Abstract
Numerous platinum group metals (PGMs) complexes contain azo-azomethine-based ligands. Azo-azomethine ligands are N-donor ligands that have extended conjugated π-bonded systems and both azo (–N=N–) and aldimine (–C=N–) functions in their structure. Plenty of platinum (Pt) complexes with azo-imine ligands have been prepared and characterized. Various multidentate azo-imine ligands coordinated with different platinum metal substrates afforded structurally diverse platinum chelates. Nonetheless, many azo-imine-based platinum complexes demonstrated a wide range of biological activities, photo-switchable properties, and redox activities. The review encompasses a general overview of platinum complexes with versatile azo-azomethine ligands, their synthetic protocol, spectroscopic and structural features, chemical reactivity, and multipurpose applications in different areas.
Acknowledgments
The authors are so thankful to Sewnarayan Rameswar Fatepuria College, Beldanga, Murshidabad, W.B. India & K. N. College, Berhampore, Murshidabad, W.B. India, Department of chemistry for providing the necessary facilities to complete this study.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abildgaard, J.; Hansen, E. P.; Josephsen, J.; Hansen, V. K. B.; Sørensen, O. H.; Larsen, S. Synthesis and characterization of nickel-palladium- and platinum(II) complexes of three o, o′-dihydroxydiarylazo dyes: determination of the coordination geometry of this comprehensive series of tridentate diaryl dye complexes by combining results from NMR and X-ray experiments with theoretical ab initio calculations. Inorg. Chim. Acta 2006, 359, 4493–4502; https://doi.org/10.1016/j.ica.2006.05.027.Search in Google Scholar
Alaghaz, A. M. A. -N.; Zayed, E. M.; Alharbi, A. S. Synthesis, spectral characterization, molecular modeling and antimicrobial studies of tridentate azo-dye Schiff base metal complexes. J. Mol. Struct. 2015, 1084, 36–45; https://doi.org/10.1016/j.molstruc.2014.12.013.Search in Google Scholar
Al-Adilee, J. K.; Hessoon, M. H. Synthesis, identification, structural, studies and biological activity of some transition metal complexes with novel heterocyclic azo-Schiff base ligand derived from benzimidazole. J. Chem. Pharmaceut. Res. 2015, 7, 89–103.Search in Google Scholar
Al-Adilee, J. K.; Dakheel, K. H. Synthesis, spectral and biological studies of Ni(II), Pd(II), and Pt(IV) complexes with new heterocyclic ligand derived from azo-Schiff bases dye. Eurasian J. Anal. Chem. 2018, 13(5); https://doi.org/10.29333/ejac/97267.Search in Google Scholar
Aldrich-Wright, R. J.; Deo, M. K.; Ang, L. D.; McGhie, B.; Rajamanickam, A.; Dhiman, A.; Khoury, A.; Holland, J.; Bjelosevic, A.; Pages, B.; Gordon, C. Platinum coordination compounds with potent anticancer activity. Coord. Chem. Rev. 2018, 375, 148–163; https://doi.org/10.1016/j.ccr.2017.11.014.Search in Google Scholar
Bandyopadhyay, P.; Acharya, S.; Kejriwal, A.; Biswas, N. A.; Das, P.; Neogi, N. D. Synthesis, characterization, X-ray structure and spectroscopic study of platinum(II) complexes with tridentate diazene ligands having O, N, S donor set. Inorg. Chim. Acta. 2013, 394, 757–764; https://doi.org/10.1016/j.ica.2012.09.041.Search in Google Scholar
Bednarsk, J. P.; Lemmerhirt, H.; Behnisch, S.; Bodtke, A.; Lillig, H. C. Effects of cytotoxic cis- and trans-diamminemonochlorido platinum(II) complexes on selenium-dependent redox enzymes and DNA. J. Inorg. Biochem. 2018, 178, 94–105; https://doi.org/10.1016/j.jinorgbio.2017.10.011.Search in Google Scholar PubMed
Brabec, V.; Hrabina, O.; Kasparkova, J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord. Chem. Rev. 2017, 351, 2–31; https://doi.org/10.1016/j.ccr.2017.04.013.Search in Google Scholar
Chai, K.; Jiang, Y.; Han, T.; Niu, J.; Zhang, H.; Zeng, M.; Zhang, L.; Duan, X.; Wang, J. Synthesis, DNA binding, topoisomerase I inhibition and antiproliferation activities of three new binuclear terpyridine platinum(II) complexes. Polyhedron 2019, 157, 124–130; https://doi.org/10.1016/j.poly.2018.09.053.Search in Google Scholar
Chakravarty, R. A.; Mitra, K.; Patil, S.; Kondaiah, P. 2-(Phenylazo)pyridineplatinum(II) catecholates showing photocytotoxicity, nuclear uptake, and glutathione-triggered ligand release. Inorg. Chem. 2015, 54, 253–264.10.1021/ic502317zSearch in Google Scholar PubMed
Chakravorty, A.; Bandyopadhyay, D.; Bandyopadhyay, P.; Albert Cotton, F.; Falvello, L. R. Isomeric bis[(phenylazo)acetaldoximato]platinum(11) compounds. Inorg. Chem. 1983, 22, 1315–1321; https://doi.org/10.1021/ic00151a010.Search in Google Scholar
Chakravorty, A.; Pal, C. K.; Chattopadhyay, S.; Sinha, C. Synthesis, structure, and solution equilibria of diamagnetic and paramagnetic azooximates of bivalent platinum. Geometrical change associated with ligand-based electroprotic reactions. Inorg. Chem 1994, 33, 6140–6147; https://doi.org/10.1021/ic00104a026.Search in Google Scholar
Chattopadhyay, S.; Maiti, N.; Pal, S. Reaction of 2-(phenylazo)aniline with Na2PdCl4: formation of a 2-(phenylazo)imino complex of bivalent palladium. Inorg. Chem 2001, 40, 2204–2205; https://doi.org/10.1021/ic000369p.Search in Google Scholar PubMed
Chattopadhyay, S.; Maiti, N. New azoiminato complexes of bivalent platinum: syntheses, characterization and structure. Int. J. Chem. 2003, 42, 2327–2331.Search in Google Scholar
Chattopadhyay, S.; Patra, D.; Pratihar, L. J.; Shee, B.; Pattanayak, P. Syntheses, characterisation and structure of new diazoketiminato chelates of palladium(II) incorporating a tridentate (N, N,N) azo ligand. Polyhedron 2006, 25, 2637–2642.10.1016/j.poly.2006.03.019Search in Google Scholar
Chattopadhyay, S.; Patra, D.; Pattanayak, P.; Pratihar, L. J. Synthesis, structure and properties of delocalized transition metal chelates: diazoketiminato chelates of Co(III) and Pt(II). Polyhedron 2007, 26, 5484–5490.10.1016/j.poly.2007.08.029Search in Google Scholar
Chattopadhyay, S.; Pattanayak, P.; Parua, P. S.; Patra, D.; Pratihar, L. J.; Brandão, P.; Felix, , V. Synthesis, characterizations and structure of orthometallated Pt(II) and Pt(IV) complexes: oxidative addition to C, N, N, O coordinated Pt(II) complexes. Polyhedron 2014, 70, 1–5; https://doi.org/10.1016/j.poly.2013.12.014.Search in Google Scholar
Coban, B.; Yıldız, U.; Şengül, A.; Irfan Kandemir, I.; Cömert, F. The comparative study of the DNA binding and biological activities of the quaternizeddicnq as a dicationic form and its platinum(II) heteroleptic cationic complex. Bioorg. Chem. 2019, 87, 70–77; https://doi.org/10.1016/j.bioorg.2019.03.009.Search in Google Scholar PubMed
Cope, C. A.; Siekman, W. R. Formation of covalent bonds from platinum or palladium to carbon by direct substitution. J. Am. Chem. Soc. 1965, 87, 3272–3273; https://doi.org/10.1021/ja01092a063.Search in Google Scholar
Farrell, P. N. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem. Soc. Rev. 2015, 44, 8773–8785; https://doi.org/10.1039/c5cs00201j.Search in Google Scholar PubMed
Goswami, S. Design and synthesis of a new binucleating ligand via cobalt-promoted C-N bond fusion reaction. Ligand isolation and its coordination to nickel, palladium, and platinum. Inorg. Chem 2003, 42, 5367–5375; https://doi.org/10.1021/ic034313h.Search in Google Scholar PubMed
Goswami, S.; Panda, M.; Das, S.; Mostafa, G.; Casti˜neiras, A. Platinum complexes of diazo ligands. Studies of regioselective aromatic ring amination, oxidative halogen addition and reductive halogen elimination reactions. Dalton Trans. 2005, 1249–1255; https://doi.org/10.1039/b418470j.Search in Google Scholar PubMed
Gümüş, F.; Gozelle, M.; Süloğlu, K. A.; Selmanoğlu, G.; Ramazanoğlu, N. Studies on the synthesis, characterization, cytotoxic activities and plasmid DNA binding of platinum(II) complexes having 2-subsituted benzimidazole ligands. Polyhedron 2019, 161, 298–308; https://doi.org/10.1016/j.poly.2019.01.028.Search in Google Scholar
Herrera, M. J.; Mendes, F.; Gama, S.; Santos, I.; Ranninger, N. C.; Cabrera, S.; Quiroga, G. A. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg. Chem. 2014, 53, 12627–12634; https://doi.org/10.1021/ic502373n.Search in Google Scholar PubMed
Hao, Z.; Liu, Y.; Huang, Y.; Meng, F.; Wang, Y.; Tan, H.; Su, S.; Zhu, W. Synthesis and optoelectronic properties of dinuclear cyclometalated platinum (II) complexes containing naphthalene-functionalized carbazole groups in the single-emissive-layer WPLEDs. J. Organomet. Chem. 2017, 835, 52–59; https://doi.org/10.1016/j.jorganchem.2017.02.018.Search in Google Scholar
Hashemi, M.; Solati, Z.; Ghodsi, A.; Ahmadian, S. Azo-substituted Schiff base complex of Pt(II): synthesis, characterization, DFT and TD-DFT study. Synth. Met. 2015, 210, 398–403; https://doi.org/10.1016/j.synthmet.2015.10.029.Search in Google Scholar
Hussein, A-K. K.; Khalid, J. Al-A. Synthesis, spectral characterization, antimicrobial evaluation studies and cytotoxic activity of some transition metal complexes with tridentate (N, N, O) donor azo dye ligand. Res. Chem. 2021, 3, 100245; https://doi.org/10.1016/j.rechem.2021.100245.Search in Google Scholar
Kasparkova, J.; Pracharova, J.; Zerzankova, L.; Stepankova, J.; Novakova, O.; Farrer, J. N.; Sadler, J. P.; Brabec, V. Interactions of DNA with a new platinum(IV) azide dipyridine complex activated by UVA and visible light: relationship to toxicity in tumor cells. J. Chem. Res. Toxicol 2012, 25, 099–1111.10.1021/tx300057ySearch in Google Scholar PubMed
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. 2007, 7, 573–584; https://doi.org/10.1038/nrc2167.Search in Google Scholar PubMed
K-Terajima, C.; Mutoh, N.; Sasada, Y.; Anjo, K. Cyclometalation reactions of platinum complexes with azo- and imine-based ligands: ligand-dependent and water-induced C–H activation. J. Organomet. Chem. 2020, 928, 121548; https://doi.org/10.1016/j.jorganchem.2020.121548.Search in Google Scholar
Lalinde, E.; Diez, A.; Moreno, T. M. Heteropolynuclearcycloplatinated complexes: structural and photophysical properties. Coord. Chem. Rev. 2011, 255, 2426–2447; https://doi.org/10.1016/j.ccr.2010.12.024.Search in Google Scholar
Laskar, R. I.; Pasha, S. S.; Das, P.; Rath, P. N.; Bandyopadhyay, D. Water soluble luminescent cyclometalated platinum (II) complex—a suitable probe for bio-imaging applications. Inorg. Chem. Commun. 2016, 67, 107–111; https://doi.org/10.1016/j.inoche.2016.03.017.Search in Google Scholar
