Home Iron metabolism: pathways and proteins in homeostasis
Article
Licensed
Unlicensed Requires Authentication

Iron metabolism: pathways and proteins in homeostasis

  • Ekta Kundra Arora EMAIL logo and Vibha Sharma
Published/Copyright: October 24, 2022

Abstract

Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.


Corresponding author: Ekta Kundra Arora, Chemistry Department, St. Stephen’s College, University of Delhi, Delhi 110007, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

Alexander, J.; Kowdley, K. V. HFE-associated hereditary hemochromatosis. Genet. Med. 2009, 11(5), 307–313. https://doi.org/10.1097/GIM.0B013E31819D30F2.Search in Google Scholar PubMed

Angoro, B.; Motshakeri, M.; Hemmaway, C.; Svirskis, D.; Sharma, M. Non-transferrin bound iron. Clin. Chim. Acta 2022, 531, 157–167. https://doi.org/10.1016/j.cca.2022.04.004.Search in Google Scholar PubMed

Ashby, D. R.; Gale, D. P.; Busbridge, M.; Murphy, K. G.; Duncan, N. D.; Cairns, T. D.; Taube, D. H.; Bloom, S. R.; Tam, F. W. K.; Chapman, R.; Maxwell, P. H.; Choi, P. Brief report erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Brief Rep. 2010, 95(3), 505–508. https://doi.org/10.3324/haematol.2009.013136.Search in Google Scholar PubMed PubMed Central

Aydemir, T. B.; Cousins, R. J. The multiple faces of the metal transporter ZIP14 (SLC39A14). J. Nutr. 2018, 148(2), 174–184. https://doi.org/10.1093/jn/nxx041.Search in Google Scholar PubMed PubMed Central

Babu, K. R.; Muckenthaler, M. U. MiR-20a regulates expression of the iron exporter ferroportin in lung cancer. J. Mol. Med. 2016, 94(3), 347–359. https://doi.org/10.1007/s00109-015-1362-3.Search in Google Scholar PubMed PubMed Central

Baker, H. M.; Anderson, B. F.; Baker, E. N. Dealing with iron: common structural principles in proteins that transport iron and heme. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(7), 3579–3583. https://doi.org/10.1073/pnas.0637295100.Search in Google Scholar PubMed PubMed Central

Bayele, H. K.; Srai, S. K. S. A disease-causing mutation K240E disrupts ferroportin trafficking by SUMO (ferroportin SUMOylation). Biochem. Biophys. Rep. 2021, 25, 100873. https://doi.org/10.1016/j.bbrep.2020.100873.Search in Google Scholar PubMed PubMed Central

Beaumont-Epinette, M. P.; Delobel, J. B.; Ropert, M.; Deugnier, Y.; Loréal, O.; Jouanolle, A. M.; Brissot, P.; Bardou-Jacquet, E. Hereditary hypotransferrinemia can lead to elevated transferrin saturation and, when associated to HFE or HAMP mutations, to iron overload. Blood Cell Mol. Dis. 2015, 54(2), 151–154. https://doi.org/10.1016/j.bcmd.2014.11.020.Search in Google Scholar PubMed

Billesbølle, C. B.; Azumaya, C. M.; Kretsch, R. C.; Powers, A. S.; Gonen, S.; Schneider, S.; Arvedson, T.; Dror, R. O.; Cheng, Y.; Manglik, A. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020, 586, 807. https://doi.org/10.1038/s41586-020-2668-z.Search in Google Scholar PubMed PubMed Central

Billman, G. E. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 2020, 11, 1–12. https://doi.org/10.3389/fphys.2020.00200.Search in Google Scholar PubMed PubMed Central

Bogdanova, A.; Pantopoulos, K.; Camaschella, C.; Pagani, A.; Nai, A.; Silvestri, L. Hepcidin and anemia: a tight relationship. Front. Physiol. 2019, 10, 1294. https://doi.org/10.3389/fphys.2019.01294.Search in Google Scholar PubMed PubMed Central

Bradley, J. M.; Moore, G. R.; Le Brun, N. E. Diversity of Fe2+ entry and oxidation in ferritins. Curr. Opin. Chem. Biol. 2017, 37, 122–128. https://doi.org/10.1016/j.cbpa.2017.02.027.Search in Google Scholar PubMed

Breuer, W.; Shvartsman, M.; Cabantchik, Z. I. Intracellular labile iron. Int. J. Biochem. Cell Biol. 2008, 40(3), 350–354. https://doi.org/10.1016/J.BIOCEL.2007.03.010.Search in Google Scholar

Brissot, P.; Pietrangelo, A.; Adams, P. C.; De Graaff, B.; McLaren, C. E.; Loreál, O. Haemochromatosis. Nat. Rev. Dis. Prim. 2018, 4, 18016. https://doi.org/10.1038/nrdp.2018.16.Search in Google Scholar PubMed PubMed Central

Byrne, S. L.; Chasteen, N. D.; Steere, A. N.; Mason, A. B. The unique kinetics of iron release from transferrin: the role of receptor, lobe – lobe interactions, and salt at endosomal PH. J. Mol. Biol. 2010a, 396(1), 130–140. https://doi.org/10.1016/j.jmb.2009.11.023.Search in Google Scholar PubMed PubMed Central

Byrne, S. L.; Steere, A. N.; Chasteen, N. D.; Mason, A. B. Identification of a kinetically significant anion binding (KISAB) site in the N-lobe of human serum transferrin. Biochemistry 2010b, 49(19), 4200–4207. https://doi.org/10.1021/bi1003519.Search in Google Scholar PubMed PubMed Central

Cairo, G.; Recalcati, S.; Mantovani, A.; Locati, M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 2011, 32(6), 241–247. https://doi.org/10.1016/j.it.2011.03.007.Search in Google Scholar PubMed

Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105(2), 260–272. https://doi.org/10.3324/haematol.2019.232124.Search in Google Scholar PubMed PubMed Central

Canali, S.; Wang, C.-Y.; Zumbrennen-Bullough, K. B.; Bayer, A.; Babitt, J. L. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am. J. Hematol. 2017, 92(11), 1204–1213. https://doi.org/10.1002/ajh.24888.Search in Google Scholar PubMed PubMed Central

Catalina Gomez-Puerto, M.; Iyengar, V.; García De Vinuesa, A.; Ten Dijke, P.; Sanchez-Duffhues, G. INVITED REVIEW bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 2019, 247, 9–20. https://doi.org/10.1002/path.5170.Search in Google Scholar PubMed PubMed Central

Cazzola, M.; Malcovati, L. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing. Hematology (United States) 2015, 2015(1), 19–25. https://doi.org/10.1182/asheducation-2015.1.19.Search in Google Scholar PubMed

Centis, F.; Tabellini, L.; Lucarelli, G.; Buffi, O.; Tonucci, P.; Persini, B.; Annibali, M.; Emiliani, R.; Iliescu, A.; Rapa, S.; Rossi, R.; Ma, L.; Angelucci, E.; Schrier, S. L. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 2000, 96(10), 3624–3629. https://doi.org/10.1182/blood.v96.10.3624.h8003624_3624_3629.Search in Google Scholar

Chandra, D.; Dhingra, B.; Seth, T.; Mishra, P.; Bansal, D.; Mahapatra, M.; Pati, H. P. Congenital hypotransferrinemia, an unusual cause of iron deficiency anemia: report of two cases. Indian J. Hematol. Blood Transfus. 2017, 33, 402–404. https://doi.org/10.1007/s12288-016-0746-z.Search in Google Scholar PubMed PubMed Central

Chen, G. Y.; Ayres, J. S. Beyond tug-of-war: iron metabolism in cooperative host–microbe interactions. PLoS Pathog. 2020, 16(8), e1008698. https://doi.org/10.1371/journal.ppat.1008698.Search in Google Scholar PubMed PubMed Central

Chen, J.; He, Z. X.; Wang, F. K. Evaluation of ferritin level in COVID-19 patients and its inflammatory response. Appl. Nanosci. 2022, 0123456789. https://doi.org/10.1007/s13204-021-02115-9.Search in Google Scholar PubMed PubMed Central

Choi, H. S.; Hwang, C. K.; Song, K. Y.; Law, P. Y.; Wei, L. N.; Loh, H. H. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem. Biophys. Res. Commun. 2009, 380(3), 431–436. https://doi.org/10.1016/j.bbrc.2009.01.136.Search in Google Scholar PubMed PubMed Central

Choi, J.; Masaratana, P.; Latunde-Dada, G. O.; Arno, M.; Simpson, R. J.; McKie, A. T. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J. Nutr. 2012, 142(11), 1929–1934. https://doi.org/10.3945/jn.112.160358.Search in Google Scholar PubMed

Coates, T. D. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic. Biol. Med. 2014, 72, 23–40. https://doi.org/10.1016/j.freeradbiomed.2014.03.039.Search in Google Scholar PubMed PubMed Central

Crans, D. C.; Kostenkova, K. Open questions on the biological roles of first-row transition metals. Commun. Chem. 2020, 3, 104. https://doi.org/10.1038/s42004-020-00341-w.Search in Google Scholar PubMed PubMed Central

Crawford, D. H. G. Hereditary hemochromatosis types 1, 2, and 3. Clin. Liver Dis. 2014, 3(5), 96–97. https://doi.org/10.1002/cld.339.Search in Google Scholar PubMed PubMed Central

Cronin, S. J. F.; Woolf, C. J.; Weiss, G.; Penninger, J. M. The role of iron regulation in immunometabolism and immune-related disease. Front. Mol. Biosci. 2019, 6, 116. https://doi.org/10.3389/fmolb.2019.00116.Search in Google Scholar PubMed PubMed Central

Dabboubi, R.; Amri, Y.; Yahyaoui, S.; Mahjoub, R.; Sahli, C. A.; Sahli, C.; Hadj Fredj, S.; Bibi, A.; Sammoud, A.; Messaoud, T. A new case of congenital atransferrinemia with a novel splice site mutation: C.293-63del. Eur. J. Med. Genet. 2020, 63(5), 103874. https://doi.org/10.1016/j.ejmg.2020.103874.Search in Google Scholar PubMed

De Falco, L.; Totaro, F.; Nai, A.; Pagani, A.; Girelli, D.; Silvestri, L.; Piscopo, C.; Campostrini, N.; Dufour, C.; Al Manjomi, F.; Minkov, M.; Van Vuurden, D. G.; Feliu, A.; Kattamis, A.; Camaschella, C.; Iolascon, A. Novel TMPRSS6 mutations associated with iron-refractory iron deficiency anemia (IRIDA). Hum. Mutat. 2010, 31(5), E1390–E1405. https://doi.org/10.1002/humu.21243.Search in Google Scholar PubMed

Dlouhy, A. C.; Outten, C. E. The iron metallome in eukaryotic organisms. In Metallomics and the Cell; Springer Netherlands: Dordrecht, 12, 2013.10.1007/978-94-007-5561-1_8Search in Google Scholar PubMed PubMed Central

Donker, A. E.; Schaap, C. C. M.; Novotny, V. M. J.; Smeets, R.; Peters, T. M. A.; Van Den Heuvel, B. L. P.; Raphael, M. F.; Rijneveld, A. W.; Appel, I. M.; Vlot, A. J.; Versluijs, A. B.; Van Gelder, M.; Granzen, B.; Janssen, M. C. H.; Rennings, A. J. M.; Van De Veerdonk, F. L.; Brons, P. P. T.; Bakkeren, D. L.; Nijziel, M. R.; Thom Vlasveld, L.; Swinkels, D. W. Iron refractory iron deficiency anemia: a heterogeneous disease that is not always iron refractory. Am. J. Hematol. 2016, 91, 482–490. https://doi.org/10.1002/ajh.24561.Search in Google Scholar PubMed PubMed Central

Donovan, A.; Lima, C. A.; Pinkus, J. L.; Pinkus, G. S.; Zon, L. I.; Robine, S.; Andrews, N. C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabol. 2005, 1(3), 191–200. https://doi.org/10.1016/j.cmet.2005.01.003.Search in Google Scholar PubMed

Drew, D.; North, R. A.; Nagarathinam, K.; Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 2021, 121(9), 5289–5335. https://doi.org/10.1021/acs.chemrev.0c00983.Search in Google Scholar PubMed PubMed Central

Du, X.; Xu, H.; Shi, L.; Jiang, Z.; Song, N.; Jiang, H.; Xie, J. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci. Rep. 2016, 6(1), 33674. https://doi.org/10.1038/srep33674.Search in Google Scholar PubMed PubMed Central

Duck, K. A.; Connor, J. R. Iron uptake and transport across physiological barriers. BioMetals 2016, 29, 573–591. https://doi.org/10.1007/s10534-016-9952-2.Search in Google Scholar PubMed PubMed Central

Dulja, A.; Pagani, A.; Pettinato, M.; Nai, A.; Camaschella, C.; Silvestri, L. The immunophilin FKBP12 inhibits hepcidin by modulating BMP type I-type II receptors interaction and ligand responsiveness. Blood 2019, 134(Suppl. 1), 430. https://doi.org/10.1182/blood-2019-130058.Search in Google Scholar

Ehrnstrorfer, I. A.; Geertsma, E. R.; Pardon, E.; Steyaert, J.; Dutzler, R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat. Struct. Mol. Biol. 2014, 21(11), 990–996.10.1038/nsmb.2904Search in Google Scholar PubMed

Elsayed, M. E.; Sharif, M. U.; Stack, A. G. Transferrin Saturation: A Body Iron Biomarker. In Advances in Clinical Chemistry, 1st ed.; Elsevier Inc.: Amsterdam, 75, 2016; pp. 71–97.10.1016/bs.acc.2016.03.002Search in Google Scholar PubMed

Fan, Y.; Liu, B.; Chen, F.; Song, Z.; Han, B.; Meng, Y.; Hou, J.; Cao, P.; Chang, Y.; Tan, K. Hepcidin upregulation in lung cancer: a potential therapeutic target associated with immune infiltration. Front. Immunol. 2021, 12, 612144. https://doi.org/10.3389/fimmu.2021.612144.Search in Google Scholar PubMed PubMed Central

Fatima, T.; McKinney, C.; Major, T. J.; Stamp, L. K.; Dalbeth, N.; Iverson, C.; Merriman, T. R.; Miner, J. N. The relationship between ferritin and urate levels and risk of gout. Arthritis Res. Ther. 2018, 20(1), 1–9. https://doi.org/10.1186/s13075-018-1668-y.Search in Google Scholar PubMed PubMed Central

Fuqua, B. K.; Lu, Y.; Darshan, D.; Frazer, D. M.; Wilkins, S. J. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One 2014, 9(6), 98792. https://doi.org/10.1371/journal.pone.0098792.Search in Google Scholar PubMed PubMed Central

Ganasen, M.; Togashi, H.; Takeda, H.; Asakura, H.; Tosha, T.; Yamashita, K.; Hirata, K.; Nariai, Y.; Urano, T.; Yuan, X.; Hamza, I.; Mauk, A. G.; Shiro, Y.; Sugimoto, H.; Sawai, H. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun. Biol. 2018, 1(1), 120. https://doi.org/10.1038/s42003-018-0121-8.Search in Google Scholar PubMed PubMed Central

Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107(1), 7–15. https://doi.org/10.1007/s12185-017-2366-2.Search in Google Scholar PubMed

Ganz, T.; Nemeth, E. Regulation of iron acquisition and iron distribution in mammals. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763(7), 690–699. https://doi.org/10.1016/j.bbamcr.2006.03.014.Search in Google Scholar PubMed

Garrick, M. D.; Garrick, L. M. Cellular iron transport. Biochim. Biophys. Acta Gen. Subj. 2009, 1790(5), 309–325. https://doi.org/10.1016/j.bbagen.2009.03.018.Search in Google Scholar PubMed

Ghafourian, K.; Chang, H.-C.; Ardehali, H. Intravenous iron therapy in heart failure: a different perspective. Eur. J. Heart Fail. 2019, 21, 703–714. https://doi.org/10.1002/ejhf.1434.Search in Google Scholar PubMed

Gordon, S.; Martinez-Pomares, L. Physiological roles of macrophages. Pflueg. Arch. Eur. J. Physiol. 2017, 469(3–4), 365–374. https://doi.org/10.1007/s00424-017-1945-7.Search in Google Scholar PubMed PubMed Central

Gulec, S.; Anderson, G. J.; Collins, J. F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, 397–409. https://doi.org/10.1152/ajpgi.00348.2013.Search in Google Scholar PubMed PubMed Central

Guo, L. N.; Yang, Y. Z.; Feng, Y. Z. Serum and salivary ferritin and hepcidin levels in patients with chronic periodontitis and type 2 diabetes mellitus. BMC Oral Health 2018, 18(1), 1–9. https://doi.org/10.1186/s12903-018-0524-4.Search in Google Scholar PubMed PubMed Central

Gurney, M. A.; Laubitz, D.; Ghishan, F. K.; Kiela, P. R. Pathophysiology of intestinal Na+/H+ exchange. Cell. Mol. Gastroenterol. Hepatol. 2017, 3(1), 27–40. https://doi.org/10.1016/j.jcmgh.2016.09.010.Search in Google Scholar PubMed PubMed Central

Gwamaka, M.; Kurtis, J. D.; Sorensen, B. E.; Holte, S.; Morrison, R.; Mutabingwa, T. K.; Fried, M.; Duffy, P. E. Iron deficiency protects against severe plasmodium falciparum malaria and death in young children. Clin. Infect. Dis. 2012, 54(8), 1137–1144. https://doi.org/10.1093/cid/cis010.Search in Google Scholar PubMed PubMed Central

Hamed, E.; Syed, M. A.; Alemrayat, B. F.; Tirmizi, S. H. A.; Alnuaimi, A. S. Haemoglobin cut-off values for the diagnosis of anaemia in preschool-age children. Am. J. Blood Res. 2021, 11(3), 248–254.Search in Google Scholar

Harris, W. R. Anion binding properties of the transferrins. Implications for function ☆. Biochim. Biophys. Acta Gen. Subj. 2012, 1820(3), 348–361. https://doi.org/10.1016/j.bbagen.2011.07.017.Search in Google Scholar PubMed

He, J.; Fan, K.; Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Contr. Release 2019, 311–312, 288–300. https://doi.org/10.1016/j.jconrel.2019.09.002.Search in Google Scholar PubMed

Heeney, M. M.; Berhe, S.; Campagna, D. R.; Oved, J. H.; Kurre, P.; Shaw, P. J.; Teo, J.; Shanap, M. A.; Hassab, H. M.; Glader, B. E.; Shah, S.; Yoshimi, A.; Ameri, A.; Antin, J. H.; Boudreaux, J.; Briones, M.; Dickerson, K. E.; Fernandez, C. V.; Farah, R.; Hasle, H.; Keel, S. B.; Olson, T. S.; Powers, J. M.; Rose, M. J.; Shimamura, A.; Bottomley, S. S.; Fleming, M. D. SLC25A38 congenital sideroblastic anemia: phenotypes and genotypes of 31 individuals from 24 families, including 11 novel mutations, and a review of the literature. Hum. Mutat. 2021, 42(11), 1367–1383. https://doi.org/10.1002/humu.24267.Search in Google Scholar PubMed PubMed Central

Heggland, E. I.; Eichner, C.; Støve, S. I.; Martinez, A.; Nilsen, F.; Dondrup, M. A scavenger receptor B (CD36)-like protein is a potential mediator of intestinal heme absorption in the hematophagous ectoparasite lepeophtheirus salmonis. Sci. Rep. 2019, 9(1), 4218. https://doi.org/10.1038/s41598-019-40590-x.Search in Google Scholar PubMed PubMed Central

Hill, H. A. O.; Sadler, P. J. Bringing inorganic chemistry to life with inspiration from R. J. P. Williams. J. Biol. Inorg. Chem. 2016, 21(1), 5–12. https://doi.org/10.1007/s00775-016-1333-3.Search in Google Scholar PubMed PubMed Central

Hintze, K. J.; McClung, J. P. Hepcidin: a critical regulator of iron metabolism during hypoxia. Adv. Hematol. 2011, 2011, 510304. https://doi.org/10.1155/2011/510304.Search in Google Scholar PubMed PubMed Central

Hohenberger, J.; Ray, K.; Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nature Communications 2012, 3(1), 1–13; https://doi.org/10.1038/ncomms1718.Search in Google Scholar PubMed

Ishida, W.; Hamamoto, T.; Kusanagi, K.; Yagi, K.; Kawabata, M.; Takehara, K.; Sampath, T. K.; Kato, M.; Miyazono, K. Smad6 is a Smad1/5-induced Smad inhibitor. J. Biol. Chem. 2000, 275(9), 6075–6079. https://doi.org/10.1074/jbc.275.9.6075.Search in Google Scholar PubMed

Jadhav, S.; Protchenko, O.; Li, F.; Baratz, E.; Shakoury-Elizeh, M.; Maschek, A.; Cox, J.; Philpott, C. C. Mitochondrial dysfunction in mouse livers depleted of iron chaperone PCBP1. Free Radic. Biol. Med. 2021, 175, 18–27. https://doi.org/10.1016/J.FREERADBIOMED.2021.08.232.Search in Google Scholar

Jenkitkasemwong, S.; Wang, C. Y.; Coffey, R.; Zhang, W.; Chan, A.; Biel, T.; Kim, J. S.; Hojyo, S.; Fukada, T.; Knutson, M. D. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metabol. 2015, 22(1), 138–150. https://doi.org/10.1016/j.cmet.2015.05.002.Search in Google Scholar PubMed PubMed Central

Jiang, B.; Liu, G.; Zheng, J.; Chen, M.; Maimaitiming, Z.; Chen, M.; Liu, S.; Jiang, R.; Fuqua, B. K.; Dunaief, J. L.; Vulpe, C. D.; Anderson, G. J.; Wang, H.; Chen, H. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 2016, 6(1), 39470. https://doi.org/10.1038/srep39470.Search in Google Scholar PubMed PubMed Central

Jocic, M.; Arsenijevic, N.; Gajovic, N.; Jurisevic, M.; Jovanovic, I.; Jovanovic, M.; Zdravkovic, N.; Maric, V.; Jovanovic, M. Anemia of inflammation in patients with colorectal cancer: correlation with interleukin-1, interleukin-33 and galectin-1. J. Med. Biochem. 2022, 41(1), 79–90. https://doi.org/10.5937/JOMB0-30135.Search in Google Scholar

Johnsen, K. B.; Burkhart, A.; Melander, F.; Kempen, P. J.; Vejlebo, J. B.; Siupka, P.; Nielsen, M. S.; Andresen, T. L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 2017, 7(1), 1–13. https://doi.org/10.1038/s41598-017-11220-1.Search in Google Scholar PubMed PubMed Central

Jung, M.; Mertens, C.; Brüne, B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2015, 220(2), 295–304. https://doi.org/10.1016/J.IMBIO.2014.09.011.Search in Google Scholar PubMed

Kanwar, P.; Kowdley, K. V. Diagnosis and treatment of hereditary hemochromatosis: an update. Expet Rev. Gastroenterol. Hepatol. 2013, 7, 517–530. https://doi.org/10.1586/17474124.2013.816114.Search in Google Scholar PubMed

Katagiri, T.; Watabe, T. Bone morphogenetic proteins. Cold Spring Harbor Perspect. Biol. 2016, 8(6), a021899. https://doi.org/10.1101/cshperspect.a021899.Search in Google Scholar PubMed PubMed Central

Kautz, L.; Jung, G.; Valore, E. V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014, 46(7), 678–684. https://doi.org/10.1038/ng.2996.Search in Google Scholar PubMed PubMed Central

Kawabata, H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int. J. Hematol. 2018, 107(1), 31–43. https://doi.org/10.1007/S12185-017-2365-3.Search in Google Scholar PubMed

Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019, 133, 46–54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037.Search in Google Scholar PubMed

Khalil, U. A.; Seliem, F. O.; Alnahal, A.; Awad, M.; Sadek, A. M. E. M.; Fawzy, M. S. Association of serum ferritin with insulin resistance in offsprings of type 2 diabetics. Egypt. J. Intern. Med. 2018, 30(1), 13–17. https://doi.org/10.4103/ejim.ejim_70_17.Search in Google Scholar

Kiam, W.; Brigitte Schwederski, A. K. Bioinorganic Chemistry--Inorganic Elements in the Chemistry of Life: An Introduction and Guide; John Wiley & Sons: West Sussex, United Kingdom, 2013.Search in Google Scholar

Kiely, P. D. W. Haemochromatosis arthropathy – a conundrum of the celtic curse. J. Roy. Coll. Phys. Edinb. 2018, 48(3), 233–238. https://doi.org/10.4997/JRCPE.2018.307.Search in Google Scholar PubMed

Kleven, M. D.; Jue, S.; Enns, C. A. Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms. Biochemistry 2018, 57(9), 1552–1559. https://doi.org/10.1021/acs.biochem.8b00006.Search in Google Scholar PubMed PubMed Central

Knutson, M. D. Iron transport proteins: gateways of cellular and systemic iron homeostasis. J. Biol. Chem. 2017, 292(31), 12735–12743. https://doi.org/10.1074/jbc.R117.786632.Search in Google Scholar PubMed PubMed Central

Koneru, T.; McCord, E.; Pawar, S.; Tatiparti, K.; Sau, S.; Iyer, A. K. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega 2021, 6(13), 8727–8733. https://doi.org/10.1021/acsomega.0c05848.Search in Google Scholar PubMed PubMed Central

Kono, S. Aceruloplasminemia: an update. Int. Rev. Neurobiol. 2013, 110, 125–151. https://doi.org/10.1016/B978-0-12-410502-7.00007-7.Search in Google Scholar PubMed

Kühn, L. C. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics 2015, 7(2), 232–243. https://doi.org/10.1039/c4mt00164h.Search in Google Scholar PubMed

La, A.; Nguyen, T.; Tran, K.; Sauble, E.; Tu, D.; Gonzalez, A.; Kidane, T. Z.; Soriano, C.; Morgan, J.; Doan, M.; Tran, K.; Wang, C.-Y.; Knutson, M. D.; Linder, M. C. Mobilization of iron from ferritin: new steps and details. Metallomics 2018, 10(1), 154–168. https://doi.org/10.1039/C7MT00284J.Search in Google Scholar PubMed

Latunde-Dada, G. O.; Simpson, R. J.; McKie, A. T. Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells. J. Nutr. 2008, 138(6), 991–995. https://doi.org/10.1093/jn/138.6.991.Search in Google Scholar PubMed

Lemler, D. J.; Lynch, M. L.; Tesfay, L.; Deng, Z.; Paul, B. T.; Wang, X.; Hegde, P.; Manz, D. H.; Torti, S. V.; Torti, F. M. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 2017, 19(1), 1–18. https://doi.org/10.1186/s13058-017-0814-9.Search in Google Scholar PubMed PubMed Central

Linster, C. L.; Van Schaftingen, E. Vitamin C. FEBS J. 2006, 274(1), 1–22. https://doi.org/10.1111/j.1742-4658.2006.05607.x.Search in Google Scholar PubMed

Li, S.; Yang, Y.; Li, W. Human ferroportin mediates proton-coupled active transport of iron. Blood Adv. 2020, 4(19), 4758–4768. https://doi.org/10.1182/bloodadvances.2020001864.Search in Google Scholar PubMed PubMed Central

Li, S.; Zhao, H.; Mao, X.; Fan, Y.; Liang, X.; Wang, R.; Xiao, L.; Wang, J.; Liu, Q.; Zhao, G. Transferrin receptor targeted cellular delivery of doxorubicin via a reduction-responsive peptide-drug conjugate. Pharmaceut. Res. 2019, 36(12), 168. https://doi.org/10.1007/s11095-019-2688-2.Search in Google Scholar PubMed

Lois, S.; Aranda, J.; Barqu, A.; Vagace, M.; Gervasini, G.; Sanz, C.; Cruz, X. D.; Bruguera, M. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3. Mol. Genet. Genomic Med. 2015, 3, 221–232. https://doi.org/10.1002/mgg3.136.Search in Google Scholar PubMed PubMed Central

Maccarinelli, F.; Gammella, E.; Asperti, M.; Regoni, M.; Biasiotto, G.; Turco, E.; Altruda, F.; Lonardi, S.; Cornaghi, L.; Donetti, E.; Recalcati, S.; Poli, M.; Finazzi, D.; Arosio, P.; Cairo, G. Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J. Mol. Med. 2014, 92(8), 859–869. https://doi.org/10.1007/s00109-014-1147-0.Search in Google Scholar PubMed PubMed Central

Mani, M. S.; Dsouza, V. L.; Dsouza, H. S. Evaluation of divalent metal transporter 1 (DMT1) (Rs224589) polymorphism on blood lead levels of occupationally exposed individuals. Toxicol. Lett. 2021, 353, 13–19. https://doi.org/10.1016/j.toxlet.2021.10.002.Search in Google Scholar PubMed

Mastrogiannaki, M.; Matak, P.; Keith, B.; Simon, M. C.; Vaulont, S.; Peyssonnaux, C. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 2009, 119(5), 1159–1166. https://doi.org/10.1172/JCI38499.Search in Google Scholar PubMed PubMed Central

Mehta, P.; Kumar, A. Congenital sideroblastic anemia with a novel variant of the PUS1 gene mutation. Pediatr. Hematol. Oncol. J. 2022, 7(2), 38–40. https://doi.org/10.1016/j.phoj.2021.12.001.Search in Google Scholar

Milman, N. T.; Schioedt, F. V.; Junker, A. E.; Magnussen, K. Diagnosis and treatment of genetic HFE-hemochromatosis: the Danish aspect. Gastroenterol. Res. 2019, 12(5), 221–232. https://doi.org/10.14740/gr1206.Search in Google Scholar PubMed PubMed Central

Miyazawa, M.; Bogdan, A. R.; Tsuji, Y. Perturbation of iron metabolism by cisplatin through inhibition of iron regulatory protein 2. Cell Chem. Biol. 2019, 26(1), 85–97.e4. https://doi.org/10.1016/j.chembiol.2018.10.009.Search in Google Scholar PubMed PubMed Central

Montalbetti, N.; Simonin, A.; Kovacs, G.; Hediger, M. A. Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspect. Med. 2013, 34(2–3), 270–287. https://doi.org/10.1016/j.mam.2013.01.002.Search in Google Scholar PubMed

Muir, R. K.; Zhao, N.; Wei, J.; Wang, Y.; Moroz, A.; Huang, Y.; Chen, Y.-C.; Sriram, R.; Kurhanewicz, J.; Ruggero, D.; Renslo, A. R.; Evans, M. J. Measuring dynamic changes in the labile iron pool in vivo with a reactivity-based probe for positron emission tomography. ACS Cent. Sci. 2019, 5(4), 727–736. https://doi.org/10.1021/acscentsci.9b00240.Search in Google Scholar PubMed PubMed Central

Nairz, M.; Theurl, I.; Swirski, F. K.; Weiss, G. “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflueg. Arch. Eur. J. Physiol. 2017, 469(3–4), 397–418. https://doi.org/10.1007/s00424-017-1944-8.Search in Google Scholar PubMed PubMed Central

Nam, H.; Wang, C. Y.; Zhang, L.; Zhang, W.; Hojyo, S.; Fukada, T.; Knutson, M. D. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica 2013, 98(7), 1049–1057; https://doi.org/10.3324/haematol.2012.072314.Search in Google Scholar PubMed PubMed Central

Nandal, A.; Ruiz, J. C.; Subramanian, P.; Ghimire-Rijal, S.; Sinnamon, R. A.; Stemmler, T. L.; Bruick, R. K.; Philpott, C. C. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metabol. 2011, 14(5), 647–657. https://doi.org/10.1016/j.cmet.2011.08.015.Search in Google Scholar PubMed PubMed Central

Nemeth, E. Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Adv. Hematol. 2010, 2010, 750643. https://doi.org/10.1155/2010/750643.Search in Google Scholar PubMed PubMed Central

Nemeth, E.; Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 2009, 122(2–3), 78–86. https://doi.org/10.1159/000243791.Search in Google Scholar PubMed PubMed Central

Nemeth, E.; Tuttle, M. S.; Powelson, J.; Vaughn, M. B.; Donovan, A.; Ward, D. M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2094.10.1126/science.1104742Search in Google Scholar PubMed

Neves, A. R.; van der Putten, L.; Queiroz, J. F.; Pinheiro, M.; Reis, S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J. Biotechnol. 2021, 331, 108–117. https://doi.org/10.1016/j.jbiotec.2021.03.010.Search in Google Scholar PubMed

Oakhill, J. S.; Marritt, S. J.; Gareta, E. G.; Cammack, R.; McKie, A. T. Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism. Biochim. Biophys. Acta Bioenerg. 2008, 1777(3), 260–268. https://doi.org/10.1016/j.bbabio.2007.12.001.Search in Google Scholar PubMed

Oosterheert, W.; Reis, J.; Gros, P.; Mattevi, A. An elegant four-helical fold in NOX and STEAP enzymes facilitates electron transport across biomembranes – similar vehicle, different destination crystal structures of the transmembrane and dehydrogenase. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 21. https://doi.org/10.1021/acs.accounts.0c00400.Search in Google Scholar PubMed

Orino, K.; Bradford, B.; Gonzalez Ronquillo, M.; Pantopoulos, K. Article 103 citation: pantopoulos K (2018) inherited disorders of iron overload. Front. Nutr. 2018, 5, 103. https://doi.org/10.3389/fnut.2018.00103.Search in Google Scholar PubMed PubMed Central

Pagani, A.; Pettinato, M.; Dulja, A.; Colucci, S.; Aghajan, M.; Furiosi, V.; Muckenthaler, M. U.; Guo, S.; Nai, A.; Silvestri, L. Dissecting the mechanisms of hepcidin and BMP-SMAD pathway regulation by FKBP12. Blood 2021, 138(Suppl. 1), 2008. https://doi.org/10.1182/blood-2021-152172.Search in Google Scholar

Pan, S.; Chiang, W.; Chen, Y. The journey from erythropoietin to 2019 nobel prize: focus on hypoxia-inducible factors in the kidney. J. Formos. Med. Assoc. 2021, 120(1), 60–67. https://doi.org/10.1016/j.jfma.2020.06.006.Search in Google Scholar PubMed

Pan, Y.; Ren, Z.; Gao, S.; Shen, J.; Wang, L.; Xu, Z.; Yu, Y.; Bachina, P.; Zhang, H.; Fan, X.; Laganowsky, A.; Yan, N.; Zhou, M. Structural basis of ion transport and inhibition in ferroportin. Nat. Commun. 2020, 11(1), 5686. https://doi.org/10.1038/s41467-020-19458-6.Search in Google Scholar PubMed PubMed Central

Patel, S. J.; Protchenko, O.; Shakoury-Elizeh, M.; Baratz, E.; Jadhav, S.; Philpott, C. C. The iron chaperone and nucleic acid–binding activities of poly(RC)-binding protein 1 are separable and independently essential. Proc. Natl. Acad. Sci. U. S. A. 2021, 118(25), e2104666118. https://doi.org/10.1073/pnas.2104666118.Search in Google Scholar PubMed PubMed Central

Philpott, C. C.; Jadhav, S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radic. Biol. Med. 2019, 133, 112–117. https://doi.org/10.1016/j.freeradbiomed.2018.10.411.Search in Google Scholar PubMed

Philpott, C. C.; Patel, S. J.; Protchenko, O. BBA – molecular cell research management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones ☆. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867(11), 118830. https://doi.org/10.1016/j.bbamcr.2020.118830.Search in Google Scholar PubMed PubMed Central

Philpott, C. C.; Ryu, M. S.; Frey, A.; Patel, S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J. Biol. Chem. 2017, 292(31), 12764–12771. https://doi.org/10.1074/jbc.R117.791962.Search in Google Scholar PubMed PubMed Central

Pietrangelo, A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017, 102(12), 1972–1984. https://doi.org/10.3324/haematol.2017.170720.Search in Google Scholar PubMed PubMed Central

Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron absorption: factors, limitations, and improvement methods. ACS Omega 2022, 7(24), 20441–20456. https://doi.org/10.1021/acsomega.2c01833.Search in Google Scholar PubMed PubMed Central

Prousek, J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007, 79, 2325–2338. https://doi.org/10.1351/pac200779122325.Search in Google Scholar

Puig, S.; Ramos-Alonso, L.; Marí Romero, A.; Teresa Martínez-Pastor, M. The elemental role of iron in DNA synthesis and repair. Metallomics 2017, 9, 1483. https://doi.org/10.1039/c7mt00116a.Search in Google Scholar PubMed

Pujol-Giménez, J.; Poirier, M.; Bühlmann, S.; Schuppisser, C.; Bhardwaj, R.; Awale, M.; Visini, R.; Javor, S.; Hediger, M. A.; Reymond, J. Inhibitors of human divalent metal transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDB-17 fragment library. ChemMedChem 2021, 16(21), 3306–3314. https://doi.org/10.1002/cmdc.202100467.Search in Google Scholar PubMed PubMed Central

Qiao, B.; Sugianto, P.; Fung, E.; Ganz, T.; Nemeth, E. Short article hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metabol. 2012, 15(6), 918–924. https://doi.org/10.1016/j.cmet.2012.03.018.Search in Google Scholar PubMed PubMed Central

Raffin, S. B.; Woo, C. H.; Roost, K. T.; Price, D. C.; Schmid, R. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J. Clin. Invest. 1974, 54(6), 1344–1352. https://doi.org/10.1172/jci107881.Search in Google Scholar

Raha, A. A.; Vaishnav, R. A.; Friedland, R. P.; Bomford, A.; Raha-Chowdhury, R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 2014, 2(1), 1–19. https://doi.org/10.1186/2051-5960-1-55.Search in Google Scholar PubMed PubMed Central

Rajagopal, A.; Rao, A. U.; Amigo, J.; Tian, M.; Upadhyay, S. K.; Hall, C.; Uhm, S.; Mathew, M. K.; Fleming, M. D.; Paw, B. H.; Krause, M.; Hamza, I. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 2008, 453(7198), 1127–1131. https://doi.org/10.1038/nature06934.Search in Google Scholar PubMed PubMed Central

Raubenheimer, D.; Lee, K. P.; Simpson, S. J. Does Bertrand’s rule apply to macronutrients? Proc. R. Soc. B Biol. Sci. 2005, 272(1579), 2429–2434. https://doi.org/10.1098/rspb.2005.3271.Search in Google Scholar PubMed PubMed Central

Reis, R.; Moraes, I. Structural biology and structure–function relationships of membrane proteins. Biochem. Soc. Trans. 2018, 47(1), 47–61. https://doi.org/10.1042/BST20180269.Search in Google Scholar PubMed

Roettol, A.; Papanikolaou, G.; Politou, M.; Alberti, F.; Girelli, D.; Christakis, J.; Loukopoulos, D.; Camaschella, C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 2003, 33(1), 21–22. https://doi.org/10.1038/ng1053.Search in Google Scholar PubMed

Roy, C. N.; Weinstein, D. A.; Andrews, N. C. 2002 E. Mead Johnson award for research in pediatrics lecture: the molecular biology of the anemia of chronic disease: a hypothesis. Pediatr. Res. 2003, 53(3), 507–512. https://doi.org/10.1203/01.pdr.0000049513.67410.2d.Search in Google Scholar PubMed

Rybinska, I.; Cairo, G. Chapter Eight - Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis. In Vitamins and Hormones, 1st ed.; Elsevier Inc.: Amsterdam, 105, 2017.10.1016/bs.vh.2017.01.001Search in Google Scholar PubMed

Sachdev, H. S.; Porwal, A.; Acharya, R.; Ashraf, S.; Ramesh, S.; Khan, N.; Kapil, U.; Kurpad, A. V.; Sarna, A. Haemoglobin thresholds to define anaemia in a national sample of healthy children and adolescents aged 1–19 years in India: a population-based study. Lancet Global Health 2021, 9(6), e822–e831. https://doi.org/10.1016/S2214-109X(21)00077-2.Search in Google Scholar PubMed PubMed Central

Salazar, J.; Mena, N.; Hunot, S.; Prigent, A.; Alvarez-Fischer, D.; Arredondo, M.; Duyckaerts, C.; Sazdovitch, V.; Zhao, L.; Garrick, L. M.; Nuñez, M. T.; Garrick, M. D.; Raisman-Vozari, R.; Hirsch, E. C. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(47), 18578–18583. https://doi.org/10.1073/pnas.0804373105.Search in Google Scholar PubMed PubMed Central

Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J. M. Iron chemistry at the service of life. IUBMB Life 2017, 69(6), 382–388. https://doi.org/10.1002/iub.1602.Search in Google Scholar PubMed

Sandberg, A. S.; Önning, G.; Engström, N.; Scheers, N. Iron supplements containing lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase DCYTB in human Caco-2/HT29 MTX co-cultures. Nutrients 2018, 10(12), 1949. https://doi.org/10.3390/nu10121949.Search in Google Scholar PubMed PubMed Central

Schaer, D. J.; Buehler, P. W.; Alayash, A. I.; Belcher, J. D.; Vercellotti, G. M. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2013, 121(8), 1276–1284. https://doi.org/10.1182/blood-2012-11-451229.Search in Google Scholar PubMed PubMed Central

Shah, R. A.; Kowdley, K. V. Serum ferritin as a biomarker for NAFLD: ready for prime time? Hepatol. Int. 2019, 13(2), 110–112. https://doi.org/10.1007/s12072-019-09934-7.Search in Google Scholar PubMed

Shah, Y. M.; Xie, L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014, 146(3), 630–642. https://doi.org/10.1053/J.GASTRO.2013.12.031.Search in Google Scholar

Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.-A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429.Search in Google Scholar PubMed

Silva, A. M. N.; Moniz, T.; de Castro, B.; Rangel, M. Human transferrin: an inorganic biochemistry perspective. Coord. Chem. Rev. 2021, 449, 214186. https://doi.org/10.1016/j.ccr.2021.214186.Search in Google Scholar

Silvestri, L.; Nai, A.; Dulja, A.; Pagani, A. Hepcidin and the BMP-SMAD pathway: An unexpected liaison. In Vitamins and Hormones, 1st ed.; Elsevier Inc.: Amsterdam, 110, 2019; pp. 71–99.10.1016/bs.vh.2019.01.004Search in Google Scholar PubMed

Simmons, W. R.; Wain, L.; Toker, J.; Jagadeesh, J.; Garrett, L. J.; Pek, R. H.; Hamza, I.; Bodine, D. M. Normal iron homeostasis requires the transporter SLC48A1 for efficient heme-iron recycling in mammals. Front. Genome Ed. 2020, 2, 8. https://doi.org/10.3389/fgeed.2020.00008.Search in Google Scholar PubMed PubMed Central

Simpson, R. J.; McKie, A. T. Iron and oxygen sensing: a tale of 2 interacting elements? Metallomics 2015, 7(2), 223–231. https://doi.org/10.1039/c4mt00225c.Search in Google Scholar PubMed

Steere, A. N.; Byrne, S. L.; Chasteen, N. D.; Mason, A. B. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal PH ☆. Biochim. Biophys. Acta Gen. Subj. 2012, 1820(3), 326–333. https://doi.org/10.1016/j.bbagen.2011.06.003.Search in Google Scholar PubMed PubMed Central

Suzuki, N.; Yamamoto, M. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis. Pflüeg. Arch. Eur. J. Physiol. 2015, 468(1), 3–12. https://doi.org/10.1007/s00424-015-1740-2.Search in Google Scholar PubMed

Thwaites, D. T.; Anderson, C. M. H. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp. Physiol. 2007, 92(4), 603–619. https://doi.org/10.1113/expphysiol.2005.029959.Search in Google Scholar PubMed PubMed Central

Tippairote, T.; Bjørklund, G.; Peana, M.; Roytrakul, S. The proteomics study of compounded HFE/TF/TfR2/HJV genetic variations in a Thai family with iron overload, chronic anemia, and motor neuron disorder. J. Mol. Neurosci. 2021, 71(3), 545–555. https://doi.org/10.1007/s12031-020-01676-8.Search in Google Scholar PubMed

Tomasz, G.; Ewa, W.; Jolanta, M. Biomarkers of iron metabolism in chronic kidney disease. Int. Urol. Nephrol. 2021, 53, 935–944. https://doi.org/10.1007/s11255-020-02663-z.Search in Google Scholar PubMed PubMed Central

Tortorella, S.; Karagiannis, T. C. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membr. Biol. 2014, 247(4), 291–307. https://doi.org/10.1007/s00232-014-9637-0.Search in Google Scholar PubMed

Turbiville, D.; Du, X.; Yo, J.; Jana, B. R.; Dong, J. Iron overload in an HFE heterozygous carrier: a case report and literature review. Lab. Med. 2019, 50, 212–217. https://doi.org/10.1093/labmed/lmy065.Search in Google Scholar PubMed

Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem. Res. 2021, 46(5), 1224–1238. https://doi.org/10.1007/s11064-021-03322-0.Search in Google Scholar PubMed PubMed Central

Vishwanathan, V.; D’Silva, P. Loss of function of MtHsp70 chaperone variants leads to mitochondrial dysfunction in congenital sideroblastic anemia. Front. Cell Dev. Biol. 2022, 10, 847045. https://doi.org/10.3389/fcell.2022.847045.Search in Google Scholar PubMed PubMed Central

Viveiros, A.; Schaefer, B.; Tilg, H.; Zoller, H. Iron matryoshka—haemochromatosis nested in ferroportin disease? Liver Int. 2019, 39(6), 1014–1015. https://doi.org/10.1111/liv.14061.Search in Google Scholar PubMed

Vujić Spasić, M.; Sparla, R.; Mleczko-Sanecka, K.; Migas, M. C.; Breitkopf-Heinlein, K.; Dooley, S.; Vaulont, S.; Fleming, R. E.; Muckenthaler, M. U. Smad6 and Smad7 are co-regulated with hepcidin in mouse models of iron overload. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 2013, 1832(1), 76–84. https://doi.org/10.1016/j.bbadis.2012.08.013.Search in Google Scholar PubMed PubMed Central

Wally, J.; Buchanan, S. K. A structural comparison of human serum transferrin and human lactoferrin. BioMetals 2007, 20(3–4), 249–262. https://doi.org/10.1007/s10534-006-9062-7.Search in Google Scholar PubMed PubMed Central

Wang, C.-Y.; Babitt, J. L. Liver iron sensing and body iron homeostasis. Blood 2019, 133(1), 18–29. https://doi.org/10.1182/blood-2018-06-815894.Search in Google Scholar PubMed PubMed Central

Wang, S.; Chen, C.; Yu, L.; Mueller, J.; Rausch, V.; Mueller, S. Bone morphogenetic protein 6 – mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J. Biol. Chem. 2021, 297(6), 101378. https://doi.org/10.1016/j.jbc.2021.101378.Search in Google Scholar PubMed PubMed Central

Wang, Z.; Gao, H.; Zhang, Y.; Liu, G.; Niu, G.; Chen, X. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 2017, 11(4), 633–646. https://doi.org/10.1007/s11705-017-1620-8.Search in Google Scholar PubMed PubMed Central

White, C.; Yuan, X.; Schmidt, P. J.; Bresciani, E.; Samuel, T. K.; Campagna, D.; Hall, C.; Bishop, K.; Calicchio, M. L.; Lapierre, A.; Ward, D. M.; Liu, P.; Fleming, M. D.; Hamza, I. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metabol. 2013, 17(2), 261–270. https://doi.org/10.1016/j.cmet.2013.01.005.Search in Google Scholar PubMed PubMed Central

Wilkinson, N.; Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 2014, 5, 176. https://doi.org/10.3389/fphar.2014.00176.Search in Google Scholar PubMed PubMed Central

Williams, R. J. P. Bio-inorganic chemistry: its conceptual evolution. Coord. Chem. Rev. 1990, 100(C), 573–610. https://doi.org/10.1016/0010-8545(90)85020-S.Search in Google Scholar

Williams, R. J. P. Chemical selection of elements by cells. Coord. Chem. Rev. 2001, 216–217, 583–595. https://doi.org/10.1016/S0010-8545(00)00398-2.Search in Google Scholar

Williams, R. J. P.; Fraústo Da Silva, J. J. R. The distribution of elements in cells. Coord. Chem. Rev. 2000, 200–202, 247–348. https://doi.org/10.1016/S0010-8545(00)00324-6.Search in Google Scholar

Winn, N. C.; Volk, K. M.; Hasty, A. H. Regulation of tissue iron homeostasis: the macrophage “ferrostat”. JCI Insight 2020, 5, e132964. https://doi.org/10.1172/jci.insight.132964.Search in Google Scholar PubMed PubMed Central

Winterbourn, C. C. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013, 528, 3–25. https://doi.org/10.1016/B978-0-12-405881-1.00001-X.Search in Google Scholar PubMed

Woloshun, R. R.; Yu, Y.; Xu, X.; Lee, J. K.; Zhu, S.; Shine, J. S.; Ebea, P.; Stevens, B. R.; Vidyasagar, S.; Collins, J. F. Four AAs increase DMT1 abundance in duodenal brush-border membrane vesicles and enhance iron absorption in iron-deprived mice. Blood Adv. 2022, 6(10), 3011–3021. https://doi.org/10.1182/bloodadvances.2021005111.Search in Google Scholar PubMed PubMed Central

Woods, J.; Cederbaum, S. Myopathy, lactic acidosis and sideroblastic anemia 1 (MLASA1): a 25-year. Mol. Genet. Metabol. Rep. 2019, 21, 100517. https://doi.org/10.1016/j.ymgmr.2019.100517.Search in Google Scholar PubMed PubMed Central

Yaish, H. M.; Farrell, C. P.; Christensen, R. D.; MacQueen, B. C.; Jackson, L. K.; Trochez-Enciso, J.; Kaplan, J.; Ward, D. M.; Salah, W. K.; Phillips, J. D. Two novel mutations in TMPRSS6 associated with iron-refractory iron deficiency anemia in a mother and child. Blood Cell Mol. Dis. 2017, 65, 38–40. https://doi.org/10.1016/j.bcmd.2017.04.002.Search in Google Scholar PubMed PubMed Central

Yanatori, I.; Kishi, F. DMT1 and iron transport. Free Radic. Biol. Med. 2019, 133, 55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020.Search in Google Scholar PubMed

Yanatori, I.; Richardson, D. R.; Imada, K.; Kishi, F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J. Biol. Chem. 2016, 291(33), 17303–17318. https://doi.org/10.1074/JBC.M116.721936.Search in Google Scholar PubMed PubMed Central

Yanatori, I.; Richardson, D. R.; Toyokuni, S.; Kishi, F. The iron chaperone poly(RC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J. Biol. Chem. 2017, 292(32), 13205–13229. https://doi.org/10.1074/jbc.M117.776021.Search in Google Scholar PubMed PubMed Central

Yanatori, I.; Richardson, D. R.; Toyokuni, S.; Kishi, F. The new role of poly (RC)-binding proteins as iron transport chaperones: proteins that could couple with inter-organelle interactions to safely traffic iron. Biochim. Biophys. Acta Gen. Subj. 2020, 1864(11), 129685. https://doi.org/10.1016/J.BBAGEN.2020.129685.Search in Google Scholar PubMed

Yang, N.; Zhang, H.; Wang, M.; Hao, Q.; Sun, H. Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci. Rep. 2012, 2(1), 999. https://doi.org/10.1038/srep00999.Search in Google Scholar PubMed PubMed Central

Yildirim, F. T.; Benderlioğlu, E.; Kaçar, D.; Yaralı, N. A rare cause of sideroblastic anemia: TRNT1 mutation. Hematol. Transfus. Cell Ther. 2021, 43, S28–S29. https://doi.org/10.1016/j.htct.2021.10.1000.Search in Google Scholar

Zaichik, S.; Steinbring, C.; Friedl, J. D.; Bernkop-Schnürch, A. Development and in vitro characterization of transferrin-decorated nanoemulsion utilizing hydrophobic ion pairing for targeted cellular uptake. J. Pharmaceut. Innovat. 2021, 17, 690–700. https://doi.org/10.1007/s12247-021-09549-2.Search in Google Scholar

Zanella, I.; Ayton, S.; Piperno, A.; Alessio, M. Aceruloplasminemia: waiting for an efficient therapy. Front. Neurosci. 2018, 12, 903. https://doi.org/10.3389/fnins.2018.00903.Search in Google Scholar PubMed PubMed Central

Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012, 97(12), 1826–1835. https://doi.org/10.3324/haematol.2012.063974.Search in Google Scholar PubMed PubMed Central

Zhang, J.; Chambers, I.; Yun, S.; Phillips, J.; Krause, M.; Hamza, I. Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genet. 2018, 14(9), e1007665. https://doi.org/10.1371/journal.pgen.1007665.Search in Google Scholar PubMed PubMed Central

Zhou, L.; Chen, Y.; Li, Y.; Gharabaghi, S.; Chen, Y.; Sethi, S. K.; Wu, Y.; Haacke, E. M. Intracranial iron distribution and quantification in aceruloplasminemia: a case study. Magn. Reson. Imag. 2020, 70, 29–35. https://doi.org/10.1016/j.mri.2020.02.016.Search in Google Scholar PubMed

Zhou, Z. D.; Tan, E. K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 2017, 12(1), 1–12. https://doi.org/10.1186/s13024-017-0218-4.Search in Google Scholar PubMed PubMed Central

Zivot, A.; Lipton, J. M.; Narla, A.; Blanc, L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol. Med. 2018, 24(11), 1–15.10.1186/s10020-018-0011-zSearch in Google Scholar PubMed PubMed Central

Received: 2022-08-06
Accepted: 2022-10-05
Published Online: 2022-10-24
Published in Print: 2023-12-15

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0031/html
Scroll to top button