Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
-
Komal Bashir
, Sadia Nazir
Abstract
Detection of different chemical moieties especially trace metals is important for humans as well as water safety. In this review, different detectors synthesized by the combination of different ligands with luminescent europium complexes were discussed for the separation of metals and chemical moieties in aqueous media. These detectors displayed high sensitivity and selectivity. The limit-of-detection values were very low indicating that these detectors are best suitable for the sensing of chemical moieties and trace metals. These detectors’ luminescent changes could be noticed with the naked eye.
Funding source: Higher Education Commission, Pakistan
Award Identifier / Grant number: NRPU # 8198
Acknowledgements
We would like to thank the University of Agriculture, Faisalabad (UAF) for providing us with the platform for this study and The Higher Education Commission of Pakistan for awarding research grant NRPU # 8198.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Higher Education Commission of Pakistan, NRPU # 8198.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adusumalli, V. N.; Koppisetti, H. V.; Madhukar, N.; Mondal, A.; Mahalingam, V. Gallic acid capped Tb3+-doped CaF 2 nanocrystals: an efficient optical probe for the detection of carbonate and bicarbonate ions. J. Mater. Chem. C 2021, 9, 4267–4274; https://doi.org/10.1039/d0tc06050j.Search in Google Scholar
Bai, C.-B.; Fan, H.-Y.; Qiao, R.; Wang, S.-N.; Wei, B.; Meng, Q.; Wang, Z.-Q.; Liao, J.-X.; Zhang, J.; Zhang, L.; Chen, S.-S.; Miao, H. Synthesis of methionine methyl ester-modified coumarin as the fluorescent-colorimetric chemosensor for selective detection Cu2+ with Application in molecular logic gate. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 216, 45–51; https://doi.org/10.1016/j.saa.2019.03.016.Search in Google Scholar PubMed
Bridou, L.; Nielsen, L. G.; Sørensen, T. J. Using Europium (III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-triacedic acid Eu.DO3A as a luminescent sensor for bicarbonate. J. Rare Earths 2020, 38, 498–505; https://doi.org/10.1016/j.jre.2019.11.017.Search in Google Scholar
Butler, S. J. Quantitative determination of fluoride in pure water using luminescent europium complexes. Chem. Commun. 2015, 51, 10879–10882; https://doi.org/10.1039/c5cc03428k.Search in Google Scholar PubMed
Cao, Y.; Wang, L.; Shen, C.; Wang, C.; Hu, X.; Wang, G. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensor. Actuator. B Chem. 2019, 283, 487–494; https://doi.org/10.1016/j.snb.2018.12.064.Search in Google Scholar
Chandra Rao, P.; Mandal, S. Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe3+ ion in Aqueous media. Inorg. Chem. 2018, 57, 11855–11858; https://doi.org/10.1021/acs.inorgchem.8b02017.Search in Google Scholar PubMed
Chen, H.-Q.; Fu, J.; Wang, L.; Ling, B.; Qian, B.-b.; Chen, J.-g.; Zhou, C.-l. Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles. Talanta 2010, 83, 139–144; https://doi.org/10.1016/j.talanta.2010.08.052.Search in Google Scholar PubMed
Chen, H.; Zheng, K.; Chen, C.; Zhu, Y.; Ma, P.; Wang, J.; Niu, J. Luminescent dimeric oxalate-bridged Eu3+/Tb3+-implanted arsenotungstates: tunable emission, energy transfer, and detection of Ba2+ ion in aqueous solution. Inorg. Chem. 2022, 61, 3387–3395; https://doi.org/10.1021/acs.inorgchem.1c03073.Search in Google Scholar PubMed
Chen, X.; Wang, L.; Yang, X.; Tang, L.; Zhou, Y.; Liu, R.; Qu, J. A new aggregation-induced emission active fluorescent probe for sensitive detection of cyanide. Sensor. Actuator. B Chem. 2017, 241, 1043–1049; https://doi.org/10.1016/j.snb.2016.10.040.Search in Google Scholar
Chu, T.; Hu, Y.; Wu, J.; Zeng, C.; Yang, Y.; Ng, S. W. A new luminescent lanthanide supramolecular network possessing free Lewis base sites for highly selective and sensitive Cu2+ sensing. Photochem. Photobiol. Sci. 2016, 15, 744–751; https://doi.org/10.1039/c6pp00059b.Search in Google Scholar PubMed
Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr (IV)-based metal-organic framework for selective sensing of Fe (III), cyanide and p-nitrophenol. Sensor. Actuator. B Chem. 2017, 250, 121–131; https://doi.org/10.1016/j.snb.2017.04.047.Search in Google Scholar
Fan, M.; Zhao, L.; Jin, X.; Sun, W.; Qi, W.; Li, Y. Efficient Tb3+-to-Eu3+ energy transfer for colorimetric luminescence sensing. Anal. Chim. Acta 2022, 1221, 340026; https://doi.org/10.1016/j.aca.2022.340026.Search in Google Scholar PubMed
Galaço, A. R.; Jesus, L. T.; Freire, R. O.; de Oliveira, M.Jr; Serra, O. A. Experimental and theoretical studies of glyphosate detection in water by an europium luminescent complex and effective adsorption by HKUST-1 and IRMOF-3. J. Agric. Food Chem. 2020, 68, 9664–9672; https://doi.org/10.1021/acs.jafc.0c03574.Search in Google Scholar PubMed
Gan, Z.; Hu, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J.; Zhang, W.; Li, Y.; Xu, Y. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with Europium (III) complexes. Sensor. Actuator. B Chem. 2021, 328, 128997; https://doi.org/10.1016/j.snb.2020.128997.Search in Google Scholar
Goudarzy, F.; Zolgharnein, J.; Alizadeh, V. Modified Eu3+ doped Y2O3 nanoparticles as turn-on fluorescence sensor for sensitive determination of methamphetamine. J. Anal. Chem. 2022, 77, 711–716; https://doi.org/10.1134/s1061934822060053.Search in Google Scholar
Guo, X.; Song, S.; Wang, X.; Jiang, X.; Lv, W.; Yu, X.; Han, Y.; Wang, L. Dual-functional fluorescent sensors based on CaMoO4: Eu3+ for detection of Iron (III) and dichromate ions in aqueous. Opt. Mater. 2019, 96, 109342; https://doi.org/10.1016/j.optmat.2019.109342.Search in Google Scholar
Gupta, V. K.; Shoora, S. K.; Kumawat, L. K.; Jain, A. K. A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions. Sensor. Actuator. B Chem. 2015, 209, 15–24; https://doi.org/10.1016/j.snb.2014.10.143.Search in Google Scholar
He, J.; Zhi, H.; Hu, Q.; Meng, H.; Wang, J.; Feng, L. The SPE-assisted europium (III) based complex fluorometric Assay for the highly selective and sensitive detection of manganese (II) in water. Talanta 2020, 210, 120633; https://doi.org/10.1016/j.talanta.2019.120633.Search in Google Scholar PubMed
Huang, F.; Li, X.; Zhang, Z.; Jiang, Z.; Wang, G.; Li, L.; Yu, Y. An ultra-stable Eu3+ doped yttrium coordination polymer with dual-function sensing for Cr (VI) and Fe (III) ions in aqueous solution. Chin. J. Struct. Chem. 2022, 41, 2204068–+.Search in Google Scholar
Huang, S.-Y.; Pierre, V. C. A turn-on luminescent europium probe for cyanide detection in water. Chem. Commun. 2018, 54, 9210–9213; https://doi.org/10.1039/c8cc05114c.Search in Google Scholar PubMed
İncel, A.; Akın, O.; Çağır, A.; Yıldız, Ü. H.; Demir, M. M. Smart phone Assisted detection and quantification of cyanide in drinking water by paper based sensing platform. Sensor. Actuator. B Chem. 2017, 252, 886–893; https://doi.org/10.1016/j.snb.2017.05.185.Search in Google Scholar
Jennings, L. B.; Shuvaev, S.; Fox, M. A.; Pal, R.; Parker, D. Selective signalling of glyphosate in water using europium luminescence. Dalton Trans. 2018, 47, 16145–16154; https://doi.org/10.1039/c8dt03823f.Search in Google Scholar PubMed
Jia, Y.; Wang, J.; Zhao, L.; Yan, B. Eu3+-β-diketone functionalized covalent organic framework hybrid material as a sensitive and rapid response fluorescent sensor for glutaraldehyde. Talanta 2022, 236, 122877; https://doi.org/10.1016/j.talanta.2021.122877.Search in Google Scholar PubMed
Jiménez, J.; Lysenko, S.; Liu, H.; Fachini, E.; Cabrera, C. Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass. J. Lumin. 2010, 130, 163–167; https://doi.org/10.1016/j.jlumin.2009.08.007.Search in Google Scholar
Jin, Y.; Ma, W.; Yan, B. Unearth the luminescence potential of metal–organic frameworks: adopting a feasible strategy to fabricate one ratiometric fluorescence sensor for monitoring both 1-hydroxypyrene and Cu2+. Inorg. Chem. 2022, 61, 1349–1359; https://doi.org/10.1021/acs.inorgchem.1c02794.Search in Google Scholar PubMed
Jin, Y.; Yan, B. A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for Aniline in urine. Talanta 2021, 227, 122209; https://doi.org/10.1016/j.talanta.2021.122209.Search in Google Scholar PubMed
Kalluri, J. R.; Arbneshi, T.; Afrin Khan, S.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A.; Senapati, D.; Ray, P. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of Arsenic in groundwater. Angew. Chem. 2009, 121, 9848–9851; https://doi.org/10.1002/ange.200903958.Search in Google Scholar
Kolcu, F.; Erdener, D.; Kaya, İ. Synthesis and characterization of a highly selective turn-on fluorescent chemosensor for Sn2+ derived from diimine Schiff base. Synth. Met. 2021, 272, 116668; https://doi.org/10.1016/j.synthmet.2020.116668.Search in Google Scholar
Kraithong, S.; Panchan, W.; Charoenpanich, A.; Sirirak, J.; Sahasithiwat, S.; Swanglap, P.; Promarak, V.; Thamyongkit, P.; Wanichacheva, N. A method to detect Hg2+ in vegetable via a “Turn–ON” Hg2+-fluorescent sensor with a nanomolar sensitivity. J. Photochem. Photobiol. Chem. 2020, 389, 112224; https://doi.org/10.1016/j.jphotochem.2019.112224.Search in Google Scholar
Li, B. H.; Zhang, Y. L.; Li, F. S.; Wang, W.; Liu, J.; Liu, M.; Cui, Y.; Li, X. B.; Li, B. L. A novel sensor for the detection of alkaline phosphatase activity based on the self-assembly of Eu3+-doped oxide nanoparticles and heptamethine cyanine dye. Sensor. Actuator. B Chem. 2016a, 233, 479–485; https://doi.org/10.1016/j.snb.2016.04.102.Search in Google Scholar
Li, Y.; Xie, D.; Pang, X.; Yu, X.; Yu, T.; Ge, X. Highly selective fluorescent sensing for fluoride based on a covalently bonded europium mesoporous hybrid material. Sensor. Actuator. B Chem. 2016b, 227, 660–667; https://doi.org/10.1016/j.snb.2016.01.047.Search in Google Scholar