Lippard, J. S.; Graf, N. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 993–1004; https://doi.org/10.1016/j.addr.2012.01.007.Search in Google Scholar PubMed PubMed Central
Lippard, J. S.; Johnstone, C. T.; Suntharalingam, K. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev 2016, 116, 3436–3486; https://doi.org/10.1021/acs.chemrev.5b00597.Search in Google Scholar PubMed PubMed Central
Mandal, S.; Paul, N.; Banerjee, P.; Mondal, T. K.; Goswami, S. 1,4-Alkyl migration associated with simultaneous S–C bond cleavage and N–C bond formation in platinum complexes of 2-aminothioethers. Characterization of intramolecular interligand charge transfer phenomenon. Dalton Trans. 2010, 39, 2717–2726.10.1039/b918336aSearch in Google Scholar PubMed
Mitra, K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans. 2016, 45, 19157–19171; https://doi.org/10.1039/c6dt03665a.Search in Google Scholar PubMed
Pratihar, J. L.; Mandal, P.; Lin, C-H.; Brandão, P.; Mal, D.; Felix, V. Synthesis, characterization, structure and catalytic activity of (NNN) tridentate azo-imine nickel(II), palladium(II) and platinum(II) complexes. Polyhedron 2016, 106, 171–177; https://doi.org/10.1016/j.poly.2015.12.050.Search in Google Scholar
Pratihar, L. J.; Mandal, P.; Lin, C-H.; Lai, C.-K.; Mal, D. Azo-amide palladium(II) complexes: synthesis, characterization and application in C–C cross-coupling reactions. Polyhedron 2017, 135, 224–230; https://doi.org/10.1016/j.poly.2017.06.055.Search in Google Scholar
Pratihar, L. J.; Mandal, P.; Lin, C. -H. Synthesis, characterization, structure and redox property of azo-amido and orthometallated azo-imine platinum(II) complexes. Polyhedron 2019, 173, 114102; https://doi.org/10.1016/j.poly.2019.07.047.Search in Google Scholar
Puddephatt, J. P.; Mohamed, E. M.; McCready, M. S. Switching by photochemical trans–cis isomerization of azobenzene substituents in organoplatinum complexes. Organometallics 2012, 31, 6262–6269; https://doi.org/10.1021/om3005405.Search in Google Scholar
Puddephatt, R. J.; Mohamed, E. M.; Paul, D. B. Photoswitchable organoplatinum complexes containing an azobenzene derivative of 3,6-di(2-pyridyl)pyridazine. Can. J. Chem. 2014, 92, 706–715.10.1139/cjc-2013-0588Search in Google Scholar
Puddephatt, R. J.; Moustafa, M. E.; Boyle, P. D. Photoswitchable organoplatinum complexes with an azobenzene derivative of di-2-pyridylamine. New J. Chem. 2020, 44, 2882–2889.10.1039/C9NJ05313ASearch in Google Scholar
Richard, J. P.; Mohamed, E. M.; McCready, M. S. Switching by photochemical trans−cis isomerization of AzobenzeneSubstituents in organoplatinum complexes. Organometallics 2012, 31, 6262–6269; https://doi.org/10.1021/om3005405.Search in Google Scholar
Rimoldi, I.; Facchetti, G. Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg. Med. Chem. Lett. 2019, 29, 1257–1263; https://doi.org/10.1016/j.bmcl.2019.03.045.Search in Google Scholar PubMed
Sadler, J. P.; Farrer, J. N.; Woods, J.; Salassa, L.; Zhao, Y.; Robinson, K. S.; Clarkson, G.; Mackay, S. F. A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angew. Chem. Int. Ed. 2010, 49, 8905–8908; https://doi.org/10.1002/anie.201003399.Search in Google Scholar PubMed
Sarkar, B.; Roy, S.; Hartenbach, I. Structures, redox and spectroscopic properties of PdII and PtII complexes containing an azo functionality. Eur. J. Inorg. Chem. 2009a, 17, 2553–2558; https://doi.org/10.1002/ejic.200900419.Search in Google Scholar
Sarkar, B.; Hubner, R.; Pattacini, R.; Hartenbach, I. Combining two non-innocent ligands in isomeric complexes [Pt(pap)mQn]0 (pap = phenylazopyridine, Q = 3, 5-di-tert-butyl-benzoquinone. Dalton Trans. 2009b, 24, 4653–4655; https://doi.org/10.1039/b902645b.Search in Google Scholar PubMed
Sarkar, B.; Deibel, N.; Schweinfurth, D.; Fiedler, J.; Zalis, S. Isomeric separation in donor-acceptor systems of Pd(II) and Pt(II) and a combined structural, electrochemical and spectroelectrochemical study. Dalton Trans. 2011, 40, 9925–9934; https://doi.org/10.1039/c1dt10856e.Search in Google Scholar PubMed
Sengupta, D.; Goswami, S.; Banerjee, R.; Guberman-Pfeffer, M. J.; Patra, A.; Dutta, A.; Pramanick, R.; Narasimhan, S.; Pradhan, N.; Batista, V.; Venkatesan, T.; Goswami, S. Size-selective Pt siderophores based on redox-active azo-aromatic ligands. Chem. Sci. 2020, 11, 9226–9236; https://doi.org/10.1039/d0sc02683b.Search in Google Scholar PubMed PubMed Central
Sinha, C.; Misra, K. T.; Das, D.; Ghosh, P.; Pal, K. C. Chemistry of azoimidazoles: synthesis, spectral characterization, electrochemical studies, and X-ray crystal structures of isomeric dichloro bis[1-alkyl-2-(arylazo)imidazole] complexes of ruthenium(II). Inorg. Chem 1998, 37, 1672–1678; https://doi.org/10.1021/ic970446p.Search in Google Scholar
Sinha, C.; Santra, K. P.; Das, D.; Misra.Roy R., K. T.; Peng, S-M. Chemistry of azopyrimidines, synthesis, spectral characterization, electrochemistry and X-ray crystal structure of bis[2-(arylazo)pyrimidine] complexes of copper(I). Polyhedron 1999, 18, 1909–1915; https://doi.org/10.1016/s0277-5387(99)00085-6.Search in Google Scholar
Sinha, C.; Pal, S.; Das, D.; Chattopadhyay, P.; Panneerselvam, K.; Lu, T-H. Synthesis, spectral and electrochemical properties of 1-alkyl-2-(naphthyl-β-azo)imidazole complexes of platinum(II) and the reaction with pyridine bases. Single-crystal X-ray structure of dichloro-[1-ethyl-2-(naphthyl-β-azo)imidazole]platinum(II). Polyhedron. 2000, 19, 1263–1270.10.1016/S0277-5387(00)00385-5Search in Google Scholar
Sinha, C.; Rauth, K. G.; Pal, S.; Das, D.; Slawin, Z. M. A.; Woollins, D. J. Synthesis, spectral characterization and electrochemical studies of mixed-ligand complexes of platinum(II) with 2-(arylazo)pyridines and catechols. Single-crystal X-ray structure of dichloro{2-(phenylazo) pyridine}platinum(II). Polyhedron 2001, 20, 363–372; https://doi.org/10.1016/s0277-5387(00)00530-1.Search in Google Scholar
Sinha, C.; Senapoti, S.; Jasimuddin, Sk.; Mostafa, G.; Lu, H. T. Coupling of arylamine with coordinated arylazopyrimidine in platinum(II) complexes. Single crystal X-ray structure, spectra and electrochemistry. Polyhedron 2006, 25, 1571–1578; https://doi.org/10.1016/j.poly.2005.10.035.Search in Google Scholar
Sinha, C.; Sen, C.; Patra, C.; Mondol, S.; Datta, A.; Mallick, D.; Mondal, K. T.; Askun, T.; Celikboyun, P.; Cantürk, Z. Platinum(II)-azoimidazole drugs against TB and cancer: structural studies, cytotoxicity and anti-mycobacterial activity. Polyhedron 2018, 152, 1–10; https://doi.org/10.1016/j.poly.2018.05.062.Search in Google Scholar
Taylor, A.; Branch, S.; Day, P. M.; Patriarcac, M.; Whited, M. Atomic spectrometry update. Clinical and biological materials, foods and beverages. J. Anal. A Spectrom. 2009, 24, 535–579; https://doi.org/10.1039/b901500k.Search in Google Scholar
Teets, S. T.; Mu, G.; Cong, L.; Wen, Z.; Wu, I-Chia J.; Kadish, M. K. Homoleptic platinum azo-iminate complexes via hydrogenative cleavage of formazans. Inorg. Chem 2018, 57, 9468–9477; https://doi.org/10.1021/acs.inorgchem.8b01456.Search in Google Scholar PubMed
Todd, C. R.; Lippard, J. S. Structure of duplex DNA containing the cisplatin 1, 2-{Pt(NH3)2}2+-d(GpG) cross-link at 1.77 Å resolution. J. Inorg. Biochem. 2010, 104, 902–908; https://doi.org/10.1016/j.jinorgbio.2010.04.005.Search in Google Scholar PubMed PubMed Central
Tümer, M.; Onur, S.; Güngor, S. A.; Tümer, F. The color, photophysical and electrochemical properties of azo-imineligands and their copper(II) and platinium(II) complexes. J. Mol. Struct. 2020, 127135, 1200; https://doi.org/10.1016/j.molstruc.2019.127135.Search in Google Scholar
Wang, J.; Chai, K.; Jiang, Y.; Han, T.; Niu, J.; Zhang, H.; Zeng, M.; Zhang, L.; Duan, X. Synthesis, DNA binding, topoisomerase I inhibition and antiproliferation activities of three new binuclear terpyridine platinum(II) complexes. Polyhedron 2019, 157, 124–130; https://doi.org/10.1016/j.poly.2018.09.053.Search in Google Scholar
Wang, X.; Wang, X.; Guo, Z. Functionalization of platinum complexes for biomedical applications. Acc. Chem. Res. 2015, 48, 2622–2631; https://doi.org/10.1021/acs.accounts.5b00203.Search in Google Scholar PubMed
Wheate, J. N.; Walker, S.; Craig, E. G.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127; https://doi.org/10.1039/c0dt00292e.Search in Google Scholar PubMed
Wang, Q.; Huang, Z.; Ma, J.; Lu, X.; Zhang, L.; Wang, X.; Wang, G. P. Design, synthesis and biological evaluation of a novel series of glycosylated platinum(iv) complexes as antitumor agents. Dalton Trans. 2016, 45, 10366–10374; https://doi.org/10.1039/c6dt01562j.Search in Google Scholar PubMed
Williams, G. A. J.; Develay, S.; Rochester, L. D.; Murphy, L. Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs). Coord. Chem. Rev. 2008, 252, 2596–2611; https://doi.org/10.1016/j.ccr.2008.03.014.Search in Google Scholar
Xu, X.; Li, -S. Y.; Peng, B.; Ma, L.; Cao, -L. S.; Bai, L. L.; Yang, C-R.; Meng, Y-Y. Synthesis, crystal structures and antitumor activity of two platinum(II) complexes with methyl hydrazinecarbodithioate derivatives of indolin-2-one. Eur. J. Med. Chem. 2017, 127, 137–146; https://doi.org/10.1016/j.ejmech.2016.12.050.Search in Google Scholar PubMed
Yam, W. W. V.; Wong, M. C. K.; Tang, S. W.; LuZhu, X. X. N. Functionalized platinum(II) terpyridyl alkynyl complexes as colorimetric and luminescence pH sensors. Inorg. Chem. 2005, 44, 1492–1498; https://doi.org/10.1021/ic049079p.Search in Google Scholar PubMed
Zhu, W.; Hao, Z.; Liu, Y.; Huang, Y.; Meng, F. Synthesis and optoelectronic properties of dinuclearcyclometalated platinum (II) complexes containing naphthalene-functionalized carbazole groups in the single-emissive-layer WPLEDs. J. Organomet. Chem. 2017, 835, 52–59.10.1016/j.jorganchem.2017.02.018Search in Google Scholar
Zhu, Y.; Luo, K.; Li, X.; Wang, H.; Yang, C.; Ni, H.; Li, Q. Four new binuclear platinum (II) complexes with 2-(1H)-quinolinone as bridging ligands: synthesis, crystal structure and photophysical properties. J. Lumin. 2018, 204, 296–302; https://doi.org/10.1016/j.jlumin.2018.08.010.Search in Google Scholar
Zoubi, A. W.; A-Hamdani, S. A. A.; Ahmed, D. S.; Ko, G. Y. A new azo-Schiff base: synthesis, characterization, biological activity and theoretical studies of its complexes. Appl. Organomet. Chem. 2017, 32, e3895; https://doi.org/10.1002/aoc.3895.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands