Home Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
Article
Licensed
Unlicensed Requires Authentication

Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review

  • Chao Sui ORCID logo EMAIL logo , Xiang Yu Ma , Wen Hui Fu , Shi Ping Zeng ORCID logo , Rui Rui Xie and Zhi Ping Zhang EMAIL logo
Published/Copyright: February 27, 2023

Abstract

Volatile organic compounds (VOCs) are an important class of environmental pollutants, and there is much interest in China to eliminate such pollutants. Noble metal catalysts have long been a family of catalysts with high efficiency and good low-temperature catalytic activity. As a representative of the noble metals, Pt has been widely used. This paper reviews the research trend of Pt-based catalysts for the catalytic oxidation of VOCs, and it compares several important components of Pt-based catalysts. The size of Pt particles, supported carriers, and reaction mechanism are reviewed. Toluene in VOCs is the main research subject. The activity, stability, water resistance, and selectivity of a series of Pt-based catalysts are summarized.


Corresponding authors: Chao Sui, Heilongjiang Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157000, China, E-mail: ; and Zhi Ping Zhang, Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, University of Science and Technology, Harbin 150040, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Scientific Research Fund of Heilongjiang Education Department (No. 1451ZD002); the Heilongjiang Province Education Department young creative talents training program (No. UNPYSCT-2020087); Scientific Research Projects of Mudanjiang Normal University (No.GP2019002); Science and technology innovation project of Mudanjiang Normal University (kjcx2021-025mdjnu), Science and technology innovation project of Mudanjiang Normal University (kjcx2021-113mdjnu); Scientific Research Fund of Heilongjiang Education Department (No. 1354MSYQN031); Scientific Research Projects of Mudanjiang Normal University (No.QN2020002)

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. J. Hazard Mater. 2011, 186, 1445–1454; https://doi.org/10.1016/j.jhazmat.2010.12.034.Search in Google Scholar PubMed

Anitha, V. C.; Goswami, A.; Sopha, H.; Nandan, D.; Gawande, M. B.; Cepe, K.; Ng, S.; Zboril, R.; Macak, J. M. Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Appl. Mater. Today 2018, 10, 86–92; https://doi.org/10.1016/j.apmt.2017.12.006.Search in Google Scholar

An, K.; Somorjai, G. A. Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 2015, 46, 233–248; https://doi.org/10.1007/s10562-014-1399-x.Search in Google Scholar

Abdou, J. M.; Seidel, P.; Sterrer, M. Bonding and thermal stability of cysteine on single-crystalline iron oxide surfaces and Pt(111). J. Chem. Phys. 2020, 152, 064701; https://doi.org/10.1063/1.5143416.Search in Google Scholar PubMed

Boudart, M. Catalysis by supported metals. Adv. Catal. 1969, 20, 153–166.10.1016/S0360-0564(08)60271-0Search in Google Scholar

Bera, R. K.; Park, H.; Ko, S. H.; Ryoo, R. Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction. RSC Adv. 2020, 10, 32290–32295; https://doi.org/10.1039/d0ra05654e.Search in Google Scholar PubMed PubMed Central

Burgos, N.; Paulis, M.; Antxustegi, M. M.; Montes, M. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Appl. Catal. B Environ. 2002, 38, 251–258; https://doi.org/10.1016/s0926-3373(01)00294-6.Search in Google Scholar

Chen, B.; Wang, B.; Sun, Y.; Wang, X.; Fu, M.; Wu, J.; Chen, L.; Tan, Y.; Ye, D. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation. Catalysts 2018, 9, 2; https://doi.org/10.3390/catal9010002.Search in Google Scholar

Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun. 2015, 51, 5936–5938; https://doi.org/10.1039/c4cc09383f.Search in Google Scholar PubMed

Chen, C.; Zhu, J.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. S. Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst. Appl. Catal. B Environ. 2013, 140-141, 199–205; https://doi.org/10.1016/j.apcatb.2013.03.050.Search in Google Scholar

Chen, Y.; Wan, Q.; Cao, L.; Gao, Z.; Lin, J.; Li, L.; Pan, X.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidationFacet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185; https://doi.org/10.1016/j.jcat.2022.10.002.Search in Google Scholar

Chang, M.; Liu, X.; Ning, P.; Zhang, Q.; Xia, F.; Wang, H.; Wei, G.; Wen, J.; Liu, M.; Hu, J.; Tang, T. Removal of toluene over bi-metallic Pt-Pd-SBA-15 catalysts: kinetic and mechanistic study. Microporous Mesoporous Mater. 2020, 302, 110111; https://doi.org/10.1016/j.micromeso.2020.110111.Search in Google Scholar

Dai, C.; Zhou, Y.; Peng, H.; Huang, S.; Qin, P.; Zhang, J.; Yang, Y.; Luo, L.; Zhang, X. Current progress in remediation of chlorinated volatile organic compounds: a review. J. Ind. Eng. Chem. 2018, 62, 106–119; https://doi.org/10.1016/j.jiec.2017.12.049.Search in Google Scholar

Esfahani, R.; Easton, E. B. Exceptionally durable Pt/TOMS catalysts for fuel cells. Appl. Catal. B Environ. 2020, 268, 118743; https://doi.org/10.1016/j.apcatb.2020.118743.Search in Google Scholar

Elimian, E. A.; Zhang, M.; Chen, J.; Jia, H.; Sun, Y.; He, J. Construction of Pt-mTiO2/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene. Appl. Catal. B Environ. 2022, 307, 121203.10.1016/j.apcatb.2022.121203Search in Google Scholar

Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.10.1002/adma.201705112Search in Google Scholar PubMed

Fan, J. J.; Fan, Y. J.; Wang, R. X.; Xiang, S.; Tang, H. G.; Sun, S. G. A novel strategy for sulfur-doped carbon nanotube as a high-efficient Pt catalyst support toward methanol oxidation reaction. J. Mater. Chem. A. 2017, 5, 19467–19475; https://doi.org/10.1039/c7ta05102f.Search in Google Scholar

Fan, J.; Sun, Y.; Fu, M.; Li, J.; Ye, D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO2 catalysts for enhancing the toluene oxidation. J. Hazard Mater. 2022, 424, 127505; https://doi.org/10.1016/j.jhazmat.2021.127505.Search in Google Scholar PubMed

Filipa, R.; João, M. S.; Elisabete, S.; Fátima, M. V.; Fernando, A. C. O. Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catal. Today 2011, 176, 93–96; https://doi.org/10.1016/j.cattod.2011.02.007.Search in Google Scholar

Fu, X.; Liu, Y.; Deng, J.; Jing, L.; Zhang, X.; Zhang, K.; Han, Z.; Jiang, X.; Dai, H. Intermetallic compound PtMny-derived Pt-MnOx supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene. Appl. Catal. A-Gen. 2020, 595, 117509; https://doi.org/10.1016/j.apcata.2020.117509.Search in Google Scholar

Gelles, T.; Krishnamurthy, A.; Adebayo, B.; Rownaghi, A.; Rezaei, F. Abatement of gaseous volatile organic compounds: a materials perspective. Catal. Today 2019, 350, 3–18; https://doi.org/10.1016/j.cattod.2019.06.017.Search in Google Scholar

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568; https://doi.org/10.1021/acs.chemrev.8b00408.Search in Google Scholar PubMed

Huang, H.; Xu, Y.; Feng, Q.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: a review. Catal. Sci. Technol. 2015, 5, 2649–2669; https://doi.org/10.1039/c4cy01733a.Search in Google Scholar

Hao, X.; Dai, L.; Deng, J.; Liu, Y.; Jing, L.; Wang, J.; Pei, W.; Zhang, X.; Hou, Z.; Dai, H. Nanotubular OMS-2 supported single-atom platinum catalysts highly active for benzene oxidation. J. Phys. Chem. C 2021, 125, 17696–17708; https://doi.org/10.1021/acs.jpcc.1c04579.Search in Google Scholar

He, C.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. A comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water, Air, Soil Pollut. 2010, 209, 365–376, https://doi.org/10.1007/s11270-009-0205-7.Search in Google Scholar

Joung, H. J.; Kim, J. H.; Oh, J. S.; You, D. W.; Park, H. O.; Jung, K. W. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl. Surf. Sci. 2014, 290, 267–273; https://doi.org/10.1016/j.apsusc.2013.11.066.Search in Google Scholar

Jakeyoung, L.; Eun, J. J.; Dong, G.; Szanyi, J.; Kwak, J. H. Morphology and size of Pt on Al2O3: the role of specific metal-support interactions between Pt and Al2O3. Chin. J. Catal. 2020, 385, 204–212; https://doi.org/10.1016/j.jcat.2020.03.019.Search in Google Scholar

Jiang, Z.; Jing, M.; Feng, X.; Xiong, J.; He, C.; Douthwaite, M.; Zheng, L.; Song, W.; Liu, J.; Qu, Z. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application. Appl. Catal. B Environ. 2020, 278, 119304; https://doi.org/10.1016/j.apcatb.2020.119304.Search in Google Scholar

Klett, C.; Duten, X.; Tieng, S.; Touchard, S.; Jestin, P.; Hassouni, K.; Vega-González, A. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process. J. Hazard Mater. 2014, 279, 356–364; https://doi.org/10.1016/j.jhazmat.2014.07.014.Search in Google Scholar PubMed

Kim, S. C.; Shim, W. G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 2010, 98, 180–185; https://doi.org/10.1016/j.apcatb.2010.05.027.Search in Google Scholar

Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic oxidation of volatile organic compounds (VOCs) A review. Atmos. Environ. 2016, 140, 117–134; https://doi.org/10.1016/j.atmosenv.2016.05.031.Search in Google Scholar

Ke, J.; Wei, Z.; Jiang, Y.; Si, R.; Wang, Y.; Li, S.; Jin, C.; Liu, H.; Song, W. G.; Yan, C. H.; Zhang, Y. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164–5173; https://doi.org/10.1021/acscatal.5b00832.Search in Google Scholar

Kondratowicz, T.; Drozdek, M.; Michalik, M.; Gac, W.; Gajewska, M.; Kuśtrowski, P. Catalytic activity of Pt species variously dispersed on hollow ZrO2 spheres in combustion of volatile organic compounds. Appl. Surf. Sci. 2020, 513, 145788; https://doi.org/10.1016/j.apsusc.2020.145788.Search in Google Scholar

Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; He, K.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; Bo, Y.; Su, H.; Cheng, Y. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017: drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019a, 19, 8897–8913; https://doi.org/10.5194/acp-19-8897-2019.Search in Google Scholar

Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412; https://doi.org/10.1016/j.apcatb.2010.08.023.Search in Google Scholar

Liu, Y.; Zhang, Y.; Zhai, C.; Li, X.; Mao, L. Nitrogen-doped porous carbons supported Pt nanoparticles for methanol oxidation in alkaline medium. ACS. Mater. Lett. 2016, 166, 16–18; https://doi.org/10.1016/j.matlet.2015.12.035.Search in Google Scholar

Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079; https://doi.org/10.1021/acs.chemrev.7b00776.Search in Google Scholar PubMed PubMed Central

Li, R.; Zhu, Y.; Zhang, Z.; Zhang, C.; Fu, G.; Yi, X.; Huang, Q.; Yang, F.; Liang, W.; Zheng, A.; Jiang, J. Remarkable performance of selective catalytic reduction of NOx by ammonia over copper-exchanged SSZ-52 catalysts. Appl. Catal. B Environ. 2021a, 283, 119641; https://doi.org/10.1016/j.apcatb.2020.119641.Search in Google Scholar

Li, Z.; Niu, X.; Lin, Z.; Wang, N.; Shen, H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloys Compd. 2016, 682, 647–653; https://doi.org/10.1016/j.jallcom.2016.04.311.Search in Google Scholar

Li, Q.; Zhou, X.; Zhao, W.; Peng, C.; Wu, H.; Chen, H. Pt/Fe co-loaded mesoporous zeolite beta for CO oxidation with high catalytic activity and water resistance. RSC Adv. 2019b, 9, 28089–28094; https://doi.org/10.1039/c9ra04599f.Search in Google Scholar PubMed PubMed Central

Li, L.; Wei, M.; Chen, F.; Ji, W. Pt-Embedded-Co3O4 hollow structure as a highly efficient catalyst for toluene combustion. Catal. Sci. Technol. 2021b, 11, 5491–5497; https://doi.org/10.1039/d1cy00653c.Search in Google Scholar

Michalak, W. D.; Krier, J. M.; Komvopoulos, K.; Somorjai, G. A. Structure sensitivity in Pt nanoparticle catalysts for hydrogenation of 1,3-butadiene: in situ study of reaction intermediates using SFG vibrational spectroscopy. J. Phys. Chem. C 2013, 117, 1809–1817; https://doi.org/10.1021/jp311772p.Search in Google Scholar

Mo, S.; Li, J.; Liao, R.; Peng, P.; Li, J.; Wu, J.; Fu, M.; Liao, L.; Shen, T.; Xie, Q.; Ye, D. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: synergistic effect of surface decorated and intrinsic O-vacancies. Chem. Eng. J. 2021, 418, 129399; https://doi.org/10.1016/j.cej.2021.129399.Search in Google Scholar

Matsuo, K.; Nunotani, N.; Imanaka, N. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Funct. Mater. Lett. 2019, 12, 1950074, https://doi.org/10.1142/s1793604719500747.Search in Google Scholar

Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838; https://doi.org/10.1038/s41467-020-16693-9.Search in Google Scholar PubMed PubMed Central

Nesselberger, M.; Roefzaad, M.; Hamou, R. F.; Biedermann, P. U.; Schweinberger, F. F.; Kunz, S.; Schloegl, K.; Wiberg, G. K. H.; Ashton, S.; Heiz, U.; Mayrhofer, K. J. J.; Arenz, M. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919–924; https://doi.org/10.1038/nmat3712.Search in Google Scholar PubMed

Nunotani, N.; Saeki, S.; Matsuo, K.; Imanaka, N. Novel catalysts based on lanthanum oxyfluoride for toluene combustion. Mater. Lett. 2020, 258, 126802; https://doi.org/10.1016/j.matlet.2019.126802.Search in Google Scholar

Ponticorvo, E.; Iuliano, M.; Funicello, N.; Pasquale, S. D.; Sarno, M. Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. Inorg. Chem. Commun. 2021, 131, 108790; https://doi.org/10.1016/j.inoche.2021.108790.Search in Google Scholar

Park, J.; Lee, S.; Kim, H.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042; https://doi.org/10.1002/anie.201908122.Search in Google Scholar PubMed

Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B Environ. 2018, 220, 462–470; https://doi.org/10.1016/j.apcatb.2017.07.048.Search in Google Scholar

Pushkarev, V. V.; An, K.; Alayoglu, S.; Beaumont, S. K.; Somorjai, G. A. Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: elucidation of the Pt particle size effect on reaction kinetics. Chin. J. Catal. 2012, 292, 64–72; https://doi.org/10.1016/j.jcat.2012.04.022.Search in Google Scholar

Rui, Z.; Chen, L.; Chen, H.; Ji, H. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res. 2014, 53, 15879–15888; https://doi.org/10.1021/ie5029107.Search in Google Scholar

Rui, Z.; Tang, M.; Ji, W.; Ding, J.; Ji, H. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation. Catal. Today 2017, 297, 159–166; https://doi.org/10.1016/j.cattod.2017.04.055.Search in Google Scholar

Sui, C.; Zeng, S.; Ma, X.; Zhang, Y.; Zhang, J.; Xie, X. Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts-a review. Rev. Inorg. Chem. 2023, 43, 1–12; https://doi.org/10.1515/revic-2021-0042.Search in Google Scholar

Song, S.; Wu, Y.; Ge, S.; Wang, L.; Wang, Y.; Guo, Y.; Zhan, W.; Guo, Y. A facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides. ACS Catal. 2019, 9, 6177–6187; https://doi.org/10.1021/acscatal.9b01679.Search in Google Scholar

Sedjame, H. J.; Fontaine, C.; Lafaye, G.; Barbier, J. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation. Appl. Catal. B Environ. 2014, 144, 233–242; https://doi.org/10.1016/j.apcatb.2013.07.022.Search in Google Scholar

Shi, Y.; Li, Z.; Wang, J.; Zhou, R. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation-ScienceDirect. Appl. Catal. B Environ. 2021, 286, 119936; https://doi.org/10.1016/j.apcatb.2021.119936.Search in Google Scholar

Salaev, M. A.; Salaeva, A. A.; Kharlamova, T. S.; Mamontov, G. V. Pt-CeO2-based composites in environmental catalysis: a review. Appl. Catal. B Environ. 2021, 29, 120286; https://doi.org/10.1016/j.apcatb.2021.120286.Search in Google Scholar

Singhania, N.; Anumol, E. A.; Ravishankar, N.; Madras, G. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation. Dalton Trans. 2013, 42, 15343–15354; https://doi.org/10.1039/c3dt51364e.Search in Google Scholar PubMed

Tian, M.; Guo, X.; Dong, R.; Guo, Z.; Shi, J.; Yu, Y.; Cheng, M.; Albilali, R.; He, C. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl. Catal. B Environ. 2019, 259, 118018; https://doi.org/10.1016/j.apcatb.2019.118018.Search in Google Scholar

Wang, H.; Wang, Y.; Zhu, Z.; Sapi, A.; An, K.; Kennedy, G.; Michalak, W. D.; Somorjai, G. A. Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase. Nano Lett. 2013a, 13, 2976–2979; https://doi.org/10.1021/nl401568x.Search in Google Scholar PubMed

Wang, H.; Krier, J. M.; Zhu, Z.; Melaet, G.; Wang, Y.; Kennedy, G.; Alayoglu, S.; An, K.; Somorjai, G. A. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: displacement of inactive reaction intermediates. J. Am. Chem. Soc. 2013b, 3, 2371–2375; https://doi.org/10.1021/cs400579j.Search in Google Scholar

Wang, Q.; Lu, Q.; Yao, L.; Sun, K.; Wei, M.; Guo, E. Preparation and characterization of ultrathin Pt/CeO2/Bi2WO6 nanobelts with enhanced photoelectrochemical properties. Dyes Pigments 2018, 149, 612–619; https://doi.org/10.1016/j.dyepig.2017.11.028.Search in Google Scholar

Wang, X.; Lian, M.; Yang, X.; Lu, P.; Zhou, J.; Gao, J.; Liu, C.; Liu, W.; Miao, L. Enhanced activity for catalytic combustion of ethylene by the Pt nanoparticles confined in TiO2 nanotube with surface oxygen vacancy. Ceram. Int. 2022, 48, 3933–3940; https://doi.org/10.1016/j.ceramint.2021.10.180.Search in Google Scholar

Wang, Z.; Yang, H.; Liu, R.; Xie, S.; Liu, Y.; Dai, H.; Huang, H.; Deng, J. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard Mater. 2020, 392, 122258; https://doi.org/10.1016/j.jhazmat.2020.122258.Search in Google Scholar PubMed

Xiao, M.; Yu, X.; Guo, Y.; Ge, M. Boosting toluene combustion by tuning electronic metal–support interactions in in situ grown Pt@Co3O4 CatalystsBoosting toluene combustion by tuning electronic metal-support interactions in in situ grown Pt@Co3O4 catalysts. Environ. Sci. Technol. 2022, 56, 1376–1385; https://doi.org/10.1021/acs.est.1c07016.Search in Google Scholar PubMed

Yoshida, J.; Koda, S.; Nishida, S.; Yoshida, T.; Miyajima, K.; Kumagai, S. Association between occupational exposure levels of antineoplastic drugs and work environment in five hospitals in Japan. J. Oncol. Pharm. Pract. 2011, 17, 29–38; https://doi.org/10.1177/1078155210380485.Search in Google Scholar PubMed

Yan, Z.; Gong, S.; An, L.; Yue, L.; Xu, Z. Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature. React. Kinet. Mech. Catal. 2018, 124, 293–304; https://doi.org/10.1007/s11144-018-1348-6.Search in Google Scholar

Ye, Q.; Xu, W.; Chen, S.; Wang, Z.; Duan, X.; Liu, H.; Zhang, H.; Sun, L.; Yang, W.; Zhang, C.; Zhou, J. Initial nucleation process in the synthesis of Platinum Nanoparticle from chloroplatinic acid. Nano Today 2021, 37, 101093; https://doi.org/10.1016/j.nantod.2021.101093.Search in Google Scholar

Yu, K.; Deng, J.; Shen, Y.; Wang, A.; Shi, L.; Zhang, D. Effificient catalytic combustion of toluene at low temperature by tailoring surfificial Pt0 and interfacial Pt-AlOHx species. iScience 2021, 24, 102689; https://doi.org/10.1016/j.isci.2021.102689.Search in Google Scholar PubMed PubMed Central

Yang, Y.; Song, J.; Sui, H.; He, L.; Li, X. Understanding the behaviors of toluene in asphaltene. J. Mol. Liq. 2022a, 348, 118016; https://doi.org/10.1016/j.molliq.2021.118016.Search in Google Scholar

Yang, L.; Liu, Q.; Han, R.; Fu, K.; Su, Y.; Zheng, Y.; Wu, X. Q.; Song, C.; Ji, N.; Lu, X.; Ma, D. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation. Appl. Catal. B Environ. 2022b, 309, 121224; https://doi.org/10.1016/j.apcatb.2022.121224.Search in Google Scholar

Zhang, H.; He, L.; Zhang, X.; Xia, Y.; Qi, J.; Jin, Q. Lattice oxygen and surface states dual modulation of manganese oxide with remarkably enhanced catalytic activity for toluene oxidation. Inorg. Chem. Commun. 2021a, 130, 108680; https://doi.org/10.1016/j.inoche.2021.108680.Search in Google Scholar

Zhu, M.; Pan, J.; Wu, Z.; Gao, X. Y.; Zhao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt janus nanoparticle. Angew. Chem., Int. Ed. 2018, 57, 4010–4014; https://doi.org/10.1002/ange.201800706.Search in Google Scholar

Zhang, Z.; Li, R.; Wang, M.; Li, Y.; Tong, Y.; Yang, P.; Zhu, Y. Two steps synthesis of CeTiOx oxides nanotube catalyst: enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx. Appl. Catal. B Environ. 2021b, 282, 119542; https://doi.org/10.1016/j.apcatb.2020.119542.Search in Google Scholar

Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L.; Yan, C. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998–4999; https://doi.org/10.1021/ja101110m.Search in Google Scholar PubMed

Zheng, J.; Wang, Z.; Chen, Z.; Zuo, S. Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion. J. Rare Earths 2021, 39, 790–796; https://doi.org/10.1016/j.jre.2020.08.009.Search in Google Scholar

Zhang, L.; Li, H.; Xiong, H. Monolayer core-shell catalysts breaking the selectivity-activity seesaw in chemoselective hydrogenation. Chin. Sci. 2022, 65, 1–2; https://doi.org/10.1007/s11426-021-1144-3.Search in Google Scholar

Zhu, X.; He, X.; Guo, L.; Shi, Y.; Zhao, N.; Qiao, C.; Dai, L.; Tian, Y. Hydrophobic modification of ZSM-5-encapsulated uniform Pt nanoparticles for catalytic oxidation of volatile organic compounds. ACS Appl. Nano Mater. 2022, 5, 3374–3385; https://doi.org/10.1021/acsanm.1c03975.Search in Google Scholar

Zhang, Q.; Mo, S.; Li, J.; Sun, Y.; Zhang, M.; Chen, P.; Fu, M.; Wu, J.; Chen, L.; Ye, D. In-situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catal. Sci. Technol. 2019, 9, 4538–4551; https://doi.org/10.1039/c9cy00751b.Search in Google Scholar

Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal. Today 2016, 264, 270–278; https://doi.org/10.1016/j.cattod.2015.10.040.Search in Google Scholar

Zhao, S.; Wen, Y.; Liu, X.; Pen, X.; Lü, F.; Gao, F.; Xie, X.; Du, C.; Yi, H.; Kang, D.; Tang, X. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551; https://doi.org/10.1007/s12274-020-2765-1.Search in Google Scholar

Zou, S.; Zhang, M.; Mo, S.; Cheng, H.; Fu, M.; Chen, P.; Chen, L.; Shi, W.; Ye, D. Catalytic performance of toluene combustion over Pt nanoparticles supported on pore-modified macro-meso-microporous zeolite foam. Nanomaterials 2020, 10, 30; https://doi.org/10.3390/nano10010030.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revic-2022-0036).


Received: 2022-11-13
Accepted: 2023-02-08
Published Online: 2023-02-27
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0036/html
Scroll to top button