Li, L.; Chen, F.-F.; Pan, J.; Zhong, S.; Li, L.; Yu, Y. Amino-functionalized YF3: Eu3+ nanoparticles: a selective two-in-one fluorescent probe for Cr (III) and Cr (VI) detection. J. Lumin. 2020, 226, 117440; https://doi.org/10.1016/j.jlumin.2020.117440.Search in Google Scholar
Li, X.; Wang, J.; Liu, J.; Tang, J.; Guo, J.; Wang, Y.; Huang, L.; Aleem, A. R.; Kipper, M. J.; Belfiore, L. Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions. Appl. Nanosci. 2019, 9, 1833–1844; https://doi.org/10.1007/s13204-019-01048-8.Search in Google Scholar
Lin, Q.; Yang, Q.-P.; Sun, B.; Lou, J.-C.; Wei, T.-B.; Zhang, Y.-M. A highly selective and sensitive fluorescence “turn-on” fluoride ion sensor. RSC Adv. 2015, 5, 11786–11790; https://doi.org/10.1039/c4ra09624j.Search in Google Scholar
Liu, C.; Yan, B. Zeolite-type metal organic frameworks immobilized Eu3+ for cation sensing in aqueous environment. J. Colloid Interface Sci. 2015, 459, 206–211; https://doi.org/10.1016/j.jcis.2015.08.025.Search in Google Scholar PubMed
Liu, H.; Dong, Y.; Zhang, B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. An efficient quinoline-based fluorescence sensor for zinc(II) and its application in live-cell imaging. Sensor. Actuator. B Chem. 2016, 234, 616–624; https://doi.org/10.1016/j.snb.2016.04.175.Search in Google Scholar
Liu, L.; Chen, X.-L.; Shang, L.; Cai, M.; Cui, H.-L.; Yang, H.; Wang, J.-J. Eu3+-postdoped MOFs Are used for fluorescence sensing of TNP, TC and pesticides and for Anti-counterfeiting ink Application. Dyes Pigments 2022, 202, 110253; https://doi.org/10.1016/j.dyepig.2022.110253.Search in Google Scholar
Liu, W.; Wang, Y.; Bai, Z.; Li, Y.; Wang, Y.; Chen, L.; Xu, L.; Diwu, J.; Chai, Z.; Wang, S. Hydrolytically stable luminescent cationic metal organic framework for highly sensitive and selective sensing of chromate Anions in natural water systems. ACS Appl. Mater. Interfaces 2017, 9, 16448–16457; https://doi.org/10.1021/acsami.7b03914.Search in Google Scholar PubMed
Lu, Y.-N.; Peng, J.-L.; Zhou, X.; Wu, J.-Z.; Ou, Y.-C.; Cai, Y.-P. Rapid naked-eye luminescence detection of carbonate ion through Acetonitrile hydrolysis induced europium complexes. CrystEngComm 2018, 20, 7574–7581; https://doi.org/10.1039/c8ce01414k.Search in Google Scholar
Luo, J.; Liu, B.-S.; Zhang, X.-R.; Liu, R.-T. A new fluorescent sensor constructed by Eu3+ post-functionalized metal-organic framework for sensing Ag+ with high selectivity and sensitivity in Aqueous solution. J. Mol. Struct. 2021, 1227, 129518; https://doi.org/10.1016/j.molstruc.2020.129518.Search in Google Scholar
Nath, P.; Priyadarshni, N.; Chanda, N. Europium-coordinated gold nanoparticles on paper for the colorimetric detection of arsenic (III,V) in aqueous solution. ACS Appl. Nano Mater. 2017, 1, 73–81; https://doi.org/10.1021/acsanm.7b00038.Search in Google Scholar
Prabakaran, E.; Pillay, K. Synthesis and characterization of fluorescent europium (III) complex based on D-dextrose composite for latent fingerprint detection. J. Saudi Chem. Soc. 2020, 24, 584–605; https://doi.org/10.1016/j.jscs.2020.06.002.Search in Google Scholar
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensor. Actuator. B Chem. 2017, 238, 888–902; https://doi.org/10.1016/j.snb.2016.06.081.Search in Google Scholar
