Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: On behalf of all authors, the corresponding author states that there is no conflict of interest.
References
Alexander, J.; Kowdley, K. V. HFE-associated hereditary hemochromatosis. Genet. Med. 2009, 11(5), 307–313. https://doi.org/10.1097/GIM.0B013E31819D30F2.Search in Google Scholar PubMed
Angoro, B.; Motshakeri, M.; Hemmaway, C.; Svirskis, D.; Sharma, M. Non-transferrin bound iron. Clin. Chim. Acta 2022, 531, 157–167. https://doi.org/10.1016/j.cca.2022.04.004.Search in Google Scholar PubMed
Ashby, D. R.; Gale, D. P.; Busbridge, M.; Murphy, K. G.; Duncan, N. D.; Cairns, T. D.; Taube, D. H.; Bloom, S. R.; Tam, F. W. K.; Chapman, R.; Maxwell, P. H.; Choi, P. Brief report erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Brief Rep. 2010, 95(3), 505–508. https://doi.org/10.3324/haematol.2009.013136.Search in Google Scholar PubMed PubMed Central
Aydemir, T. B.; Cousins, R. J. The multiple faces of the metal transporter ZIP14 (SLC39A14). J. Nutr. 2018, 148(2), 174–184. https://doi.org/10.1093/jn/nxx041.Search in Google Scholar PubMed PubMed Central
Babu, K. R.; Muckenthaler, M. U. MiR-20a regulates expression of the iron exporter ferroportin in lung cancer. J. Mol. Med. 2016, 94(3), 347–359. https://doi.org/10.1007/s00109-015-1362-3.Search in Google Scholar PubMed PubMed Central
Baker, H. M.; Anderson, B. F.; Baker, E. N. Dealing with iron: common structural principles in proteins that transport iron and heme. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(7), 3579–3583. https://doi.org/10.1073/pnas.0637295100.Search in Google Scholar PubMed PubMed Central
Bayele, H. K.; Srai, S. K. S. A disease-causing mutation K240E disrupts ferroportin trafficking by SUMO (ferroportin SUMOylation). Biochem. Biophys. Rep. 2021, 25, 100873. https://doi.org/10.1016/j.bbrep.2020.100873.Search in Google Scholar PubMed PubMed Central
Beaumont-Epinette, M. P.; Delobel, J. B.; Ropert, M.; Deugnier, Y.; Loréal, O.; Jouanolle, A. M.; Brissot, P.; Bardou-Jacquet, E. Hereditary hypotransferrinemia can lead to elevated transferrin saturation and, when associated to HFE or HAMP mutations, to iron overload. Blood Cell Mol. Dis. 2015, 54(2), 151–154. https://doi.org/10.1016/j.bcmd.2014.11.020.Search in Google Scholar PubMed
Billesbølle, C. B.; Azumaya, C. M.; Kretsch, R. C.; Powers, A. S.; Gonen, S.; Schneider, S.; Arvedson, T.; Dror, R. O.; Cheng, Y.; Manglik, A. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020, 586, 807. https://doi.org/10.1038/s41586-020-2668-z.Search in Google Scholar PubMed PubMed Central
Billman, G. E. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 2020, 11, 1–12. https://doi.org/10.3389/fphys.2020.00200.Search in Google Scholar PubMed PubMed Central
Bogdanova, A.; Pantopoulos, K.; Camaschella, C.; Pagani, A.; Nai, A.; Silvestri, L. Hepcidin and anemia: a tight relationship. Front. Physiol. 2019, 10, 1294. https://doi.org/10.3389/fphys.2019.01294.Search in Google Scholar PubMed PubMed Central
Bradley, J. M.; Moore, G. R.; Le Brun, N. E. Diversity of Fe2+ entry and oxidation in ferritins. Curr. Opin. Chem. Biol. 2017, 37, 122–128. https://doi.org/10.1016/j.cbpa.2017.02.027.Search in Google Scholar PubMed
Breuer, W.; Shvartsman, M.; Cabantchik, Z. I. Intracellular labile iron. Int. J. Biochem. Cell Biol. 2008, 40(3), 350–354. https://doi.org/10.1016/J.BIOCEL.2007.03.010.Search in Google Scholar
Brissot, P.; Pietrangelo, A.; Adams, P. C.; De Graaff, B.; McLaren, C. E.; Loreál, O. Haemochromatosis. Nat. Rev. Dis. Prim. 2018, 4, 18016. https://doi.org/10.1038/nrdp.2018.16.Search in Google Scholar PubMed PubMed Central
Byrne, S. L.; Chasteen, N. D.; Steere, A. N.; Mason, A. B. The unique kinetics of iron release from transferrin: the role of receptor, lobe – lobe interactions, and salt at endosomal PH. J. Mol. Biol. 2010a, 396(1), 130–140. https://doi.org/10.1016/j.jmb.2009.11.023.Search in Google Scholar PubMed PubMed Central
Byrne, S. L.; Steere, A. N.; Chasteen, N. D.; Mason, A. B. Identification of a kinetically significant anion binding (KISAB) site in the N-lobe of human serum transferrin. Biochemistry 2010b, 49(19), 4200–4207. https://doi.org/10.1021/bi1003519.Search in Google Scholar PubMed PubMed Central
Cairo, G.; Recalcati, S.; Mantovani, A.; Locati, M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 2011, 32(6), 241–247. https://doi.org/10.1016/j.it.2011.03.007.Search in Google Scholar PubMed
Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105(2), 260–272. https://doi.org/10.3324/haematol.2019.232124.Search in Google Scholar PubMed PubMed Central
Canali, S.; Wang, C.-Y.; Zumbrennen-Bullough, K. B.; Bayer, A.; Babitt, J. L. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am. J. Hematol. 2017, 92(11), 1204–1213. https://doi.org/10.1002/ajh.24888.Search in Google Scholar PubMed PubMed Central
Catalina Gomez-Puerto, M.; Iyengar, V.; García De Vinuesa, A.; Ten Dijke, P.; Sanchez-Duffhues, G. INVITED REVIEW bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 2019, 247, 9–20. https://doi.org/10.1002/path.5170.Search in Google Scholar PubMed PubMed Central
Cazzola, M.; Malcovati, L. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing. Hematology (United States) 2015, 2015(1), 19–25. https://doi.org/10.1182/asheducation-2015.1.19.Search in Google Scholar PubMed
Centis, F.; Tabellini, L.; Lucarelli, G.; Buffi, O.; Tonucci, P.; Persini, B.; Annibali, M.; Emiliani, R.; Iliescu, A.; Rapa, S.; Rossi, R.; Ma, L.; Angelucci, E.; Schrier, S. L. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 2000, 96(10), 3624–3629. https://doi.org/10.1182/blood.v96.10.3624.h8003624_3624_3629.Search in Google Scholar
Chandra, D.; Dhingra, B.; Seth, T.; Mishra, P.; Bansal, D.; Mahapatra, M.; Pati, H. P. Congenital hypotransferrinemia, an unusual cause of iron deficiency anemia: report of two cases. Indian J. Hematol. Blood Transfus. 2017, 33, 402–404. https://doi.org/10.1007/s12288-016-0746-z.Search in Google Scholar PubMed PubMed Central
Chen, G. Y.; Ayres, J. S. Beyond tug-of-war: iron metabolism in cooperative host–microbe interactions. PLoS Pathog. 2020, 16(8), e1008698. https://doi.org/10.1371/journal.ppat.1008698.Search in Google Scholar PubMed PubMed Central
Chen, J.; He, Z. X.; Wang, F. K. Evaluation of ferritin level in COVID-19 patients and its inflammatory response. Appl. Nanosci. 2022, 0123456789. https://doi.org/10.1007/s13204-021-02115-9.Search in Google Scholar PubMed PubMed Central
Choi, H. S.; Hwang, C. K.; Song, K. Y.; Law, P. Y.; Wei, L. N.; Loh, H. H. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem. Biophys. Res. Commun. 2009, 380(3), 431–436. https://doi.org/10.1016/j.bbrc.2009.01.136.Search in Google Scholar PubMed PubMed Central
Choi, J.; Masaratana, P.; Latunde-Dada, G. O.; Arno, M.; Simpson, R. J.; McKie, A. T. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J. Nutr. 2012, 142(11), 1929–1934. https://doi.org/10.3945/jn.112.160358.Search in Google Scholar PubMed
Coates, T. D. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic. Biol. Med. 2014, 72, 23–40. https://doi.org/10.1016/j.freeradbiomed.2014.03.039.Search in Google Scholar PubMed PubMed Central
Crans, D. C.; Kostenkova, K. Open questions on the biological roles of first-row transition metals. Commun. Chem. 2020, 3, 104. https://doi.org/10.1038/s42004-020-00341-w.Search in Google Scholar PubMed PubMed Central
Crawford, D. H. G. Hereditary hemochromatosis types 1, 2, and 3. Clin. Liver Dis. 2014, 3(5), 96–97. https://doi.org/10.1002/cld.339.Search in Google Scholar PubMed PubMed Central
Cronin, S. J. F.; Woolf, C. J.; Weiss, G.; Penninger, J. M. The role of iron regulation in immunometabolism and immune-related disease. Front. Mol. Biosci. 2019, 6, 116. https://doi.org/10.3389/fmolb.2019.00116.Search in Google Scholar PubMed PubMed Central
Dabboubi, R.; Amri, Y.; Yahyaoui, S.; Mahjoub, R.; Sahli, C. A.; Sahli, C.; Hadj Fredj, S.; Bibi, A.; Sammoud, A.; Messaoud, T. A new case of congenital atransferrinemia with a novel splice site mutation: C.293-63del. Eur. J. Med. Genet. 2020, 63(5), 103874. https://doi.org/10.1016/j.ejmg.2020.103874.Search in Google Scholar PubMed
De Falco, L.; Totaro, F.; Nai, A.; Pagani, A.; Girelli, D.; Silvestri, L.; Piscopo, C.; Campostrini, N.; Dufour, C.; Al Manjomi, F.; Minkov, M.; Van Vuurden, D. G.; Feliu, A.; Kattamis, A.; Camaschella, C.; Iolascon, A. Novel TMPRSS6 mutations associated with iron-refractory iron deficiency anemia (IRIDA). Hum. Mutat. 2010, 31(5), E1390–E1405. https://doi.org/10.1002/humu.21243.Search in Google Scholar PubMed
Dlouhy, A. C.; Outten, C. E. The iron metallome in eukaryotic organisms. In Metallomics and the Cell; Springer Netherlands: Dordrecht, 12, 2013.10.1007/978-94-007-5561-1_8Search in Google Scholar PubMed PubMed Central
Donker, A. E.; Schaap, C. C. M.; Novotny, V. M. J.; Smeets, R.; Peters, T. M. A.; Van Den Heuvel, B. L. P.; Raphael, M. F.; Rijneveld, A. W.; Appel, I. M.; Vlot, A. J.; Versluijs, A. B.; Van Gelder, M.; Granzen, B.; Janssen, M. C. H.; Rennings, A. J. M.; Van De Veerdonk, F. L.; Brons, P. P. T.; Bakkeren, D. L.; Nijziel, M. R.; Thom Vlasveld, L.; Swinkels, D. W. Iron refractory iron deficiency anemia: a heterogeneous disease that is not always iron refractory. Am. J. Hematol. 2016, 91, 482–490. https://doi.org/10.1002/ajh.24561.Search in Google Scholar PubMed PubMed Central
Donovan, A.; Lima, C. A.; Pinkus, J. L.; Pinkus, G. S.; Zon, L. I.; Robine, S.; Andrews, N. C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabol. 2005, 1(3), 191–200. https://doi.org/10.1016/j.cmet.2005.01.003.Search in Google Scholar PubMed
Drew, D.; North, R. A.; Nagarathinam, K.; Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 2021, 121(9), 5289–5335. https://doi.org/10.1021/acs.chemrev.0c00983.Search in Google Scholar PubMed PubMed Central
Du, X.; Xu, H.; Shi, L.; Jiang, Z.; Song, N.; Jiang, H.; Xie, J. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci. Rep. 2016, 6(1), 33674. https://doi.org/10.1038/srep33674.Search in Google Scholar PubMed PubMed Central
Duck, K. A.; Connor, J. R. Iron uptake and transport across physiological barriers. BioMetals 2016, 29, 573–591. https://doi.org/10.1007/s10534-016-9952-2.Search in Google Scholar PubMed PubMed Central
Dulja, A.; Pagani, A.; Pettinato, M.; Nai, A.; Camaschella, C.; Silvestri, L. The immunophilin FKBP12 inhibits hepcidin by modulating BMP type I-type II receptors interaction and ligand responsiveness. Blood 2019, 134(Suppl. 1), 430. https://doi.org/10.1182/blood-2019-130058.Search in Google Scholar
Ehrnstrorfer, I. A.; Geertsma, E. R.; Pardon, E.; Steyaert, J.; Dutzler, R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat. Struct. Mol. Biol. 2014, 21(11), 990–996.10.1038/nsmb.2904Search in Google Scholar PubMed
Elsayed, M. E.; Sharif, M. U.; Stack, A. G. Transferrin Saturation: A Body Iron Biomarker. In Advances in Clinical Chemistry, 1st ed.; Elsevier Inc.: Amsterdam, 75, 2016; pp. 71–97.10.1016/bs.acc.2016.03.002Search in Google Scholar PubMed
Fan, Y.; Liu, B.; Chen, F.; Song, Z.; Han, B.; Meng, Y.; Hou, J.; Cao, P.; Chang, Y.; Tan, K. Hepcidin upregulation in lung cancer: a potential therapeutic target associated with immune infiltration. Front. Immunol. 2021, 12, 612144. https://doi.org/10.3389/fimmu.2021.612144.Search in Google Scholar PubMed PubMed Central
Fatima, T.; McKinney, C.; Major, T. J.; Stamp, L. K.; Dalbeth, N.; Iverson, C.; Merriman, T. R.; Miner, J. N. The relationship between ferritin and urate levels and risk of gout. Arthritis Res. Ther. 2018, 20(1), 1–9. https://doi.org/10.1186/s13075-018-1668-y.Search in Google Scholar PubMed PubMed Central
Fuqua, B. K.; Lu, Y.; Darshan, D.; Frazer, D. M.; Wilkins, S. J. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One 2014, 9(6), 98792. https://doi.org/10.1371/journal.pone.0098792.Search in Google Scholar PubMed PubMed Central
Ganasen, M.; Togashi, H.; Takeda, H.; Asakura, H.; Tosha, T.; Yamashita, K.; Hirata, K.; Nariai, Y.; Urano, T.; Yuan, X.; Hamza, I.; Mauk, A. G.; Shiro, Y.; Sugimoto, H.; Sawai, H. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun. Biol. 2018, 1(1), 120. https://doi.org/10.1038/s42003-018-0121-8.Search in Google Scholar PubMed PubMed Central
Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107(1), 7–15. https://doi.org/10.1007/s12185-017-2366-2.Search in Google Scholar PubMed
Ganz, T.; Nemeth, E. Regulation of iron acquisition and iron distribution in mammals. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763(7), 690–699. https://doi.org/10.1016/j.bbamcr.2006.03.014.Search in Google Scholar PubMed
Garrick, M. D.; Garrick, L. M. Cellular iron transport. Biochim. Biophys. Acta Gen. Subj. 2009, 1790(5), 309–325. https://doi.org/10.1016/j.bbagen.2009.03.018.Search in Google Scholar PubMed
Ghafourian, K.; Chang, H.-C.; Ardehali, H. Intravenous iron therapy in heart failure: a different perspective. Eur. J. Heart Fail. 2019, 21, 703–714. https://doi.org/10.1002/ejhf.1434.Search in Google Scholar PubMed
Gordon, S.; Martinez-Pomares, L. Physiological roles of macrophages. Pflueg. Arch. Eur. J. Physiol. 2017, 469(3–4), 365–374. https://doi.org/10.1007/s00424-017-1945-7.Search in Google Scholar PubMed PubMed Central
Gulec, S.; Anderson, G. J.; Collins, J. F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, 397–409. https://doi.org/10.1152/ajpgi.00348.2013.Search in Google Scholar PubMed PubMed Central
Guo, L. N.; Yang, Y. Z.; Feng, Y. Z. Serum and salivary ferritin and hepcidin levels in patients with chronic periodontitis and type 2 diabetes mellitus. BMC Oral Health 2018, 18(1), 1–9. https://doi.org/10.1186/s12903-018-0524-4.Search in Google Scholar PubMed PubMed Central
Gurney, M. A.; Laubitz, D.; Ghishan, F. K.; Kiela, P. R. Pathophysiology of intestinal Na+/H+ exchange. Cell. Mol. Gastroenterol. Hepatol. 2017, 3(1), 27–40. https://doi.org/10.1016/j.jcmgh.2016.09.010.Search in Google Scholar PubMed PubMed Central
Gwamaka, M.; Kurtis, J. D.; Sorensen, B. E.; Holte, S.; Morrison, R.; Mutabingwa, T. K.; Fried, M.; Duffy, P. E. Iron deficiency protects against severe plasmodium falciparum malaria and death in young children. Clin. Infect. Dis. 2012, 54(8), 1137–1144. https://doi.org/10.1093/cid/cis010.Search in Google Scholar PubMed PubMed Central
Hamed, E.; Syed, M. A.; Alemrayat, B. F.; Tirmizi, S. H. A.; Alnuaimi, A. S. Haemoglobin cut-off values for the diagnosis of anaemia in preschool-age children. Am. J. Blood Res. 2021, 11(3), 248–254.Search in Google Scholar
Harris, W. R. Anion binding properties of the transferrins. Implications for function ☆. Biochim. Biophys. Acta Gen. Subj. 2012, 1820(3), 348–361. https://doi.org/10.1016/j.bbagen.2011.07.017.Search in Google Scholar PubMed
He, J.; Fan, K.; Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Contr. Release 2019, 311–312, 288–300. https://doi.org/10.1016/j.jconrel.2019.09.002.Search in Google Scholar PubMed
Heeney, M. M.; Berhe, S.; Campagna, D. R.; Oved, J. H.; Kurre, P.; Shaw, P. J.; Teo, J.; Shanap, M. A.; Hassab, H. M.; Glader, B. E.; Shah, S.; Yoshimi, A.; Ameri, A.; Antin, J. H.; Boudreaux, J.; Briones, M.; Dickerson, K. E.; Fernandez, C. V.; Farah, R.; Hasle, H.; Keel, S. B.; Olson, T. S.; Powers, J. M.; Rose, M. J.; Shimamura, A.; Bottomley, S. S.; Fleming, M. D. SLC25A38 congenital sideroblastic anemia: phenotypes and genotypes of 31 individuals from 24 families, including 11 novel mutations, and a review of the literature. Hum. Mutat. 2021, 42(11), 1367–1383. https://doi.org/10.1002/humu.24267.Search in Google Scholar PubMed PubMed Central
Heggland, E. I.; Eichner, C.; Støve, S. I.; Martinez, A.; Nilsen, F.; Dondrup, M. A scavenger receptor B (CD36)-like protein is a potential mediator of intestinal heme absorption in the hematophagous ectoparasite lepeophtheirus salmonis. Sci. Rep. 2019, 9(1), 4218. https://doi.org/10.1038/s41598-019-40590-x.Search in Google Scholar PubMed PubMed Central
Hill, H. A. O.; Sadler, P. J. Bringing inorganic chemistry to life with inspiration from R. J. P. Williams. J. Biol. Inorg. Chem. 2016, 21(1), 5–12. https://doi.org/10.1007/s00775-016-1333-3.Search in Google Scholar PubMed PubMed Central
Hintze, K. J.; McClung, J. P. Hepcidin: a critical regulator of iron metabolism during hypoxia. Adv. Hematol. 2011, 2011, 510304. https://doi.org/10.1155/2011/510304.Search in Google Scholar PubMed PubMed Central
Hohenberger, J.; Ray, K.; Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nature Communications 2012, 3(1), 1–13; https://doi.org/10.1038/ncomms1718.Search in Google Scholar PubMed
Ishida, W.; Hamamoto, T.; Kusanagi, K.; Yagi, K.; Kawabata, M.; Takehara, K.; Sampath, T. K.; Kato, M.; Miyazono, K. Smad6 is a Smad1/5-induced Smad inhibitor. J. Biol. Chem. 2000, 275(9), 6075–6079. https://doi.org/10.1074/jbc.275.9.6075.Search in Google Scholar PubMed
Jadhav, S.; Protchenko, O.; Li, F.; Baratz, E.; Shakoury-Elizeh, M.; Maschek, A.; Cox, J.; Philpott, C. C. Mitochondrial dysfunction in mouse livers depleted of iron chaperone PCBP1. Free Radic. Biol. Med. 2021, 175, 18–27. https://doi.org/10.1016/J.FREERADBIOMED.2021.08.232.Search in Google Scholar
Jenkitkasemwong, S.; Wang, C. Y.; Coffey, R.; Zhang, W.; Chan, A.; Biel, T.; Kim, J. S.; Hojyo, S.; Fukada, T.; Knutson, M. D. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metabol. 2015, 22(1), 138–150. https://doi.org/10.1016/j.cmet.2015.05.002.Search in Google Scholar PubMed PubMed Central
Jiang, B.; Liu, G.; Zheng, J.; Chen, M.; Maimaitiming, Z.; Chen, M.; Liu, S.; Jiang, R.; Fuqua, B. K.; Dunaief, J. L.; Vulpe, C. D.; Anderson, G. J.; Wang, H.; Chen, H. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 2016, 6(1), 39470. https://doi.org/10.1038/srep39470.Search in Google Scholar PubMed PubMed Central
Jocic, M.; Arsenijevic, N.; Gajovic, N.; Jurisevic, M.; Jovanovic, I.; Jovanovic, M.; Zdravkovic, N.; Maric, V.; Jovanovic, M. Anemia of inflammation in patients with colorectal cancer: correlation with interleukin-1, interleukin-33 and galectin-1. J. Med. Biochem. 2022, 41(1), 79–90. https://doi.org/10.5937/JOMB0-30135.Search in Google Scholar
Johnsen, K. B.; Burkhart, A.; Melander, F.; Kempen, P. J.; Vejlebo, J. B.; Siupka, P.; Nielsen, M. S.; Andresen, T. L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 2017, 7(1), 1–13. https://doi.org/10.1038/s41598-017-11220-1.Search in Google Scholar PubMed PubMed Central
Jung, M.; Mertens, C.; Brüne, B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2015, 220(2), 295–304. https://doi.org/10.1016/J.IMBIO.2014.09.011.Search in Google Scholar PubMed
Kanwar, P.; Kowdley, K. V. Diagnosis and treatment of hereditary hemochromatosis: an update. Expet Rev. Gastroenterol. Hepatol. 2013, 7, 517–530. https://doi.org/10.1586/17474124.2013.816114.Search in Google Scholar PubMed
Katagiri, T.; Watabe, T. Bone morphogenetic proteins. Cold Spring Harbor Perspect. Biol. 2016, 8(6), a021899. https://doi.org/10.1101/cshperspect.a021899.Search in Google Scholar PubMed PubMed Central
Kautz, L.; Jung, G.; Valore, E. V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014, 46(7), 678–684. https://doi.org/10.1038/ng.2996.Search in Google Scholar PubMed PubMed Central
Kawabata, H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int. J. Hematol. 2018, 107(1), 31–43. https://doi.org/10.1007/S12185-017-2365-3.Search in Google Scholar PubMed
Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019, 133, 46–54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037.Search in Google Scholar PubMed
Khalil, U. A.; Seliem, F. O.; Alnahal, A.; Awad, M.; Sadek, A. M. E. M.; Fawzy, M. S. Association of serum ferritin with insulin resistance in offsprings of type 2 diabetics. Egypt. J. Intern. Med. 2018, 30(1), 13–17. https://doi.org/10.4103/ejim.ejim_70_17.Search in Google Scholar
Kiam, W.; Brigitte Schwederski, A. K. Bioinorganic Chemistry--Inorganic Elements in the Chemistry of Life: An Introduction and Guide; John Wiley & Sons: West Sussex, United Kingdom, 2013.Search in Google Scholar
Kiely, P. D. W. Haemochromatosis arthropathy – a conundrum of the celtic curse. J. Roy. Coll. Phys. Edinb. 2018, 48(3), 233–238. https://doi.org/10.4997/JRCPE.2018.307.Search in Google Scholar PubMed
Kleven, M. D.; Jue, S.; Enns, C. A. Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms. Biochemistry 2018, 57(9), 1552–1559. https://doi.org/10.1021/acs.biochem.8b00006.Search in Google Scholar PubMed PubMed Central
Knutson, M. D. Iron transport proteins: gateways of cellular and systemic iron homeostasis. J. Biol. Chem. 2017, 292(31), 12735–12743. https://doi.org/10.1074/jbc.R117.786632.Search in Google Scholar PubMed PubMed Central
Koneru, T.; McCord, E.; Pawar, S.; Tatiparti, K.; Sau, S.; Iyer, A. K. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega 2021, 6(13), 8727–8733. https://doi.org/10.1021/acsomega.0c05848.Search in Google Scholar PubMed PubMed Central
Kono, S. Aceruloplasminemia: an update. Int. Rev. Neurobiol. 2013, 110, 125–151. https://doi.org/10.1016/B978-0-12-410502-7.00007-7.Search in Google Scholar PubMed
Kühn, L. C. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics 2015, 7(2), 232–243. https://doi.org/10.1039/c4mt00164h.Search in Google Scholar PubMed
La, A.; Nguyen, T.; Tran, K.; Sauble, E.; Tu, D.; Gonzalez, A.; Kidane, T. Z.; Soriano, C.; Morgan, J.; Doan, M.; Tran, K.; Wang, C.-Y.; Knutson, M. D.; Linder, M. C. Mobilization of iron from ferritin: new steps and details. Metallomics 2018, 10(1), 154–168. https://doi.org/10.1039/C7MT00284J.Search in Google Scholar PubMed
Latunde-Dada, G. O.; Simpson, R. J.; McKie, A. T. Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells. J. Nutr. 2008, 138(6), 991–995. https://doi.org/10.1093/jn/138.6.991.Search in Google Scholar PubMed
Lemler, D. J.; Lynch, M. L.; Tesfay, L.; Deng, Z.; Paul, B. T.; Wang, X.; Hegde, P.; Manz, D. H.; Torti, S. V.; Torti, F. M. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 2017, 19(1), 1–18. https://doi.org/10.1186/s13058-017-0814-9.Search in Google Scholar PubMed PubMed Central
Linster, C. L.; Van Schaftingen, E. Vitamin C. FEBS J. 2006, 274(1), 1–22. https://doi.org/10.1111/j.1742-4658.2006.05607.x.Search in Google Scholar PubMed
Li, S.; Yang, Y.; Li, W. Human ferroportin mediates proton-coupled active transport of iron. Blood Adv. 2020, 4(19), 4758–4768. https://doi.org/10.1182/bloodadvances.2020001864.Search in Google Scholar PubMed PubMed Central
Li, S.; Zhao, H.; Mao, X.; Fan, Y.; Liang, X.; Wang, R.; Xiao, L.; Wang, J.; Liu, Q.; Zhao, G. Transferrin receptor targeted cellular delivery of doxorubicin via a reduction-responsive peptide-drug conjugate. Pharmaceut. Res. 2019, 36(12), 168. https://doi.org/10.1007/s11095-019-2688-2.Search in Google Scholar PubMed
Lois, S.; Aranda, J.; Barqu, A.; Vagace, M.; Gervasini, G.; Sanz, C.; Cruz, X. D.; Bruguera, M. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3. Mol. Genet. Genomic Med. 2015, 3, 221–232. https://doi.org/10.1002/mgg3.136.Search in Google Scholar PubMed PubMed Central
Maccarinelli, F.; Gammella, E.; Asperti, M.; Regoni, M.; Biasiotto, G.; Turco, E.; Altruda, F.; Lonardi, S.; Cornaghi, L.; Donetti, E.; Recalcati, S.; Poli, M.; Finazzi, D.; Arosio, P.; Cairo, G. Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J. Mol. Med. 2014, 92(8), 859–869. https://doi.org/10.1007/s00109-014-1147-0.Search in Google Scholar PubMed PubMed Central
Mani, M. S.; Dsouza, V. L.; Dsouza, H. S. Evaluation of divalent metal transporter 1 (DMT1) (Rs224589) polymorphism on blood lead levels of occupationally exposed individuals. Toxicol. Lett. 2021, 353, 13–19. https://doi.org/10.1016/j.toxlet.2021.10.002.Search in Google Scholar PubMed
Mastrogiannaki, M.; Matak, P.; Keith, B.; Simon, M. C.; Vaulont, S.; Peyssonnaux, C. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 2009, 119(5), 1159–1166. https://doi.org/10.1172/JCI38499.Search in Google Scholar PubMed PubMed Central
Mehta, P.; Kumar, A. Congenital sideroblastic anemia with a novel variant of the PUS1 gene mutation. Pediatr. Hematol. Oncol. J. 2022, 7(2), 38–40. https://doi.org/10.1016/j.phoj.2021.12.001.Search in Google Scholar
Milman, N. T.; Schioedt, F. V.; Junker, A. E.; Magnussen, K. Diagnosis and treatment of genetic HFE-hemochromatosis: the Danish aspect. Gastroenterol. Res. 2019, 12(5), 221–232. https://doi.org/10.14740/gr1206.Search in Google Scholar PubMed PubMed Central
Miyazawa, M.; Bogdan, A. R.; Tsuji, Y. Perturbation of iron metabolism by cisplatin through inhibition of iron regulatory protein 2. Cell Chem. Biol. 2019, 26(1), 85–97.e4. https://doi.org/10.1016/j.chembiol.2018.10.009.Search in Google Scholar PubMed PubMed Central
Montalbetti, N.; Simonin, A.; Kovacs, G.; Hediger, M. A. Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspect. Med. 2013, 34(2–3), 270–287. https://doi.org/10.1016/j.mam.2013.01.002.Search in Google Scholar PubMed
Muir, R. K.; Zhao, N.; Wei, J.; Wang, Y.; Moroz, A.; Huang, Y.; Chen, Y.-C.; Sriram, R.; Kurhanewicz, J.; Ruggero, D.; Renslo, A. R.; Evans, M. J. Measuring dynamic changes in the labile iron pool in vivo with a reactivity-based probe for positron emission tomography. ACS Cent. Sci. 2019, 5(4), 727–736. https://doi.org/10.1021/acscentsci.9b00240.Search in Google Scholar PubMed PubMed Central
Nairz, M.; Theurl, I.; Swirski, F. K.; Weiss, G. “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflueg. Arch. Eur. J. Physiol. 2017, 469(3–4), 397–418. https://doi.org/10.1007/s00424-017-1944-8.Search in Google Scholar PubMed PubMed Central
Nam, H.; Wang, C. Y.; Zhang, L.; Zhang, W.; Hojyo, S.; Fukada, T.; Knutson, M. D. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica 2013, 98(7), 1049–1057; https://doi.org/10.3324/haematol.2012.072314.Search in Google Scholar PubMed PubMed Central
Nandal, A.; Ruiz, J. C.; Subramanian, P.; Ghimire-Rijal, S.; Sinnamon, R. A.; Stemmler, T. L.; Bruick, R. K.; Philpott, C. C. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metabol. 2011, 14(5), 647–657. https://doi.org/10.1016/j.cmet.2011.08.015.Search in Google Scholar PubMed PubMed Central
Nemeth, E. Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Adv. Hematol. 2010, 2010, 750643. https://doi.org/10.1155/2010/750643.Search in Google Scholar PubMed PubMed Central
Nemeth, E.; Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 2009, 122(2–3), 78–86. https://doi.org/10.1159/000243791.Search in Google Scholar PubMed PubMed Central
Nemeth, E.; Tuttle, M. S.; Powelson, J.; Vaughn, M. B.; Donovan, A.; Ward, D. M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2094.10.1126/science.1104742Search in Google Scholar PubMed
Neves, A. R.; van der Putten, L.; Queiroz, J. F.; Pinheiro, M.; Reis, S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J. Biotechnol. 2021, 331, 108–117. https://doi.org/10.1016/j.jbiotec.2021.03.010.Search in Google Scholar PubMed
Oakhill, J. S.; Marritt, S. J.; Gareta, E. G.; Cammack, R.; McKie, A. T. Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism. Biochim. Biophys. Acta Bioenerg. 2008, 1777(3), 260–268. https://doi.org/10.1016/j.bbabio.2007.12.001.Search in Google Scholar PubMed
Oosterheert, W.; Reis, J.; Gros, P.; Mattevi, A. An elegant four-helical fold in NOX and STEAP enzymes facilitates electron transport across biomembranes – similar vehicle, different destination crystal structures of the transmembrane and dehydrogenase. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 21. https://doi.org/10.1021/acs.accounts.0c00400.Search in Google Scholar PubMed
Orino, K.; Bradford, B.; Gonzalez Ronquillo, M.; Pantopoulos, K. Article 103 citation: pantopoulos K (2018) inherited disorders of iron overload. Front. Nutr. 2018, 5, 103. https://doi.org/10.3389/fnut.2018.00103.Search in Google Scholar PubMed PubMed Central
Pagani, A.; Pettinato, M.; Dulja, A.; Colucci, S.; Aghajan, M.; Furiosi, V.; Muckenthaler, M. U.; Guo, S.; Nai, A.; Silvestri, L. Dissecting the mechanisms of hepcidin and BMP-SMAD pathway regulation by FKBP12. Blood 2021, 138(Suppl. 1), 2008. https://doi.org/10.1182/blood-2021-152172.Search in Google Scholar
Pan, S.; Chiang, W.; Chen, Y. The journey from erythropoietin to 2019 nobel prize: focus on hypoxia-inducible factors in the kidney. J. Formos. Med. Assoc. 2021, 120(1), 60–67. https://doi.org/10.1016/j.jfma.2020.06.006.Search in Google Scholar PubMed
Pan, Y.; Ren, Z.; Gao, S.; Shen, J.; Wang, L.; Xu, Z.; Yu, Y.; Bachina, P.; Zhang, H.; Fan, X.; Laganowsky, A.; Yan, N.; Zhou, M. Structural basis of ion transport and inhibition in ferroportin. Nat. Commun. 2020, 11(1), 5686. https://doi.org/10.1038/s41467-020-19458-6.Search in Google Scholar PubMed PubMed Central
Patel, S. J.; Protchenko, O.; Shakoury-Elizeh, M.; Baratz, E.; Jadhav, S.; Philpott, C. C. The iron chaperone and nucleic acid–binding activities of poly(RC)-binding protein 1 are separable and independently essential. Proc. Natl. Acad. Sci. U. S. A. 2021, 118(25), e2104666118. https://doi.org/10.1073/pnas.2104666118.Search in Google Scholar PubMed PubMed Central
Philpott, C. C.; Jadhav, S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radic. Biol. Med. 2019, 133, 112–117. https://doi.org/10.1016/j.freeradbiomed.2018.10.411.Search in Google Scholar PubMed
Philpott, C. C.; Patel, S. J.; Protchenko, O. BBA – molecular cell research management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones ☆. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867(11), 118830. https://doi.org/10.1016/j.bbamcr.2020.118830.Search in Google Scholar PubMed PubMed Central
Philpott, C. C.; Ryu, M. S.; Frey, A.; Patel, S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J. Biol. Chem. 2017, 292(31), 12764–12771. https://doi.org/10.1074/jbc.R117.791962.Search in Google Scholar PubMed PubMed Central
Pietrangelo, A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017, 102(12), 1972–1984. https://doi.org/10.3324/haematol.2017.170720.Search in Google Scholar PubMed PubMed Central
Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron absorption: factors, limitations, and improvement methods. ACS Omega 2022, 7(24), 20441–20456. https://doi.org/10.1021/acsomega.2c01833.Search in Google Scholar PubMed PubMed Central
Prousek, J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007, 79, 2325–2338. https://doi.org/10.1351/pac200779122325.Search in Google Scholar
Puig, S.; Ramos-Alonso, L.; Marí Romero, A.; Teresa Martínez-Pastor, M. The elemental role of iron in DNA synthesis and repair. Metallomics 2017, 9, 1483. https://doi.org/10.1039/c7mt00116a.Search in Google Scholar PubMed
Pujol-Giménez, J.; Poirier, M.; Bühlmann, S.; Schuppisser, C.; Bhardwaj, R.; Awale, M.; Visini, R.; Javor, S.; Hediger, M. A.; Reymond, J. Inhibitors of human divalent metal transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDB-17 fragment library. ChemMedChem 2021, 16(21), 3306–3314. https://doi.org/10.1002/cmdc.202100467.Search in Google Scholar PubMed PubMed Central
Qiao, B.; Sugianto, P.; Fung, E.; Ganz, T.; Nemeth, E. Short article hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metabol. 2012, 15(6), 918–924. https://doi.org/10.1016/j.cmet.2012.03.018.Search in Google Scholar PubMed PubMed Central
Raffin, S. B.; Woo, C. H.; Roost, K. T.; Price, D. C.; Schmid, R. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J. Clin. Invest. 1974, 54(6), 1344–1352. https://doi.org/10.1172/jci107881.Search in Google Scholar
Raha, A. A.; Vaishnav, R. A.; Friedland, R. P.; Bomford, A.; Raha-Chowdhury, R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 2014, 2(1), 1–19. https://doi.org/10.1186/2051-5960-1-55.Search in Google Scholar PubMed PubMed Central
Rajagopal, A.; Rao, A. U.; Amigo, J.; Tian, M.; Upadhyay, S. K.; Hall, C.; Uhm, S.; Mathew, M. K.; Fleming, M. D.; Paw, B. H.; Krause, M.; Hamza, I. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 2008, 453(7198), 1127–1131. https://doi.org/10.1038/nature06934.Search in Google Scholar PubMed PubMed Central
Raubenheimer, D.; Lee, K. P.; Simpson, S. J. Does Bertrand’s rule apply to macronutrients? Proc. R. Soc. B Biol. Sci. 2005, 272(1579), 2429–2434. https://doi.org/10.1098/rspb.2005.3271.Search in Google Scholar PubMed PubMed Central
Reis, R.; Moraes, I. Structural biology and structure–function relationships of membrane proteins. Biochem. Soc. Trans. 2018, 47(1), 47–61. https://doi.org/10.1042/BST20180269.Search in Google Scholar PubMed
Roettol, A.; Papanikolaou, G.; Politou, M.; Alberti, F.; Girelli, D.; Christakis, J.; Loukopoulos, D.; Camaschella, C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 2003, 33(1), 21–22. https://doi.org/10.1038/ng1053.Search in Google Scholar PubMed
Roy, C. N.; Weinstein, D. A.; Andrews, N. C. 2002 E. Mead Johnson award for research in pediatrics lecture: the molecular biology of the anemia of chronic disease: a hypothesis. Pediatr. Res. 2003, 53(3), 507–512. https://doi.org/10.1203/01.pdr.0000049513.67410.2d.Search in Google Scholar PubMed
Rybinska, I.; Cairo, G. Chapter Eight - Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis. In Vitamins and Hormones, 1st ed.; Elsevier Inc.: Amsterdam, 105, 2017.10.1016/bs.vh.2017.01.001Search in Google Scholar PubMed
Sachdev, H. S.; Porwal, A.; Acharya, R.; Ashraf, S.; Ramesh, S.; Khan, N.; Kapil, U.; Kurpad, A. V.; Sarna, A. Haemoglobin thresholds to define anaemia in a national sample of healthy children and adolescents aged 1–19 years in India: a population-based study. Lancet Global Health 2021, 9(6), e822–e831. https://doi.org/10.1016/S2214-109X(21)00077-2.Search in Google Scholar PubMed PubMed Central
Salazar, J.; Mena, N.; Hunot, S.; Prigent, A.; Alvarez-Fischer, D.; Arredondo, M.; Duyckaerts, C.; Sazdovitch, V.; Zhao, L.; Garrick, L. M.; Nuñez, M. T.; Garrick, M. D.; Raisman-Vozari, R.; Hirsch, E. C. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(47), 18578–18583. https://doi.org/10.1073/pnas.0804373105.Search in Google Scholar PubMed PubMed Central
Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J. M. Iron chemistry at the service of life. IUBMB Life 2017, 69(6), 382–388. https://doi.org/10.1002/iub.1602.Search in Google Scholar PubMed
Sandberg, A. S.; Önning, G.; Engström, N.; Scheers, N. Iron supplements containing lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase DCYTB in human Caco-2/HT29 MTX co-cultures. Nutrients 2018, 10(12), 1949. https://doi.org/10.3390/nu10121949.Search in Google Scholar PubMed PubMed Central
Schaer, D. J.; Buehler, P. W.; Alayash, A. I.; Belcher, J. D.; Vercellotti, G. M. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2013, 121(8), 1276–1284. https://doi.org/10.1182/blood-2012-11-451229.Search in Google Scholar PubMed PubMed Central
Shah, R. A.; Kowdley, K. V. Serum ferritin as a biomarker for NAFLD: ready for prime time? Hepatol. Int. 2019, 13(2), 110–112. https://doi.org/10.1007/s12072-019-09934-7.Search in Google Scholar PubMed
Shah, Y. M.; Xie, L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014, 146(3), 630–642. https://doi.org/10.1053/J.GASTRO.2013.12.031.Search in Google Scholar
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.-A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429.Search in Google Scholar PubMed
Silva, A. M. N.; Moniz, T.; de Castro, B.; Rangel, M. Human transferrin: an inorganic biochemistry perspective. Coord. Chem. Rev. 2021, 449, 214186. https://doi.org/10.1016/j.ccr.2021.214186.Search in Google Scholar
Silvestri, L.; Nai, A.; Dulja, A.; Pagani, A. Hepcidin and the BMP-SMAD pathway: An unexpected liaison. In Vitamins and Hormones, 1st ed.; Elsevier Inc.: Amsterdam, 110, 2019; pp. 71–99.10.1016/bs.vh.2019.01.004Search in Google Scholar PubMed
Simmons, W. R.; Wain, L.; Toker, J.; Jagadeesh, J.; Garrett, L. J.; Pek, R. H.; Hamza, I.; Bodine, D. M. Normal iron homeostasis requires the transporter SLC48A1 for efficient heme-iron recycling in mammals. Front. Genome Ed. 2020, 2, 8. https://doi.org/10.3389/fgeed.2020.00008.Search in Google Scholar PubMed PubMed Central
Simpson, R. J.; McKie, A. T. Iron and oxygen sensing: a tale of 2 interacting elements? Metallomics 2015, 7(2), 223–231. https://doi.org/10.1039/c4mt00225c.Search in Google Scholar PubMed
Steere, A. N.; Byrne, S. L.; Chasteen, N. D.; Mason, A. B. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal PH ☆. Biochim. Biophys. Acta Gen. Subj. 2012, 1820(3), 326–333. https://doi.org/10.1016/j.bbagen.2011.06.003.Search in Google Scholar PubMed PubMed Central
Suzuki, N.; Yamamoto, M. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis. Pflüeg. Arch. Eur. J. Physiol. 2015, 468(1), 3–12. https://doi.org/10.1007/s00424-015-1740-2.Search in Google Scholar PubMed
Thwaites, D. T.; Anderson, C. M. H. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp. Physiol. 2007, 92(4), 603–619. https://doi.org/10.1113/expphysiol.2005.029959.Search in Google Scholar PubMed PubMed Central
Tippairote, T.; Bjørklund, G.; Peana, M.; Roytrakul, S. The proteomics study of compounded HFE/TF/TfR2/HJV genetic variations in a Thai family with iron overload, chronic anemia, and motor neuron disorder. J. Mol. Neurosci. 2021, 71(3), 545–555. https://doi.org/10.1007/s12031-020-01676-8.Search in Google Scholar PubMed
Tomasz, G.; Ewa, W.; Jolanta, M. Biomarkers of iron metabolism in chronic kidney disease. Int. Urol. Nephrol. 2021, 53, 935–944. https://doi.org/10.1007/s11255-020-02663-z.Search in Google Scholar PubMed PubMed Central
Tortorella, S.; Karagiannis, T. C. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membr. Biol. 2014, 247(4), 291–307. https://doi.org/10.1007/s00232-014-9637-0.Search in Google Scholar PubMed
Turbiville, D.; Du, X.; Yo, J.; Jana, B. R.; Dong, J. Iron overload in an HFE heterozygous carrier: a case report and literature review. Lab. Med. 2019, 50, 212–217. https://doi.org/10.1093/labmed/lmy065.Search in Google Scholar PubMed
Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem. Res. 2021, 46(5), 1224–1238. https://doi.org/10.1007/s11064-021-03322-0.Search in Google Scholar PubMed PubMed Central
Vishwanathan, V.; D’Silva, P. Loss of function of MtHsp70 chaperone variants leads to mitochondrial dysfunction in congenital sideroblastic anemia. Front. Cell Dev. Biol. 2022, 10, 847045. https://doi.org/10.3389/fcell.2022.847045.Search in Google Scholar PubMed PubMed Central
Viveiros, A.; Schaefer, B.; Tilg, H.; Zoller, H. Iron matryoshka—haemochromatosis nested in ferroportin disease? Liver Int. 2019, 39(6), 1014–1015. https://doi.org/10.1111/liv.14061.Search in Google Scholar PubMed
Vujić Spasić, M.; Sparla, R.; Mleczko-Sanecka, K.; Migas, M. C.; Breitkopf-Heinlein, K.; Dooley, S.; Vaulont, S.; Fleming, R. E.; Muckenthaler, M. U. Smad6 and Smad7 are co-regulated with hepcidin in mouse models of iron overload. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 2013, 1832(1), 76–84. https://doi.org/10.1016/j.bbadis.2012.08.013.Search in Google Scholar PubMed PubMed Central
Wally, J.; Buchanan, S. K. A structural comparison of human serum transferrin and human lactoferrin. BioMetals 2007, 20(3–4), 249–262. https://doi.org/10.1007/s10534-006-9062-7.Search in Google Scholar PubMed PubMed Central
Wang, C.-Y.; Babitt, J. L. Liver iron sensing and body iron homeostasis. Blood 2019, 133(1), 18–29. https://doi.org/10.1182/blood-2018-06-815894.Search in Google Scholar PubMed PubMed Central
Wang, S.; Chen, C.; Yu, L.; Mueller, J.; Rausch, V.; Mueller, S. Bone morphogenetic protein 6 – mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J. Biol. Chem. 2021, 297(6), 101378. https://doi.org/10.1016/j.jbc.2021.101378.Search in Google Scholar PubMed PubMed Central
Wang, Z.; Gao, H.; Zhang, Y.; Liu, G.; Niu, G.; Chen, X. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 2017, 11(4), 633–646. https://doi.org/10.1007/s11705-017-1620-8.Search in Google Scholar PubMed PubMed Central
White, C.; Yuan, X.; Schmidt, P. J.; Bresciani, E.; Samuel, T. K.; Campagna, D.; Hall, C.; Bishop, K.; Calicchio, M. L.; Lapierre, A.; Ward, D. M.; Liu, P.; Fleming, M. D.; Hamza, I. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metabol. 2013, 17(2), 261–270. https://doi.org/10.1016/j.cmet.2013.01.005.Search in Google Scholar PubMed PubMed Central
Wilkinson, N.; Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 2014, 5, 176. https://doi.org/10.3389/fphar.2014.00176.Search in Google Scholar PubMed PubMed Central
Williams, R. J. P. Bio-inorganic chemistry: its conceptual evolution. Coord. Chem. Rev. 1990, 100(C), 573–610. https://doi.org/10.1016/0010-8545(90)85020-S.Search in Google Scholar
Williams, R. J. P. Chemical selection of elements by cells. Coord. Chem. Rev. 2001, 216–217, 583–595. https://doi.org/10.1016/S0010-8545(00)00398-2.Search in Google Scholar
Williams, R. J. P.; Fraústo Da Silva, J. J. R. The distribution of elements in cells. Coord. Chem. Rev. 2000, 200–202, 247–348. https://doi.org/10.1016/S0010-8545(00)00324-6.Search in Google Scholar
Winn, N. C.; Volk, K. M.; Hasty, A. H. Regulation of tissue iron homeostasis: the macrophage “ferrostat”. JCI Insight 2020, 5, e132964. https://doi.org/10.1172/jci.insight.132964.Search in Google Scholar PubMed PubMed Central
Winterbourn, C. C. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013, 528, 3–25. https://doi.org/10.1016/B978-0-12-405881-1.00001-X.Search in Google Scholar PubMed
Woloshun, R. R.; Yu, Y.; Xu, X.; Lee, J. K.; Zhu, S.; Shine, J. S.; Ebea, P.; Stevens, B. R.; Vidyasagar, S.; Collins, J. F. Four AAs increase DMT1 abundance in duodenal brush-border membrane vesicles and enhance iron absorption in iron-deprived mice. Blood Adv. 2022, 6(10), 3011–3021. https://doi.org/10.1182/bloodadvances.2021005111.Search in Google Scholar PubMed PubMed Central
Woods, J.; Cederbaum, S. Myopathy, lactic acidosis and sideroblastic anemia 1 (MLASA1): a 25-year. Mol. Genet. Metabol. Rep. 2019, 21, 100517. https://doi.org/10.1016/j.ymgmr.2019.100517.Search in Google Scholar PubMed PubMed Central
Yaish, H. M.; Farrell, C. P.; Christensen, R. D.; MacQueen, B. C.; Jackson, L. K.; Trochez-Enciso, J.; Kaplan, J.; Ward, D. M.; Salah, W. K.; Phillips, J. D. Two novel mutations in TMPRSS6 associated with iron-refractory iron deficiency anemia in a mother and child. Blood Cell Mol. Dis. 2017, 65, 38–40. https://doi.org/10.1016/j.bcmd.2017.04.002.Search in Google Scholar PubMed PubMed Central
Yanatori, I.; Kishi, F. DMT1 and iron transport. Free Radic. Biol. Med. 2019, 133, 55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020.Search in Google Scholar PubMed
Yanatori, I.; Richardson, D. R.; Imada, K.; Kishi, F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J. Biol. Chem. 2016, 291(33), 17303–17318. https://doi.org/10.1074/JBC.M116.721936.Search in Google Scholar PubMed PubMed Central
Yanatori, I.; Richardson, D. R.; Toyokuni, S.; Kishi, F. The iron chaperone poly(RC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J. Biol. Chem. 2017, 292(32), 13205–13229. https://doi.org/10.1074/jbc.M117.776021.Search in Google Scholar PubMed PubMed Central
Yanatori, I.; Richardson, D. R.; Toyokuni, S.; Kishi, F. The new role of poly (RC)-binding proteins as iron transport chaperones: proteins that could couple with inter-organelle interactions to safely traffic iron. Biochim. Biophys. Acta Gen. Subj. 2020, 1864(11), 129685. https://doi.org/10.1016/J.BBAGEN.2020.129685.Search in Google Scholar PubMed
Yang, N.; Zhang, H.; Wang, M.; Hao, Q.; Sun, H. Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci. Rep. 2012, 2(1), 999. https://doi.org/10.1038/srep00999.Search in Google Scholar PubMed PubMed Central
Yildirim, F. T.; Benderlioğlu, E.; Kaçar, D.; Yaralı, N. A rare cause of sideroblastic anemia: TRNT1 mutation. Hematol. Transfus. Cell Ther. 2021, 43, S28–S29. https://doi.org/10.1016/j.htct.2021.10.1000.Search in Google Scholar
Zaichik, S.; Steinbring, C.; Friedl, J. D.; Bernkop-Schnürch, A. Development and in vitro characterization of transferrin-decorated nanoemulsion utilizing hydrophobic ion pairing for targeted cellular uptake. J. Pharmaceut. Innovat. 2021, 17, 690–700. https://doi.org/10.1007/s12247-021-09549-2.Search in Google Scholar
Zanella, I.; Ayton, S.; Piperno, A.; Alessio, M. Aceruloplasminemia: waiting for an efficient therapy. Front. Neurosci. 2018, 12, 903. https://doi.org/10.3389/fnins.2018.00903.Search in Google Scholar PubMed PubMed Central
Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012, 97(12), 1826–1835. https://doi.org/10.3324/haematol.2012.063974.Search in Google Scholar PubMed PubMed Central
Zhang, J.; Chambers, I.; Yun, S.; Phillips, J.; Krause, M.; Hamza, I. Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genet. 2018, 14(9), e1007665. https://doi.org/10.1371/journal.pgen.1007665.Search in Google Scholar PubMed PubMed Central
Zhou, L.; Chen, Y.; Li, Y.; Gharabaghi, S.; Chen, Y.; Sethi, S. K.; Wu, Y.; Haacke, E. M. Intracranial iron distribution and quantification in aceruloplasminemia: a case study. Magn. Reson. Imag. 2020, 70, 29–35. https://doi.org/10.1016/j.mri.2020.02.016.Search in Google Scholar PubMed
Zhou, Z. D.; Tan, E. K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 2017, 12(1), 1–12. https://doi.org/10.1186/s13024-017-0218-4.Search in Google Scholar PubMed PubMed Central
Zivot, A.; Lipton, J. M.; Narla, A.; Blanc, L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol. Med. 2018, 24(11), 1–15.10.1186/s10020-018-0011-zSearch in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands