Suche in Google Scholar

Karanges, E.A., Kashem, M.A., Sarker, R., Ahmed, E.U., Ahmed, S., Van Nieuwenhuijzen, P.S., Kemp, A.H., and McGregor, I.S. (2013). Hippocampal protein expression is differentially affected by chronic paroxetine treatment in adolescent and adult rats: a possible mechanism of “paradoxical” antidepressant responses in young persons. Front. Pharmacol. 4, 86.10.3389/fphar.2013.00086Suche in Google Scholar

Kassai, F., Schlumberger, C., Kedves, R., Pietraszek, M., Jatzke, C., Lendvai, B., Gyertyán, I., and Danysz, W. (2012). Effect of 5-HT5A antagonists in animal models of schizophrenia, anxiety and depression. Behav. Pharmacol. 23, 397–406.10.1097/FBP.0b013e3283565248Suche in Google Scholar

Kemp, A. and Manahan-Vaughan, D. (2005). The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb. Cortex 15, 1037–1043.10.1093/cercor/bhh204Suche in Google Scholar

Khilnani, G. and Khilnani, A.K. (2011). Inverse agonism and its therapeutic significance. Indian J. Pharmacol. 43, 492–501.10.4103/0253-7613.84947Suche in Google Scholar

Kikuchi, C., Suzuki, H., Hiranuma, T., and Koyama, M. (2003). New tetrahydrobenzindoles as potent and selective 5-HT7 antagonists with increased In vitro metabolic stability. Bioorg. Med. Chem. Lett. 13, 61–64.10.1016/S0960-894X(02)00842-9Suche in Google Scholar

King, M.V., Marsden, C.A., and Fone, K.C. (2008). A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci. 29, 482–492.10.1016/j.tips.2008.07.001Suche in Google Scholar PubMed

Kirkwood, A. (2000). Serotonergic control of developmental plasticity. Proc. Natl. Acad. Sci. U. S. A. 97, 1951–1952.10.1073/pnas.070044697Suche in Google Scholar

Klein, M.T. and Teitler, M. (2012). Distribution of 5-HT1E receptors in the mammalian brain and cerebral vasculature: an immunohistochemical and pharmacological study. Br. J. Pharmacol. 166, 1290–1302.10.1111/j.1476-5381.2012.01868.xSuche in Google Scholar

Krishnamurthy, S., Garabadu, D., and Joy, K.P. (2013). Risperidone ameliorates post-traumatic stress disorder-like symptoms in modified stress re-stress model. Neuropharmacol. 75C, 62–77.10.1016/j.neuropharm.2013.07.005Suche in Google Scholar

Kuhn, M., Popovic, A., and Pezawas, L. (2013). Neuroplasticity and memory formation in major depressive disorder: an imaging genetics perspective on serotonin and BDNF. Restor. Neurol. Neurosci. Epub ahead of print.Suche in Google Scholar

Lamirault, L. and Simon, H. (2001). Enhancement of place and object recognition memory in young adult and old rats by RS 67333, a partial agonist of 5-HT4 receptors. Neuropharmacology 41, 844–853.10.1016/S0028-3908(01)00123-XSuche in Google Scholar

Lelong, V., Lhonneur, L., Dauphin, F., and Boulouard, M. (2006). BIMU 1 and RS 67333, two 5-HT4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse, Naunyn-Schmiedeberg’s. Arch. Pharmacol. 367, 621–628.10.1007/s00210-003-0743-2Suche in Google Scholar PubMed

Lemoine, L., Andries, J., Le Bars, D., Billard, T., and Zimmer, L. (2011). Comparison of 4 radiolabeled antagonists for serotonin 5-HT(7) receptor neuroimaging: toward the first PET radiotracer. J. Nucl. Med. 52, 1811–1818.10.2967/jnumed.111.089185Suche in Google Scholar PubMed

Leopoldo, M., Lacivita, E., Berardi, F., and Perrone, R. (2010). 5-HT7 receptor modulators: a medicinal chemistry survey of recent patent literature (2004–2009). Expert Opin. Ther. Pat. 20, 739–754.10.1517/13543776.2010.484802Suche in Google Scholar PubMed

Leopoldo, M., Lacivita, E., Berardi, F., Perrone, R., and Hedlund, P.B. (2011). Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol. Ther. 129, 120–148.10.1016/j.pharmthera.2010.08.013Suche in Google Scholar PubMed PubMed Central

Lesch, K.P. and Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76, 175–191.10.1016/j.neuron.2012.09.013Suche in Google Scholar PubMed

Linder, M.D., Hodges, D.B., Hogan, J.B., Orie, A.F., Corsa, J.A., Bartyen, D.M., Polson, C., Robertson, B.J., Guss, V.B., Gilman, K.W., et al. (2003). An assessment of the effects of 5-HT6receptor antagonists in rodent models of learning. J. Pharmacol. Exp. Ther. 307, 682–691.10.1124/jpet.103.056002Suche in Google Scholar PubMed

Liu, G.L. and Robichaud, A.J. (2009). 5-HT6antagonists as potential treatment for cognitive dysfunction. Drug Dev. Res 70, 145–168.10.1002/ddr.20293Suche in Google Scholar

Lladó-Pelfort, L., Santana, N., Ghisi, V., Artigas, F., and Celada, P. (2012). 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb. Cortex 22, 1487–1497.10.1093/cercor/bhr220Suche in Google Scholar PubMed

Lopez-Velazquez, M.A., Gutíerrez-Guzmán, E., Cervantes, M., and Olvera-Cortez, M.E. (2011). 5-HT2C receptors in learning. 5-HT2C Receptors in the Pathology of CSN Disease. In: G. Di Giovanni, E. Esposito, and V. Di Matteo, eds. (Springer Science+Business Media, LLC), pp. 461–507. doi: 10.10007/978-1-60761-941-3_24.Suche in Google Scholar

Lorke, D.E., Lu, G., Cho, E., and Yew, D.T. (2006). Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci. 7, 36.10.1186/1471-2202-7-36Suche in Google Scholar PubMed PubMed Central

Lucaites, V.L., Krushinsk, J.H., Schaus, J.M., Audia, J.E. and Nelson, D.L. (2005). [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain Naunyn-Schmiedeberg’s. Arch. Pharmacol. 371, 178–184.10.1007/s00210-005-1036-8Suche in Google Scholar PubMed

Ly, S., Pishdari, B., Lok, L.L., Hajos, M., and Kocsis, B. (2013). Activation of 5-HT6 receptors modulate sleep-wake activity and hippocampal Theta oscillation. ACS Chem. 4, 191–199.10.1021/cn300184tSuche in Google Scholar PubMed PubMed Central

Lynch, M.A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136.10.1152/physrev.00014.2003Suche in Google Scholar PubMed

Lynch, G., Rex, C.S., Chen, L.Y., and Gall, C.M. (2008). The substrates of memory: defects, treatments, and enhancement. Eur. J. Pharmacol. 585, 2–13.10.1016/j.ejphar.2007.11.082Suche in Google Scholar PubMed PubMed Central

Lyseng-Williamson, K. (2013). Clozapine: a guide to its use in patients with schizophrenia who are unresponsive to or intolerant of other antipsychotic agents. Drug Ther. Perspect. 29, 161–165.10.1007/s40267-013-0038-8Suche in Google Scholar

Maher-Edwards, G., Zvartau-Hind, M., Hunter, A.J, Gold, M., Hopton, G., Jacobs, G., Davy, M., and Williams, P. (2009). Double-blind, controlled phase II study of a 5-HT6 receptor antagonist, SB-742457. Curr. Alzheimer Res. 7, 374–385.10.2174/156720510791383831Suche in Google Scholar PubMed

Malá, H., Arnberg, K., Chu, D., Nedergaard, S.K., Witmer, J., and Mogensen, J. (2013). Only repeated administration of the serotonergic agonist 8-OH-DPAT improves place learning of rats subjected to fimbria-fornix transection. Pharmacol. Biochem. Behav. 109, 50–58.10.1016/j.pbb.2013.05.008Suche in Google Scholar PubMed

Manuel-Apolinar, L. and Meneses, A. (2004). 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav. Brain Res. 148, 179–184.10.1016/S0166-4328(03)00186-4Suche in Google Scholar

Manuel-Apolinar, L., Rocha, L., Pascoe, D., Castillo, E., Castillo, C., and Meneses, A. (2005). Modifications of 5-HT4 receptor expression in rat brain during memory consolidation. Brain Res. 1042, 73–81.10.1016/j.brainres.2005.02.020Suche in Google Scholar

Marchetti, E., Jacquet, M., Escoffier, G., Miglioratti, M., Dumuis, A., Bockaert, J., and Roman, F.S. (2011). Enhancement of reference memory in aged rats by specific activation of 5-HT4 receptors using an olfactory associative discrimination task. Brain Res. 1405, 49–56.10.1016/j.brainres.2011.06.020Suche in Google Scholar

Marcos, B., Gil-Bea, F.J., Hirst, W.D., García-Alloza, M., and Ramírez, M.J. (2006). Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur. J. Neurosci. 24, 2299–1306.10.1111/j.1460-9568.2006.05003.xSuche in Google Scholar

Marcos, B., García-Alloza, M., Gil-Bea, F.J., Chuang, T.T., Francis, P.T., Chen, C.P., Tsang, S.W., Lai, M.K., and Ramirez, M.J. (2008). Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer’s disease. J. Alzheimer Dis. 14, 43–50.10.3233/JAD-2008-14104Suche in Google Scholar

Marcos, B., Cabero, M., Solas, M., Aisa, B., and Ramirez, M.J. (2010). Signaling pathways associated with 5-HT6receptors: relevance for cognitive effects. Int. J. Neuropsychopharmacol. 9, 1–10.Suche in Google Scholar

Marin, P., Meffre, J., Chaumont-Dubel, S., La Cour, C.L., Loiseau, F., Watson, D.J.G., Dekeyne, A., Martial Séveno, M., Déléris, P., Fone, K.C.F., et al. (2012a). 5-HT6 receptors disrupt cognition by recruiting mTOR: relevance to schizophrenia [abstract]. Serotonin Club Meeting, July 10–12, 2012, Montpellier, France, p. 58.Suche in Google Scholar

Marin, P., Becamel, C., Dumuis, A., and Bockaert, J. (2012b). 5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders? Curr. Drug Targets. 13, 28–52.10.2174/138945012798868498Suche in Google Scholar

Marshall, J.F. and O’Dell, S.J. (2012). Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci. 35, 536–545.Suche in Google Scholar

Martin, C. and Sibson, N.R. (2008). Pharmacological MRI in animal models: a useful tool for 5-HT research? Neuropharmacology 55, 1038–1047.10.1016/j.neuropharm.2008.08.014Suche in Google Scholar

Mathur, B.N. and Lovinger, D.M. (2012). Serotonergic action on dorsal striatal function. Parkinsonism Relat. Disord. 18(Suppl 1), S129–S131.10.1016/S1353-8020(11)70040-2Suche in Google Scholar

Matthys, A., Haegeman, G., Van Craenenbroeck, K., and Vanhoenacker, P. (2011). Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol. Neurobiol. 43, 228–253.10.1007/s12035-011-8175-3Suche in Google Scholar PubMed

McIntosh, A.L., Ballard, T.M., Steward, L.J., Moran, P.M., and Fone, K.C. (2013). The atypical antipsychotic risperidone reverses the recognition memory deficits induced by post-weaning social isolation in rats. Psychopharmacology (Berl) 228, 31–42.10.1007/s00213-013-3011-2Suche in Google Scholar PubMed

McLoughlin, D.J. and Strange, P.G. (2000). Mechanisms of agonism and inverse agonism at serotonin 5-HT1Areceptors. J. Neurochem. 74, 347–357.10.1046/j.1471-4159.2000.0740347.xSuche in Google Scholar

Meltzer, H.Y. (2012). Clozapine: balancing safety with superior antipsychotic efficacy. Clin. Schizophr. Relat. Psychoses 6, 134–144.10.3371/CSRP.6.3.5Suche in Google Scholar

Meltzer, H.Y., Massey, B.W., and Horiguchi, M. (2012). Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr. Pharm. Biotechnol. 13, 1572–1586.10.2174/138920112800784880Suche in Google Scholar

Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23, 1111–1125.10.1016/S0149-7634(99)00067-6Suche in Google Scholar

Meneses, A. (2001). Could the 5-HT1B receptor inverse agonism affects learning consolidation? Neurosci. Biobehav. Rev. 25, 193–201.10.1016/S0149-7634(01)00007-0Suche in Google Scholar

Meneses, A. (2002). Involvement of 5-HT2A/2B/2C receptors on memory formation: simple agonism, antagonism, or inverse agonism? Cell. Mol. Neurobiol. 22, 675–688.10.1023/A:1021800822997Suche in Google Scholar

Meneses, A. (2003). Pharmacological analysis of an associative learning task: 5-HT1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory. Learn. Mem. 10, 363–372.10.1101/lm.60503Suche in Google Scholar PubMed PubMed Central

Meneses, A. (2004). Effects of the 5-HT7receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav. Brain Res. 155, 275–282.10.1016/j.bbr.2004.04.026Suche in Google Scholar PubMed

Meneses, A. (2007a). Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav. Brain Res. 184, 81–90.10.1016/j.bbr.2007.06.026Suche in Google Scholar PubMed

Meneses, A. (2007b). Do serotonin1-7 receptors modulate short and long-term memory? Neurobiol. Learn. Mem. 87, 561–572.10.1016/j.nlm.2006.12.005Suche in Google Scholar PubMed

Meneses, A. and Hong, E. (1997). Effects of 5-HT4 receptor agonist and antagonist in learning, Pharmacol. Biochem. Behav. 56, 347–351.10.1016/S0091-3057(96)00224-9Suche in Google Scholar

Meneses, A. and Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory. Rev. Neurosci. 23, 443–453.10.1515/revneuro-2012-0060Suche in Google Scholar PubMed

Meneses, A. and Perez-Garcia, G. (2007). 5-HT1Areceptors and memory. Neurosci. Biobehav. Rev. 31, 705–727.10.1016/j.neubiorev.2007.02.001Suche in Google Scholar PubMed

Meneses, A., Manuel-Apolinar, L., Rocha, L., Castillo, E., and Castillo, C. (2004a). Expression of the 5-HT receptors in rat brain during memory consolidation. Behav. Brain Res. 152, 425–436.10.1016/j.bbr.2003.10.037Suche in Google Scholar PubMed

Meneses, A., Manuel-Apolinar, L., Castillo, C., and Castillo, E. (2004b). Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study. Behav. Brain Res 178, 53–61.10.1016/j.bbr.2006.11.048Suche in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Liy-Salmeron, G., Ponce-Lopez, T., Tellez, R., and Flores-Galvez, D. (2009). Associative learning, memory and serotonin: a neurobiological and pharmacological analysis. In: Rocha Arrieta, L.L. and Granados-Soto, V., eds., Models of neuropharmacology. (Kerala, India: Transworld Research Network), pp. 169–182. Trivandrum-695 023, ISBN: 978-81-7895-383-0.Suche in Google Scholar

Meneses, A., Pérez-García, G., Ponce-Lopez, T., and Castillo, C. (2011a). 5-HT6 receptor memory and amnesia: behavioral pharmacology — learning and memory processes. Int. Rev. Neurobiol. 96, 27–47.10.1016/B978-0-12-385902-0.00002-4Suche in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., Tellez, R., and Castillo, C. (2011b). Serotonin transporter and memory. Neuropharmacology 61, 355–363.10.1016/j.neuropharm.2011.01.018Suche in Google Scholar PubMed

Mereu, M., Bonci, A., Newman, A.H., and Tanda, G. (2013). The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology (Berl). 229, 415–434.10.1007/s00213-013-3232-4Suche in Google Scholar PubMed PubMed Central

Meyer, J.H. (2012). Neuroimaging markers of cellular function in major depressive disorder: implications for therapeutics, personalized medicine, and prevention. Clin. Pharmacol. Ther. 91, 201–214.10.1038/clpt.2011.285Suche in Google Scholar PubMed

Millan, M.J. (2011). MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr. Opin. Pharmacol. 11, 11–22.10.1016/j.coph.2011.01.008Suche in Google Scholar PubMed

Millan, M.J., Gobert, A., Roux, S., Porsolt, R., Meneses, A., Carli, M., Di Cara, B., Jaffard, R., Rivet, J.M., Lestage, P., et al. (2004). The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J. Pharmacol. Exp. Ther. 311, 190–203.10.1124/jpet.104.069625Suche in Google Scholar

Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R., Davis, S., Deakin, B., DeRubeis, R.J., et al. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 11, 141–168.10.1038/nrd3628Suche in Google Scholar

Mitchell, E.S. and Neumaier, J.F. (2005). 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol. Ther. 108, 320–333.10.1016/j.pharmthera.2005.05.001Suche in Google Scholar

Mitchell, E.S., Sexton, T., and Neumaier, J.F. (2007). Increased expression of 5-HT6 receptors in the rat dorsomedial striatum impairs instrumental learning. Neuropsychopharmacology 32, 1520–1530.10.1038/sj.npp.1301284Suche in Google Scholar

Mnie-Filali, O., Lambás-Señas, L., Zimmer, L., and Haddjeri, N. (2007). 5-HT7 receptor antagonists as a new class of antidepressants. Drug News Perspect. 20, 613–618.10.1358/dnp.2007.20.10.1181354Suche in Google Scholar

Molinuevo, J.L., Sánchez-Valle, R., Lladó, A., Fortea, J., Bartrés-Faz, D., and Rami, L. (2012). Identifying earlier Alzheimer’s disease: insights from the preclinical and prodromal phases Neurodegener. Dis. 10, 58–160.Suche in Google Scholar

Monje, F.J., Divisch, I., Demit, M., Lubec, G., and Pollak, D.D. (2013). Flotillin-1 is an evolutionary-conserved memory-related protein up-regulated in implicit and explicit learning paradigms. Ann. Med. 45, 301–307.10.3109/07853890.2013.770637Suche in Google Scholar

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat J. Neurosci. Methods 11, 47–60.10.1016/0165-0270(84)90007-4Suche in Google Scholar

Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev. 41, 268–287.10.1016/S0165-0173(02)00268-0Suche in Google Scholar

Na, C.H., Jones, D.R., Yang, Y., Wang, X., Xu, Y., and Peng, J. (2012). synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J. Proteome Res. 11, 4722–4732.10.1021/pr300536kSuche in Google Scholar PubMed PubMed Central

Navailles, S., Lagière, M., Guthriè, M., and De Deurwaerdère, P. (2013). Serotonin2C receptor constitutive activity: in vivo direct and indirect evidence and functional significance. Cent. Nerv. Syst. Agents Med. Chem. Epub ahead of print.Suche in Google Scholar

Newman, A.S., Batis, N., Grafton, G., Caputo, F., Brady, C.A., Lambert, J.J., Peters, J.A., Gordon, J., Brain, K.L., Powell, A.D., et al. (2013). 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor. Br. J. Pharmacol. 169, 1228–1238.10.1111/bph.12213Suche in Google Scholar PubMed PubMed Central

Newman-Tancredi, A. and Kleven, M.S. (2011). Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl) 216, 451–473.10.1007/s00213-011-2247-ySuche in Google Scholar PubMed

Nonkes, L.J., Maes, J.H., and Homberg, J.R. (2013). Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration. Addict. Biol. 18, 434–440.10.1111/j.1369-1600.2011.00351.xSuche in Google Scholar PubMed

Nordquist, N. and Oreland, L. (2010). Serotonin, genetic variability, behaviour, and psychiatric disorders — a review. Ups. J. Med. Sci. 115, 2–10.10.3109/03009730903573246Suche in Google Scholar PubMed PubMed Central

Noristani, H.N., Verkhratsky, A., and Rodríguez, J.J. (2012). High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer’s disease. Aging Cell 11, 810–822.10.1111/j.1474-9726.2012.00845.xSuche in Google Scholar PubMed

Ögren, S.O., Eriksson, T.M., Elvander-Tottie, E., D’Addario, C., Ekström, J.C., Svenningsson, P., Meister, B., Kehr, J., and Stiedl, O. (2008). The role of 5-HT1A receptors in learning and memory. Behav. Brain Res. 195, 54–77.10.1016/j.bbr.2008.02.023Suche in Google Scholar PubMed

Olivier, J.D., Vinkers, C.H., and Olivier, B. (2013). The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front. Pharmacol. 11, 74.10.3389/fphar.2013.00074Suche in Google Scholar PubMed PubMed Central

Olshavskyl, M.E., Jones, C.E., Lee, H.J., and Monfils, M.H. (2013). Sign-tracking phenotypes during appetitive learning influence open field behavior and maintenance of conditioned fear. Soc. Neurosci. Abstr. 93.06/HHH22.Suche in Google Scholar

Park, S.M. and Williams, C.L. (2012). Contribution of serotonin type 3 receptors in the successful extinction of cued or contextual fear conditioned responses: interactions with GABAergic signaling. Rev. Neurosci. 23, 555–569.10.1515/revneuro-2012-0052Suche in Google Scholar PubMed

Parrott, A.C. (2013a). MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational ‘Ecstasy’ users. Neurosci. Biobehav. Rev. 37, 1466–1484.10.1016/j.neubiorev.2013.04.016Suche in Google Scholar PubMed

Parrott, A.C. (2013b). Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25years of empirical research. Hum. Psychopharmacol. 28, 289–307.10.1002/hup.2318Suche in Google Scholar PubMed

Pattij, T. (2002). 5-HT1A receptor knockout mice and anxiety: behavioral and physiological studies. PhD thesis, Universiteit Utrecht, the Netherlands.Suche in Google Scholar

Payne, S.C., Youngcourt, S.S., and Beaubien, J.M. (2007). A meta-analytic examination of the goal orientation nomological net. Jf Applied Psychol. 92, 128–150.10.1037/0021-9010.92.1.128Suche in Google Scholar PubMed

Peele, D.B. and Vincent, A. (1989). Strategies for assessing learning and memory, 1978–1987: a comparison of behavioral toxicology, psychopharmacology, and neurobiology. Neurosci. Biobehav. Rev. 13, 317–322.10.1016/S0149-7634(89)80068-5Suche in Google Scholar

Pennanen, L., van der Hart, M., Yu, L., and Tecott, L.H. (2013). Impact of serotonin (5-HT)2Creceptors on executive control processes. Neuropsychopharmacology 38, 957–967.10.1038/npp.2012.258Suche in Google Scholar PubMed PubMed Central

Perez-Garcia, G. and Meneses, A. (2005a). Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharmacol. Biochem. Behav. 81, 673–682.10.1016/j.pbb.2005.05.005Suche in Google Scholar PubMed

Perez-Garcia, G.S. and Meneses, A. (2005b). Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task. Behav. Brain Res. 163, 136–140.10.1016/j.bbr.2005.04.014Suche in Google Scholar PubMed

Perez-Garcia, G. and Meneses, A. (2008a). Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav. Brain Res. 195, 17–29.10.1016/j.bbr.2007.11.027Suche in Google Scholar PubMed

Perez-Garcia, G. and Meneses, A. (2008b). Ex-vivo study of 5-HT1A and 5-HT7 receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behav. Brain Res. 195, 139–146.10.1016/j.bbr.2008.07.033Suche in Google Scholar PubMed

Perez-Garcia, G. and Meneses, A. (2009). Memory time-course: mRNA 5-HT1A and 5-HT7receptors. Behav. Brain Res. 202, 102–113.10.1016/j.bbr.2009.03.027Suche in Google Scholar PubMed

Perez-Garcia, G., González-Espinosa, C., and Meneses, A. (2006). An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav. Brain. Res. 169, 83–92.10.1016/j.bbr.2005.12.013Suche in Google Scholar PubMed

Ponce-Lopez, T. and Meneses, A. (2008). Effects of the 5-HT1F receptor agonist LY344864 during memory formation, amnesia and camp. 38th Society for Neuroscience Meeting. Washington DC, USA. November 15–19, 2008. Program No. XXX.XX. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Abstract No. 290.12/RR63.Suche in Google Scholar

Preethi, J., Singh, H.K., Charles, P.D., and Rajan, K.E. (2012). Participation of microRNA 124-CREB pathway: a parallel memory enhancing mechanism of standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res. 37, 2167–2177.10.1007/s11064-012-0840-zSuche in Google Scholar PubMed

Puig, M.V. and Gulledge, A.T. (2011). Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464.10.1007/s12035-011-8214-0Suche in Google Scholar PubMed PubMed Central

Rahn, E.J., Guzman-Karlsson, M.C., and David Sweatt, J. (2013). Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. Neurobiol. Learn. Mem. pii: S1074-7427(13)00100-7. 105, 133–150.10.1016/j.nlm.2013.06.008Suche in Google Scholar PubMed PubMed Central

Rajan, K.E., Singh, H.K., Parkavi, A., and Charles, P.D. (2011). Attenuation of 1-(m-chlorophenyl)-biguanide induced hippocampus-dependent memory impairment by a standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res. 36, 2136–2144.10.1007/s11064-011-0538-7Suche in Google Scholar PubMed

Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707.10.1016/j.cell.2012.02.057Suche in Google Scholar PubMed PubMed Central

Ramírez, M.J. (2013). 5-HT6 receptors and Alzheimer’s disease. Alzheimer Res. Ther. 5, 15.10.1186/alzrt169Suche in Google Scholar PubMed PubMed Central

Reggio, P.H. (2003). Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr. Pharm. Des. 9, 1607–1633.10.2174/1381612033454577Suche in Google Scholar PubMed

Reid, M., Carlyle, I., Caulfield, W.L., Clarkson, T.R., Cusick, F., Epemolu, O., Gilfillan, R., Goodwin, R., Jaap, D., O’Donnell, E.C., et al. (2010). The discovery and SAR of indoline-3-carboxamides — a new series of 5-HT6antagonists. Bioorg. Med. Chem. Lett. 20, 3713–3716.10.1016/j.bmcl.2010.04.085Suche in Google Scholar PubMed

Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Fröhlich, M., et al. (2012). Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell. Sci. 125, 2486–2499.10.1242/jcs.101337Suche in Google Scholar PubMed

Renoir, T., Pang, T.Y., and Lanfumey, L. (2012). Drug withdrawal-induced depression: serotonergic and plasticity changes in animal models. Neurosci. Biobehav. Rev. 36, 696–726.10.1016/j.neubiorev.2011.10.003Suche in Google Scholar PubMed

Rescorla, R.A. A Pavlovian analysis of goal-directed behavior. (1987). American Psychologist. 42, 119–129.Suche in Google Scholar

Richetto, J., Calabrese, F., Meyer, U., and Riva, M.A. (2013). Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice. Brain Behav. Immun. 33, 190–200.10.1016/j.bbi.2013.07.006Suche in Google Scholar PubMed

Roberts, A.J. and Hedlund, P.B. (2012). The 5-HT7 receptor in learning and memory. Hippocampus 22, 762–771.10.1002/hipo.20938Suche in Google Scholar PubMed PubMed Central

Rodríguez, J.J., Noristani, H.N., and Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol. 99, 15–41.10.1016/j.pneurobio.2012.06.010Suche in Google Scholar PubMed

Rogers, D.C. and Hagan, J.J. (2001). 5-HT6 receptor antagonists enhance retention of a water maze task in the rat. Psychopharmacology (Berl) 158, 114–119.10.1007/s002130100840Suche in Google Scholar PubMed

Roman, F.S. and Marchetti, E. (1998). Involvement of 5-HT receptors in learning and memory. IDrugs 1, 109–121.Suche in Google Scholar

Romero, G., Sánchez, E., Pujol, M., Pérez, P., Codony, X., Holenz, J., Buschmann, H., and Pauwels, P.J. (2006). Efficacy of selective 5-HT6 receptor ligands determined by monitoring 5-HT6 receptor-mediated cAMP signaling pathways. Br. J. Pharmacol. 148, 1133–1143.10.1038/sj.bjp.0706827Suche in Google Scholar PubMed PubMed Central

Rossé, G. and Schaffhauser, H. (2010). 5-HT6 receptor antagonists as potential therapeutics for cognitive impairment. Curr. Top. Med. Chem. 10, 207–221.10.2174/156802610790411036Suche in Google Scholar PubMed

Roth, B.L., Hanizavareh, S.M., and Blum, A.E. (2004). Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berlin) 174, 17–24.10.1007/s00213-003-1683-8Suche in Google Scholar PubMed

Ruiz, N.V. and Oranias, G.O. (2010). Patents. In: Borsini, F., ed., Int Rev Neurobiol. 5-HT6 receptors, Part I. (Oxford: Elsevier, Academic Press), pp. 36–66.10.1016/B978-0-12-384976-2.00002-2Suche in Google Scholar PubMed

Russell, M.G. and Dias, R. (2002). Memories are made of this (perhaps): a review of serotonin 5-HT6 receptor ligands and their biological functions. Curr. Top. Med. Chem. 2, 643–654.10.2174/1568026023393877Suche in Google Scholar PubMed

Salminen, L.E., Schofield, P.R., Pierce, K.D., Lane, E.M., Heaps, J.M., Bolzenius, J.D., Baker, L.M., Luo, X., and Paul, R.H. (2013). Triallelic relationships between the serotonin transporter polymorphism and cognition among healthy older adults. Int. J. Neurosci. Epub ahead of print.Suche in Google Scholar

Sarter, M. and Stephens, D.N. (1988). Beta-carbolines as tools in memory research: animal data and speculations. Psychopharmacol. Ser. 6, 230–245.Suche in Google Scholar

Saulin, A., Savli, M., and Lanzenberger, R. (2012). Serotonin and molecular neuroimaging in humans using PET. Amino Acids 42, 2039–2057.10.1007/s00726-011-1078-9Suche in Google Scholar PubMed

Sawyer, J., Eaves, E.L., Heyser, C.J., and Maswood, S. (2012). Tropisetron, a 5-HT3 receptor antagonist, enhances object exploration in intact female rats. Behav. Pharmacol. 23, 806–809.10.1097/FBP.0b013e32835a7c31Suche in Google Scholar PubMed

Schechter, L.E., Smith, D.L., Zhang, G.M., Li, P., Lin, Q., Rosenzweig-Lipson, S., Robichaud, A., Bernotas, R., and Beyer, C.E. (2004). WAY-466: pharmacological profile of a novel and selective 5-HT6 agonist. Int. J. Neuropsychopharmacol. 7(Suppl 1), S291.Suche in Google Scholar

Schechter, L.E., Smith, D.L., Rosenzweig-Lipson, S., Sukoff, S.J., Dawson, L.A., Marquis, K., Jones, D., Piesla, M., Andree, T., Nawoschik, S., et al. (2005). Lecozotan (SRA-333): a selective serotonin1a receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Exp. Pharmacol. Ther. 314, 1274–1289.10.1124/jpet.105.086363Suche in Google Scholar PubMed

Schiller, L., Jäjkel, M., Kretzschmar, M., Brust, P., and Oehler, J. (2003). Autoradiographic analyses of 5-HT1A and 5-HT2A receptors after social isolation in mice. Brain Res. 980, 169–178.10.1016/S0006-8993(03)02832-4Suche in Google Scholar

Sharp, T., Bramwell, S.R., Hjorth, S., and Grahame-Smith, D.G. (1989). Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br. J. Pharmacol. 98, 989–997.10.1111/j.1476-5381.1989.tb14630.xSuche in Google Scholar

Shelton, A.L., Marchette, S.A., and Furman, A.J. (2014). A mechanistic approach to individual differences in spatial learning, memory, and navigation. Psychol. Learn. Motiv. Adv. Res. Theory 59, 223–259.Suche in Google Scholar

Shimizu, S., Mizuguchi, Y., and Ohno, Y. (2013). Improving the treatment of schizophrenia: role of 5-HT receptors in modulating cognitive and extrapyramidal motor functions. CNS Neurol. Disord. Drug Targets 12, 861–869.10.2174/18715273113129990088Suche in Google Scholar

Singh, C., Bortolato, M., Bali, N., Godar, S.C., Scott, A.L., Chen, K., Thompson, R.F., and Shih, J.C. (2013). Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. Proc. Natl. Acad. Sci. USA. 110, 12816–12821.10.1073/pnas.1308037110Suche in Google Scholar

Smith, C., Rahman, T., Toohey, N., Mazurkiewicz, J., Herrick-Davis, K., and Teitler, M. (2006). Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol. Pharmacol. 70, 1264–1270.10.1124/mol.106.024612Suche in Google Scholar

Smith, C., Toohey, N., Knight, J.A., Klein, M.T., and Teitler, M. (2011). Risperidone-induced inactivation and clozapine-induced reactivation of rat cortical astrocyte 5-hydroxytryptamine7 receptors: evidence for in situ G protein-coupled receptor homodimer protomer cross-talk. Mol. Pharmacol. 79, 318–325.10.1124/mol.110.069278Suche in Google Scholar

Sodhi, M.S. and Sanders-Bush, E. (2004). Serotonin and brain development. Int. Rev. Neurobiol. 59, 111–174.10.1016/S0074-7742(04)59006-2Suche in Google Scholar

Steinbush, H.W.M. (1984). Serotonin-immunoreactive neurons and their projections in the CNS. In: Bjorklund, A., Hokfelt, T., and Kuhar, M.J., eds., Handbook of Chemical Neuroanatomy. Classical Neurotransmitters and Transmitters Receptors in the CNS, Part III, Vol. 3. (Elsevier Sci Publishers), pp. 68–125.Suche in Google Scholar

Tarazi, F.I. and Riva, M.A. (2013). The preclinical profile of lurasidone: clinical relevance for the treatment of schizophrenia. Expert Opin. Drug Discov. 8, 1297–1307.10.1517/17460441.2013.815163Suche in Google Scholar PubMed

Tellez, R., Rocha, L., Castillo, C., and Meneses, A. (2010). Autoradiographic study of serotonin transporter during memory formation. Behav. Brain Res. 212, 12–26.10.1016/j.bbr.2010.03.015Suche in Google Scholar PubMed

Tellez, R., Gómez-Víquez, L., and Meneses, A. (2012a). GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol. Learn. 97, 189–201.10.1016/j.nlm.2011.12.002Suche in Google Scholar PubMed

Tellez, R., Gómez-Viquez, L., Liy-Salmeron, G., and Meneses, A. (2012b). GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol. Learn. Mem. 98, 66–77.10.1016/j.nlm.2012.05.001Suche in Google Scholar

Terry, A.V., Jr., Buccafusco, J.J., and Wilson, C. (2008). Cognitive dysfunction in neuropsychiatric disorders: selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res. 195, 30–38.10.1016/j.bbr.2007.12.006Suche in Google Scholar

Terry, A.V., Jr., Callahan, P.M., Hall, B., and Webster, S.J. (2011). Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol. Biochem. Behav. 99, 190–210.10.1016/j.pbb.2011.02.002Suche in Google Scholar

Tesseur, I., Pimenova, A.A., Lo, A.C., Ciesielska, M., Lichtenthaler, S.F., De Maeyer, J.H., Schuurkes, J.A.J., D’Hooge, R., and De Strooper, B. (2013). Chronic 5-HT4 receptor activation decreases Aβ production and deposition in hAPP/PS1 mice Original Research Article Neurobiol. 34, 1779–1789.Suche in Google Scholar

Thomas, D.R. (2006). 5-HT5A receptors as a therapeutic target. Pharmacol. Ther. 111, 707–714.10.1016/j.pharmthera.2005.12.006Suche in Google Scholar

Thomas, K.L. and Everitt, B.J. (2001). Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: a cellular imaging study with γ protein kinase C expression. J. Neurosci. 21, 2526–2535.10.1523/JNEUROSCI.21-07-02526.2001Suche in Google Scholar

Thomas, D.R., Soffin, E.M., Roberts, C., Kew, J.N., de la Flor, R.M., Dawson, L.A., Fry, V.A., Coggon, S.A., Faedo, S., Hayes, P.D., et al. (2006). SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4′-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl] propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 51, 566–577.10.1016/j.neuropharm.2006.04.019Suche in Google Scholar

Thompson, A.J. (2013). Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol. Sci. 34, 100–109.10.1016/j.tips.2012.12.002Suche in Google Scholar

Timotijević, I., Stanković, Ž., Todorović, M., Marković, S.Z., and Kastratović, D.A. (2012). Serotonergic organization of the central nervous system. Psychiatr. Danub. Suppl. 3, S326–S330.Suche in Google Scholar

Tomie, A., Di Poce, J., Aguado, A., Janes, A., Benjamín, D., and Pohorecky, L. (2003). Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in the rat brain. Brain Res. 975, 167–178.10.1016/S0006-8993(03)02631-3Suche in Google Scholar

Tomie, A., Tirado, A.D., Yu, L., and Pohorecky, L.A. (2004). Pavlovian autoshaping procedures increase plasma corticosterone and levels of norepinephrine and serotonin in prefrontal cortex in rats. Behav. Brain Res. 53, 97–105.10.1016/j.bbr.2003.11.006Suche in Google Scholar PubMed

Tsetlin, V., Utkin, Y., and Kasheverov, I. (2009). Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem. Pharmacol. 78, 720–731.10.1016/j.bcp.2009.05.032Suche in Google Scholar PubMed

Tsetsenis, T., Ma, X.H., Lo Iacono, L., Beck, S.G., and Gross, C. (2007). Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nat. Neurosci. 10, 896–902.10.1038/nn1919Suche in Google Scholar

Tsuruoka, N., Beppu, Y., Koda, H., Doe, N., Watanabe, H., and Abe, K. (2012). A DKP cyclo(L-Phe-L-Phe) found in chicken essence is a dual inhibitor of the serotonin transporter and acetylcholinesterase. PLoS One 7, e50824.10.1371/journal.pone.0050824Suche in Google Scholar

Upton, N., Chuang, T.T., Hunter, A.J., and Virley, D.J. (2008). 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5, 458–469.10.1016/j.nurt.2008.05.008Suche in Google Scholar

van Donkelaar, E.L., Blokland, A., Ferrington, L., Kelly, P.A., Steinbusch, H.W., and Prickaerts, J. (2011). Mechanism of acute tryptophan depletion: is it only serotonin? Mol. Psychiatry 16, 695–713.Suche in Google Scholar

van Praag, H.M. (2008). The cognitive paradox in posttraumatic stress disorder: a hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 923–935.Suche in Google Scholar

Vanover, K.E. and Barrett, J.E. (1998). An automated learning and memory model in mice: pharmacological and behavioral evaluation of an autoshaped response. Behav. Pharmacol. 9, 273–283.Suche in Google Scholar

Vanover, K.E., Harvey, S.C., Son, T., Bradley, S.R., Kold, H., Makhay, M., Veinbergs, I., Spalding, T.A., Weiner, D.M., Andersson, C.M., et al. (2004). Pharmacological characterization of AC-90179 [2-(4-methoxyphenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride]: a selective serotonin 2A receptor inverse agonist. J. Pharmacol. Exp. Ther. 310, 943–951.10.1124/jpet.104.066688Suche in Google Scholar

Volk, B., Nagy, B.J., Vas, S., Kostyalik, D., Simig, G., and Bagdy, G. (2010). Medicinal chemistry of 5-HT5A receptor ligands: a receptor subtype with unique therapeutical potential. Curr. Top. Med. Chem. 10, 554–578.10.2174/156802610791111588Suche in Google Scholar

Wada, A. (2009). Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J. Pharmacol. Sci. 110, 14–28.10.1254/jphs.09R02CRSuche in Google Scholar

Wallace, T.L., Ballard, T.M., Pouzet, B., Riedel, W.J., and Wettstein, J.G. (2011). Drug targets for cognitive enhancement in neuropsychiatric disorders. Pharmacol. Biochem. Behav. 99, 130–134.10.1016/j.pbb.2011.03.022Suche in Google Scholar

Walstaba, J., Rappolda, G., and Niesler, B. (2010). 5-HT3 receptors: role in disease and target of drugs. Pharmacol. Ther. 128, 146–169.10.1016/j.pharmthera.2010.07.001Suche in Google Scholar

Ward, B.O., Wilkinson, L.S., Robbins, T.W., and Everitt, B.J. (1999). Forebrain serotonin depletion facilitates the acquisition and performance of a conditional visual discrimination task in rats. Behav. Brain Res. 100, 51–65.10.1016/S0166-4328(98)00112-0Suche in Google Scholar

Wedzony, K., Maćkowiak, M., Zajaczkowski, W., Fijał, K., Chocyk, A., and Czyrak, A. (2000). WAY 100135, an antagonist of 5-HT1Aserotonin receptors, attenuates psychotomimetic effects of MK-801. Neuropsychopharmacology 23, 547–559.10.1016/S0893-133X(00)00150-0Suche in Google Scholar

Williams, G.V., Rao, S.G., and Goldman-Rakic, P.S. (2002). The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843–2854.10.1523/JNEUROSCI.22-07-02843.2002Suche in Google Scholar

Wilson, C. and Terry, A.V. (2009). Enhancing cognition in neurological disorders: potential usefulness of 5-HT6 antagonists. Drugs Future 34, 969–975.10.1358/dof.2009.034.12.1416986Suche in Google Scholar

Witty, D., Ahmed, M., and Chuang, T.T. (2009). Advances in the design of 5-HT6 receptor ligands with therapeutical potential. Prog. Med. Chem. 48, 163–225.10.1016/S0079-6468(09)04805-XSuche in Google Scholar

Woehrle, N.S., Klenotich, S.J., Jamnia, N., Ho, E.V., and Dulawa, S.C. (2013). Effects of chronic fluoxetine treatment on serotonin 1B receptor-induced deficits in delayed alternation. Psychopharmacology (Berl) 227, 545–551.10.1007/s00213-013-2985-0Suche in Google Scholar PubMed

Woods, S., Clarke, N., Layfield, R., and Fone, K. (2012). 5-HT6receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br. J. Pharmacol. 167, 436–449.10.1111/j.1476-5381.2012.02022.xSuche in Google Scholar PubMed PubMed Central

Woolley, M.L., Marsden, C.A., Sleight, A.J., and Fone, K.C. (2003). Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6receptor antagonist, Ro 04-6790. Psychopharmacology 170, 358–367.10.1007/s00213-003-1552-5Suche in Google Scholar PubMed

Xu, Y., Yan, J., Zhou, P., Li, J., Gao, H., Xia, Y., and Wang, Q. (2012). Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 97, 1–13.10.1016/j.pneurobio.2012.02.002Suche in Google Scholar PubMed PubMed Central

Youn, J., Misane, I., Eriksson, T.M., Millan, M.J., Ogren, S.O., Verhage, M., and Stiedl, O. (2009). Bidirectional modulation of classical fear conditioning in mice by 5-HT1Areceptor ligands with contrasting intrinsic activities. Neuropharmacology 57, 567–576.10.1016/j.neuropharm.2009.07.011Suche in Google Scholar PubMed

Yun, H.M. and Rhim, H. (2011a). 5-HT6 receptor ligands, EMD386088 and SB258585, differentially regulate 5-HT6receptor-independent events. Toxicol. In Vitro 25, 2035–2040.10.1016/j.tiv.2011.08.004Suche in Google Scholar PubMed

Yun, H.M. and Rhim, H. (2011b). The serotonin-6 receptor as a novel therapeutic target. Exp. Neurobiol. 20, 159–168.10.5607/en.2011.20.4.159Suche in Google Scholar PubMed PubMed Central

Zhang, L.N., Su, S.W., Guo, F., Guo, H.C., Shi, X.L., Li, W.Y., Liu, X., and Wang, Y.L. (2012). Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons. BMC Neurosci. 13, 10.10.1186/1471-2202-13-10Suche in Google Scholar PubMed PubMed Central

Zhou, W., Chen, L., Paul, J., Yang, S., Li, F., Sampson, K., Woodgett, J.R., Beaulieu, J.M., Gamble, K.L., and Li, X. (2012). The effects of glycogen synthase kinase-3beta in serotonin neurons. PLoS One 7, e43262.10.1371/journal.pone.0043262Suche in Google Scholar PubMed PubMed Central

Zhu, B., Chen, C., Loftus, E.F., Moyzis, R.K., Dong, Q., and Lin, C. (2013). True but not false memories are associated with the HTR2A gene. Neurobiol. Learn. Mem. 106C, 204–209.10.1016/j.nlm.2013.09.004Suche in Google Scholar PubMed

Zimmer, L. and Le Bars, D. (2013). Current status of positron emission tomography radiotracers for serotonin receptors in humans. J. Label Compd. Radiopharm. 56, 105–113.10.1002/jlcr.3001Suche in Google Scholar PubMed

Zovkic, I.B., Guzman-Karlsson, M.C., and Sweatt, J.D. (2013). Epigenetic regulation of memory formation and maintenance. Learn. Mem. 20, 61–74.10.1101/lm.026575.112Suche in Google Scholar PubMed PubMed Central

Received: 2013-5-16
Accepted: 2013-9-29
Published Online: 2013-11-21
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 19.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0026/pdf?lang=de
Button zum nach oben scrollen