Qi, C.-X.; Xu, Y.-B.; Li, H.; Chen, X.-B.; Xu, L.; Liu, B. A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework. J. Solid State Chem. 2021, 294, 121835; https://doi.org/10.1016/j.jssc.2020.121835.Search in Google Scholar
Qin, S.-J.; Yan, B. A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine. Sensor. Actuator. B Chem. 2018, 259, 125–132; https://doi.org/10.1016/j.snb.2017.12.060.Search in Google Scholar
Sagami, T.; Tahara, Y. O.; Miyata, M.; Miyake, H.; Shinoda, S. Luminescence sensing of weakly-hydrated anions in aqueous solution by self-Assembled europium (III) complexes. Chem. Commun. 2017, 53, 3967–3970; https://doi.org/10.1039/c7cc00477j.Search in Google Scholar PubMed
Shu, Y.; Dai, T.; Ye, Q.; Jin, D.; Xu, Q.; Hu, X. A dual-emitting two-dimensional nickel-based metal-organic framework nanosheets: Eu3+/Ag+ functionalization synthesis and ratiometric sensing in Aqueous solution. J. Fluoresc. 2021, 31, 1947–1957; https://doi.org/10.1007/s10895-021-02826-w.Search in Google Scholar PubMed
Song, H.; Liu, G.; Fan, C.; Pu, S. A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1,10-phenanthroline ligand. J. Rare Earths 2021a, 39, 460–468; https://doi.org/10.1016/j.jre.2020.02.020.Search in Google Scholar
Song, L.; Xiao, J.; Cui, R.; Wang, X.; Tian, F.; Liu, Z. Eu3+ doped bismuth metal-organic frameworks with ultrahigh fluorescence quantum yield and Act as ratiometric turn-on sensor for histidine detection. Sensor. Actuator. B Chem. 2021b, 336, 129753; https://doi.org/10.1016/j.snb.2021.129753.Search in Google Scholar
Su, Y.; Zhang, D.; Jia, P.; Gao, W.; Li, Y.; He, J.; Wang, C.; Zheng, X.; Yang, Q.; Yang, C. Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur. Polym. J. 2019, 112, 461–465; https://doi.org/10.1016/j.eurpolymj.2019.01.034.Search in Google Scholar
Wang, D.; Wang, R.; Liu, L.; Qu, Y.; Wang, G.; Li, Y. Down-shifting luminescence of water soluble NaYF4: Eu3+@ Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Science China Materials 2017, 60, 68–74; https://doi.org/10.1007/s40843-016-5145-1.Search in Google Scholar
Wang, J.-M.; Lian, X.; Yan, B. Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 2019a, 58, 9956–9963; https://doi.org/10.1021/acs.inorgchem.9b01106.Search in Google Scholar PubMed
Wang, Z.; Wang, X.; Li, J.; Li, W.; Li, G. Eu3+/TFA functionalized MOF as luminescent enhancement platform: A ratiometric luminescent sensor for hydrogen sulfide in Aqueous solution. J. Inorg. Organomet. Polym. Mater. 2019b, 29, 2124–2132; https://doi.org/10.1007/s10904-019-01171-7.Search in Google Scholar
Wang, X.; Song, H.; Fan, C.; Pu, S. Europium (III) complex fluorescent sensor for dual channel recognition of Sn2+ and Cu2+ ions in water. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021a, 250, 119373; https://doi.org/10.1016/j.saa.2020.119373.Search in Google Scholar PubMed
Wang, X.; Wang, Y.; Huang, L.; Li, B.; Yan, X.; Huang, Z.; Wang, Y.; Kipper, M. J.; Tang, J. Sensitive Cu2+ detection by reversible on-off fluorescence using Eu3+ complexes in SiO2, in chitosan/polyethylene oxide nanofibers. Mater. Des. 2021b, 205, 109708; https://doi.org/10.1016/j.matdes.2021.109708.Search in Google Scholar
Wang, Y.; He, Q.; Zhao, X.; Yuan, J.; Zhao, H.; Wang, G.; Li, M. Synthesis of corn straw-based graphene quantum dots (GQDs) and their Application in PO43– detection. J. Environ. Chem. Eng. 2022, 10, 107150; https://doi.org/10.1016/j.jece.2022.107150.Search in Google Scholar
Wei, W.; He, J.; Wang, Y.; Kong, M. Ratiometric method based on silicon nanodots and Eu3+ system for highly-sensitive detection of tetracyclines. Talanta 2019, 204, 491–498; https://doi.org/10.1016/j.talanta.2019.06.036.Search in Google Scholar PubMed
Xiao, J.; Song, L.; Liu, M.; Wang, X.; Liu, Z. Intriguing pH-modulated luminescence chameleon system based on postsynthetic modified dual-emitting Eu3+@ Mn-MOF and its Application for histidine chemosensor. Inorg. Chem. 2020, 59, 6390–6397; https://doi.org/10.1021/acs.inorgchem.0c00485.Search in Google Scholar PubMed
Yang, D.; Wang, Y.; Liu, D.; Li, Z.; Li, H. Luminescence modulation via cation–π interaction in a lanthanide Assembly: implications for potassium detection. J. Mater. Chem. C 2018, 6, 1944–1950; https://doi.org/10.1039/c7tc04580h.Search in Google Scholar
Yao, R.; Li, Z.; Huo, P.; Gong, C.; Li, J.; Fan, C.; Pu, S. A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping. Dyes Pigments 2022, 201, 110190; https://doi.org/10.1016/j.dyepig.2022.110190.Search in Google Scholar
Zhan, Z.; Liang, X.; Zhang, X.; Jia, Y.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43− ions, and nitroaromatic explosives. Dalton Trans. 2019, 48, 1786–1794; https://doi.org/10.1039/c8dt04653k.Search in Google Scholar PubMed
Zhang, J.; Zhang, C. L.; Yu, S. H. Tuning gold nanoparticle aggregation through the inhibition of acid phosphatase bioactivity: a plasmonic sensor for light-up visual detection of arsenate (AsV). ChemPlusChem 2016, 81, 1147–1151; https://doi.org/10.1002/cplu.201600355.Search in Google Scholar PubMed
Zhang, S.; Yin, W.; Yang, Z.; Shah, I.; Yang, Y.; Li, Z.; Zhang, S.; Zhang, B.; Lei, Z.; Ma, H. Facile polymerization strategy for the construction of Eu3+-based fluorescent materials with the capability of distinguishing D2O from H2O. Anal. Chem. 2020a, 92, 7808–7815; https://doi.org/10.1021/acs.analchem.0c00981.Search in Google Scholar PubMed
Zhang, Y.; Zeng, B.; Liu, Y.; Li, P.; Chen, L.; Zhao, J. A penta-EuIII sandwiched dawson selenotungstate and its unique luminescence properties. Eur. J. Inorg. Chem. 2020b, 2020, 3416–3425; https://doi.org/10.1002/ejic.202000519.Search in Google Scholar
Zhang, Z.; Ye, X.; Liu, Q.; Liu, Y.; Liu, R. Colorimetric detection of Cr3+ based on gold nanoparticles functionalized with 4-mercaptobenzoic Acid. J. Analy. Sci. Technol. 2020c, 11, 1–7; https://doi.org/10.1186/s40543-020-00209-7.Search in Google Scholar
Zhang, Z.; Shang, C.; Zhao, W.; Cao, Y.; Han, J.; Hu, C.; Liu, Y. 3,3′,5,5′-Tetramethylbenzidine and polyetherimide decorated silver nanoparticles for colorimetric Mn2+ ions detection in Aqueous solution. Chem. Pap. 2022, 76, 7253–7260; https://doi.org/10.1007/s11696-022-02384-w.Search in Google Scholar
Zuo, H.; Li, Y.; Liao, Y. Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor. ACS Appl. Mater. Interfaces 2019, 11, 39201–39208; https://doi.org/10.1021/acsami.9b14795.Search in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands