Home Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
Article
Licensed
Unlicensed Requires Authentication

Detection of different chemical moieties in aqueous media by luminescent Europium as sensor

  • Komal Bashir , Faisal Jamil , Muhammad Adnan Iqbal ORCID logo EMAIL logo , Sadia Nazir , Umar Sohail Shoukat , Anam Bashir , Kainat Nasrullah and Ateeq-Ur Rehman
Published/Copyright: January 31, 2023

Abstract

Detection of different chemical moieties especially trace metals is important for humans as well as water safety. In this review, different detectors synthesized by the combination of different ligands with luminescent europium complexes were discussed for the separation of metals and chemical moieties in aqueous media. These detectors displayed high sensitivity and selectivity. The limit-of-detection values were very low indicating that these detectors are best suitable for the sensing of chemical moieties and trace metals. These detectors’ luminescent changes could be noticed with the naked eye.


Corresponding author: Muhammad Adnan Iqbal, Department of Chemistry, University of Agriculture Faisalabad, 38000, Pakistan; Department of Chemistry, Synthetic Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, 38000, Pakistan, E-mail:

Funding source: Higher Education Commission, Pakistan

Award Identifier / Grant number: NRPU # 8198

Acknowledgements

We would like to thank the University of Agriculture, Faisalabad (UAF) for providing us with the platform for this study and The Higher Education Commission of Pakistan for awarding research grant NRPU # 8198.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Higher Education Commission of Pakistan, NRPU # 8198.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adusumalli, V. N.; Koppisetti, H. V.; Madhukar, N.; Mondal, A.; Mahalingam, V. Gallic acid capped Tb3+-doped CaF 2 nanocrystals: an efficient optical probe for the detection of carbonate and bicarbonate ions. J. Mater. Chem. C 2021, 9, 4267–4274; https://doi.org/10.1039/d0tc06050j.Search in Google Scholar

Bai, C.-B.; Fan, H.-Y.; Qiao, R.; Wang, S.-N.; Wei, B.; Meng, Q.; Wang, Z.-Q.; Liao, J.-X.; Zhang, J.; Zhang, L.; Chen, S.-S.; Miao, H. Synthesis of methionine methyl ester-modified coumarin as the fluorescent-colorimetric chemosensor for selective detection Cu2+ with Application in molecular logic gate. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 216, 45–51; https://doi.org/10.1016/j.saa.2019.03.016.Search in Google Scholar PubMed

Bridou, L.; Nielsen, L. G.; Sørensen, T. J. Using Europium (III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-triacedic acid Eu.DO3A as a luminescent sensor for bicarbonate. J. Rare Earths 2020, 38, 498–505; https://doi.org/10.1016/j.jre.2019.11.017.Search in Google Scholar

Butler, S. J. Quantitative determination of fluoride in pure water using luminescent europium complexes. Chem. Commun. 2015, 51, 10879–10882; https://doi.org/10.1039/c5cc03428k.Search in Google Scholar PubMed

Cao, Y.; Wang, L.; Shen, C.; Wang, C.; Hu, X.; Wang, G. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensor. Actuator. B Chem. 2019, 283, 487–494; https://doi.org/10.1016/j.snb.2018.12.064.Search in Google Scholar

Chandra Rao, P.; Mandal, S. Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe3+ ion in Aqueous media. Inorg. Chem. 2018, 57, 11855–11858; https://doi.org/10.1021/acs.inorgchem.8b02017.Search in Google Scholar PubMed

Chen, H.-Q.; Fu, J.; Wang, L.; Ling, B.; Qian, B.-b.; Chen, J.-g.; Zhou, C.-l. Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles. Talanta 2010, 83, 139–144; https://doi.org/10.1016/j.talanta.2010.08.052.Search in Google Scholar PubMed

Chen, H.; Zheng, K.; Chen, C.; Zhu, Y.; Ma, P.; Wang, J.; Niu, J. Luminescent dimeric oxalate-bridged Eu3+/Tb3+-implanted arsenotungstates: tunable emission, energy transfer, and detection of Ba2+ ion in aqueous solution. Inorg. Chem. 2022, 61, 3387–3395; https://doi.org/10.1021/acs.inorgchem.1c03073.Search in Google Scholar PubMed

Chen, X.; Wang, L.; Yang, X.; Tang, L.; Zhou, Y.; Liu, R.; Qu, J. A new aggregation-induced emission active fluorescent probe for sensitive detection of cyanide. Sensor. Actuator. B Chem. 2017, 241, 1043–1049; https://doi.org/10.1016/j.snb.2016.10.040.Search in Google Scholar

Chu, T.; Hu, Y.; Wu, J.; Zeng, C.; Yang, Y.; Ng, S. W. A new luminescent lanthanide supramolecular network possessing free Lewis base sites for highly selective and sensitive Cu2+ sensing. Photochem. Photobiol. Sci. 2016, 15, 744–751; https://doi.org/10.1039/c6pp00059b.Search in Google Scholar PubMed

Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr (IV)-based metal-organic framework for selective sensing of Fe (III), cyanide and p-nitrophenol. Sensor. Actuator. B Chem. 2017, 250, 121–131; https://doi.org/10.1016/j.snb.2017.04.047.Search in Google Scholar

Fan, M.; Zhao, L.; Jin, X.; Sun, W.; Qi, W.; Li, Y. Efficient Tb3+-to-Eu3+ energy transfer for colorimetric luminescence sensing. Anal. Chim. Acta 2022, 1221, 340026; https://doi.org/10.1016/j.aca.2022.340026.Search in Google Scholar PubMed

Galaço, A. R.; Jesus, L. T.; Freire, R. O.; de Oliveira, M.Jr; Serra, O. A. Experimental and theoretical studies of glyphosate detection in water by an europium luminescent complex and effective adsorption by HKUST-1 and IRMOF-3. J. Agric. Food Chem. 2020, 68, 9664–9672; https://doi.org/10.1021/acs.jafc.0c03574.Search in Google Scholar PubMed

Gan, Z.; Hu, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J.; Zhang, W.; Li, Y.; Xu, Y. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with Europium (III) complexes. Sensor. Actuator. B Chem. 2021, 328, 128997; https://doi.org/10.1016/j.snb.2020.128997.Search in Google Scholar

Goudarzy, F.; Zolgharnein, J.; Alizadeh, V. Modified Eu3+ doped Y2O3 nanoparticles as turn-on fluorescence sensor for sensitive determination of methamphetamine. J. Anal. Chem. 2022, 77, 711–716; https://doi.org/10.1134/s1061934822060053.Search in Google Scholar

Guo, X.; Song, S.; Wang, X.; Jiang, X.; Lv, W.; Yu, X.; Han, Y.; Wang, L. Dual-functional fluorescent sensors based on CaMoO4: Eu3+ for detection of Iron (III) and dichromate ions in aqueous. Opt. Mater. 2019, 96, 109342; https://doi.org/10.1016/j.optmat.2019.109342.Search in Google Scholar

Gupta, V. K.; Shoora, S. K.; Kumawat, L. K.; Jain, A. K. A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions. Sensor. Actuator. B Chem. 2015, 209, 15–24; https://doi.org/10.1016/j.snb.2014.10.143.Search in Google Scholar

He, J.; Zhi, H.; Hu, Q.; Meng, H.; Wang, J.; Feng, L. The SPE-assisted europium (III) based complex fluorometric Assay for the highly selective and sensitive detection of manganese (II) in water. Talanta 2020, 210, 120633; https://doi.org/10.1016/j.talanta.2019.120633.Search in Google Scholar PubMed

Huang, F.; Li, X.; Zhang, Z.; Jiang, Z.; Wang, G.; Li, L.; Yu, Y. An ultra-stable Eu3+ doped yttrium coordination polymer with dual-function sensing for Cr (VI) and Fe (III) ions in aqueous solution. Chin. J. Struct. Chem. 2022, 41, 2204068–+.Search in Google Scholar

Huang, S.-Y.; Pierre, V. C. A turn-on luminescent europium probe for cyanide detection in water. Chem. Commun. 2018, 54, 9210–9213; https://doi.org/10.1039/c8cc05114c.Search in Google Scholar PubMed

İncel, A.; Akın, O.; Çağır, A.; Yıldız, Ü. H.; Demir, M. M. Smart phone Assisted detection and quantification of cyanide in drinking water by paper based sensing platform. Sensor. Actuator. B Chem. 2017, 252, 886–893; https://doi.org/10.1016/j.snb.2017.05.185.Search in Google Scholar

Jennings, L. B.; Shuvaev, S.; Fox, M. A.; Pal, R.; Parker, D. Selective signalling of glyphosate in water using europium luminescence. Dalton Trans. 2018, 47, 16145–16154; https://doi.org/10.1039/c8dt03823f.Search in Google Scholar PubMed

Jia, Y.; Wang, J.; Zhao, L.; Yan, B. Eu3+-β-diketone functionalized covalent organic framework hybrid material as a sensitive and rapid response fluorescent sensor for glutaraldehyde. Talanta 2022, 236, 122877; https://doi.org/10.1016/j.talanta.2021.122877.Search in Google Scholar PubMed

Jiménez, J.; Lysenko, S.; Liu, H.; Fachini, E.; Cabrera, C. Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass. J. Lumin. 2010, 130, 163–167; https://doi.org/10.1016/j.jlumin.2009.08.007.Search in Google Scholar

Jin, Y.; Ma, W.; Yan, B. Unearth the luminescence potential of metal–organic frameworks: adopting a feasible strategy to fabricate one ratiometric fluorescence sensor for monitoring both 1-hydroxypyrene and Cu2+. Inorg. Chem. 2022, 61, 1349–1359; https://doi.org/10.1021/acs.inorgchem.1c02794.Search in Google Scholar PubMed

Jin, Y.; Yan, B. A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for Aniline in urine. Talanta 2021, 227, 122209; https://doi.org/10.1016/j.talanta.2021.122209.Search in Google Scholar PubMed

Kalluri, J. R.; Arbneshi, T.; Afrin Khan, S.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A.; Senapati, D.; Ray, P. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of Arsenic in groundwater. Angew. Chem. 2009, 121, 9848–9851; https://doi.org/10.1002/ange.200903958.Search in Google Scholar

Kolcu, F.; Erdener, D.; Kaya, İ. Synthesis and characterization of a highly selective turn-on fluorescent chemosensor for Sn2+ derived from diimine Schiff base. Synth. Met. 2021, 272, 116668; https://doi.org/10.1016/j.synthmet.2020.116668.Search in Google Scholar

Kraithong, S.; Panchan, W.; Charoenpanich, A.; Sirirak, J.; Sahasithiwat, S.; Swanglap, P.; Promarak, V.; Thamyongkit, P.; Wanichacheva, N. A method to detect Hg2+ in vegetable via a “Turn–ON” Hg2+-fluorescent sensor with a nanomolar sensitivity. J. Photochem. Photobiol. Chem. 2020, 389, 112224; https://doi.org/10.1016/j.jphotochem.2019.112224.Search in Google Scholar

Li, B. H.; Zhang, Y. L.; Li, F. S.; Wang, W.; Liu, J.; Liu, M.; Cui, Y.; Li, X. B.; Li, B. L. A novel sensor for the detection of alkaline phosphatase activity based on the self-assembly of Eu3+-doped oxide nanoparticles and heptamethine cyanine dye. Sensor. Actuator. B Chem. 2016a, 233, 479–485; https://doi.org/10.1016/j.snb.2016.04.102.Search in Google Scholar

Li, Y.; Xie, D.; Pang, X.; Yu, X.; Yu, T.; Ge, X. Highly selective fluorescent sensing for fluoride based on a covalently bonded europium mesoporous hybrid material. Sensor. Actuator. B Chem. 2016b, 227, 660–667; https://doi.org/10.1016/j.snb.2016.01.047.Search in Google Scholar

Li, L.; Chen, F.-F.; Pan, J.; Zhong, S.; Li, L.; Yu, Y. Amino-functionalized YF3: Eu3+ nanoparticles: a selective two-in-one fluorescent probe for Cr (III) and Cr (VI) detection. J. Lumin. 2020, 226, 117440; https://doi.org/10.1016/j.jlumin.2020.117440.Search in Google Scholar

Li, X.; Wang, J.; Liu, J.; Tang, J.; Guo, J.; Wang, Y.; Huang, L.; Aleem, A. R.; Kipper, M. J.; Belfiore, L. Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions. Appl. Nanosci. 2019, 9, 1833–1844; https://doi.org/10.1007/s13204-019-01048-8.Search in Google Scholar

Lin, Q.; Yang, Q.-P.; Sun, B.; Lou, J.-C.; Wei, T.-B.; Zhang, Y.-M. A highly selective and sensitive fluorescence “turn-on” fluoride ion sensor. RSC Adv. 2015, 5, 11786–11790; https://doi.org/10.1039/c4ra09624j.Search in Google Scholar

Liu, C.; Yan, B. Zeolite-type metal organic frameworks immobilized Eu3+ for cation sensing in aqueous environment. J. Colloid Interface Sci. 2015, 459, 206–211; https://doi.org/10.1016/j.jcis.2015.08.025.Search in Google Scholar PubMed

Liu, H.; Dong, Y.; Zhang, B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. An efficient quinoline-based fluorescence sensor for zinc(II) and its application in live-cell imaging. Sensor. Actuator. B Chem. 2016, 234, 616–624; https://doi.org/10.1016/j.snb.2016.04.175.Search in Google Scholar

Liu, L.; Chen, X.-L.; Shang, L.; Cai, M.; Cui, H.-L.; Yang, H.; Wang, J.-J. Eu3+-postdoped MOFs Are used for fluorescence sensing of TNP, TC and pesticides and for Anti-counterfeiting ink Application. Dyes Pigments 2022, 202, 110253; https://doi.org/10.1016/j.dyepig.2022.110253.Search in Google Scholar

Liu, W.; Wang, Y.; Bai, Z.; Li, Y.; Wang, Y.; Chen, L.; Xu, L.; Diwu, J.; Chai, Z.; Wang, S. Hydrolytically stable luminescent cationic metal organic framework for highly sensitive and selective sensing of chromate Anions in natural water systems. ACS Appl. Mater. Interfaces 2017, 9, 16448–16457; https://doi.org/10.1021/acsami.7b03914.Search in Google Scholar PubMed

Lu, Y.-N.; Peng, J.-L.; Zhou, X.; Wu, J.-Z.; Ou, Y.-C.; Cai, Y.-P. Rapid naked-eye luminescence detection of carbonate ion through Acetonitrile hydrolysis induced europium complexes. CrystEngComm 2018, 20, 7574–7581; https://doi.org/10.1039/c8ce01414k.Search in Google Scholar

Luo, J.; Liu, B.-S.; Zhang, X.-R.; Liu, R.-T. A new fluorescent sensor constructed by Eu3+ post-functionalized metal-organic framework for sensing Ag+ with high selectivity and sensitivity in Aqueous solution. J. Mol. Struct. 2021, 1227, 129518; https://doi.org/10.1016/j.molstruc.2020.129518.Search in Google Scholar

Nath, P.; Priyadarshni, N.; Chanda, N. Europium-coordinated gold nanoparticles on paper for the colorimetric detection of arsenic (III,V) in aqueous solution. ACS Appl. Nano Mater. 2017, 1, 73–81; https://doi.org/10.1021/acsanm.7b00038.Search in Google Scholar

Prabakaran, E.; Pillay, K. Synthesis and characterization of fluorescent europium (III) complex based on D-dextrose composite for latent fingerprint detection. J. Saudi Chem. Soc. 2020, 24, 584–605; https://doi.org/10.1016/j.jscs.2020.06.002.Search in Google Scholar

Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensor. Actuator. B Chem. 2017, 238, 888–902; https://doi.org/10.1016/j.snb.2016.06.081.Search in Google Scholar

Qi, C.-X.; Xu, Y.-B.; Li, H.; Chen, X.-B.; Xu, L.; Liu, B. A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework. J. Solid State Chem. 2021, 294, 121835; https://doi.org/10.1016/j.jssc.2020.121835.Search in Google Scholar

Qin, S.-J.; Yan, B. A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine. Sensor. Actuator. B Chem. 2018, 259, 125–132; https://doi.org/10.1016/j.snb.2017.12.060.Search in Google Scholar

Sagami, T.; Tahara, Y. O.; Miyata, M.; Miyake, H.; Shinoda, S. Luminescence sensing of weakly-hydrated anions in aqueous solution by self-Assembled europium (III) complexes. Chem. Commun. 2017, 53, 3967–3970; https://doi.org/10.1039/c7cc00477j.Search in Google Scholar PubMed

Shu, Y.; Dai, T.; Ye, Q.; Jin, D.; Xu, Q.; Hu, X. A dual-emitting two-dimensional nickel-based metal-organic framework nanosheets: Eu3+/Ag+ functionalization synthesis and ratiometric sensing in Aqueous solution. J. Fluoresc. 2021, 31, 1947–1957; https://doi.org/10.1007/s10895-021-02826-w.Search in Google Scholar PubMed

Song, H.; Liu, G.; Fan, C.; Pu, S. A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1,10-phenanthroline ligand. J. Rare Earths 2021a, 39, 460–468; https://doi.org/10.1016/j.jre.2020.02.020.Search in Google Scholar

Song, L.; Xiao, J.; Cui, R.; Wang, X.; Tian, F.; Liu, Z. Eu3+ doped bismuth metal-organic frameworks with ultrahigh fluorescence quantum yield and Act as ratiometric turn-on sensor for histidine detection. Sensor. Actuator. B Chem. 2021b, 336, 129753; https://doi.org/10.1016/j.snb.2021.129753.Search in Google Scholar

Su, Y.; Zhang, D.; Jia, P.; Gao, W.; Li, Y.; He, J.; Wang, C.; Zheng, X.; Yang, Q.; Yang, C. Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur. Polym. J. 2019, 112, 461–465; https://doi.org/10.1016/j.eurpolymj.2019.01.034.Search in Google Scholar

Wang, D.; Wang, R.; Liu, L.; Qu, Y.; Wang, G.; Li, Y. Down-shifting luminescence of water soluble NaYF4: Eu3+@ Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Science China Materials 2017, 60, 68–74; https://doi.org/10.1007/s40843-016-5145-1.Search in Google Scholar

Wang, J.-M.; Lian, X.; Yan, B. Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 2019a, 58, 9956–9963; https://doi.org/10.1021/acs.inorgchem.9b01106.Search in Google Scholar PubMed

Wang, Z.; Wang, X.; Li, J.; Li, W.; Li, G. Eu3+/TFA functionalized MOF as luminescent enhancement platform: A ratiometric luminescent sensor for hydrogen sulfide in Aqueous solution. J. Inorg. Organomet. Polym. Mater. 2019b, 29, 2124–2132; https://doi.org/10.1007/s10904-019-01171-7.Search in Google Scholar

Wang, X.; Song, H.; Fan, C.; Pu, S. Europium (III) complex fluorescent sensor for dual channel recognition of Sn2+ and Cu2+ ions in water. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021a, 250, 119373; https://doi.org/10.1016/j.saa.2020.119373.Search in Google Scholar PubMed

Wang, X.; Wang, Y.; Huang, L.; Li, B.; Yan, X.; Huang, Z.; Wang, Y.; Kipper, M. J.; Tang, J. Sensitive Cu2+ detection by reversible on-off fluorescence using Eu3+ complexes in SiO2, in chitosan/polyethylene oxide nanofibers. Mater. Des. 2021b, 205, 109708; https://doi.org/10.1016/j.matdes.2021.109708.Search in Google Scholar

Wang, Y.; He, Q.; Zhao, X.; Yuan, J.; Zhao, H.; Wang, G.; Li, M. Synthesis of corn straw-based graphene quantum dots (GQDs) and their Application in PO43– detection. J. Environ. Chem. Eng. 2022, 10, 107150; https://doi.org/10.1016/j.jece.2022.107150.Search in Google Scholar

Wei, W.; He, J.; Wang, Y.; Kong, M. Ratiometric method based on silicon nanodots and Eu3+ system for highly-sensitive detection of tetracyclines. Talanta 2019, 204, 491–498; https://doi.org/10.1016/j.talanta.2019.06.036.Search in Google Scholar PubMed

Xiao, J.; Song, L.; Liu, M.; Wang, X.; Liu, Z. Intriguing pH-modulated luminescence chameleon system based on postsynthetic modified dual-emitting Eu3+@ Mn-MOF and its Application for histidine chemosensor. Inorg. Chem. 2020, 59, 6390–6397; https://doi.org/10.1021/acs.inorgchem.0c00485.Search in Google Scholar PubMed

Yang, D.; Wang, Y.; Liu, D.; Li, Z.; Li, H. Luminescence modulation via cation–π interaction in a lanthanide Assembly: implications for potassium detection. J. Mater. Chem. C 2018, 6, 1944–1950; https://doi.org/10.1039/c7tc04580h.Search in Google Scholar

Yao, R.; Li, Z.; Huo, P.; Gong, C.; Li, J.; Fan, C.; Pu, S. A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping. Dyes Pigments 2022, 201, 110190; https://doi.org/10.1016/j.dyepig.2022.110190.Search in Google Scholar

Zhan, Z.; Liang, X.; Zhang, X.; Jia, Y.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43− ions, and nitroaromatic explosives. Dalton Trans. 2019, 48, 1786–1794; https://doi.org/10.1039/c8dt04653k.Search in Google Scholar PubMed

Zhang, J.; Zhang, C. L.; Yu, S. H. Tuning gold nanoparticle aggregation through the inhibition of acid phosphatase bioactivity: a plasmonic sensor for light-up visual detection of arsenate (AsV). ChemPlusChem 2016, 81, 1147–1151; https://doi.org/10.1002/cplu.201600355.Search in Google Scholar PubMed

Zhang, S.; Yin, W.; Yang, Z.; Shah, I.; Yang, Y.; Li, Z.; Zhang, S.; Zhang, B.; Lei, Z.; Ma, H. Facile polymerization strategy for the construction of Eu3+-based fluorescent materials with the capability of distinguishing D2O from H2O. Anal. Chem. 2020a, 92, 7808–7815; https://doi.org/10.1021/acs.analchem.0c00981.Search in Google Scholar PubMed

Zhang, Y.; Zeng, B.; Liu, Y.; Li, P.; Chen, L.; Zhao, J. A penta-EuIII sandwiched dawson selenotungstate and its unique luminescence properties. Eur. J. Inorg. Chem. 2020b, 2020, 3416–3425; https://doi.org/10.1002/ejic.202000519.Search in Google Scholar

Zhang, Z.; Ye, X.; Liu, Q.; Liu, Y.; Liu, R. Colorimetric detection of Cr3+ based on gold nanoparticles functionalized with 4-mercaptobenzoic Acid. J. Analy. Sci. Technol. 2020c, 11, 1–7; https://doi.org/10.1186/s40543-020-00209-7.Search in Google Scholar

Zhang, Z.; Shang, C.; Zhao, W.; Cao, Y.; Han, J.; Hu, C.; Liu, Y. 3,3′,5,5′-Tetramethylbenzidine and polyetherimide decorated silver nanoparticles for colorimetric Mn2+ ions detection in Aqueous solution. Chem. Pap. 2022, 76, 7253–7260; https://doi.org/10.1007/s11696-022-02384-w.Search in Google Scholar

Zuo, H.; Li, Y.; Liao, Y. Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor. ACS Appl. Mater. Interfaces 2019, 11, 39201–39208; https://doi.org/10.1021/acsami.9b14795.Search in Google Scholar PubMed

Received: 2022-10-12
Accepted: 2023-01-12
Published Online: 2023-01-31
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0034/html
Scroll to top button