Home Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives
Article
Licensed
Unlicensed Requires Authentication

Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives

  • Saeed Akhtar Bhatti

    Saeed Akhtar Bhatti Dr. Bhatti has done M.Sc and M.Phil degree in Defense & Strategic studies from Karachi University, and Quaid-e-Azam University, Pakistan respectively. Dr. Bhatti is also Gold medalist in Master in Communication Studies (Conflict Management) from USA. He also completed his PhD on “Chemical and biological Threat” from Quaid-e-Azam University Islamabad. Dr. Bhati has vast experience in Chem-bio defense policies.

    , Fida Hussain Memon

    Fida Hussain Memon Dr. Memon is currently working as a faculty member at Sukkur IBA University, Sindh, Pakistan. He obtained his B.Sc and M.Sc degree in electrical engineering from Sukkur IBA University, Sindh, Pakistan. His current research focus on nanomaterials, nanotechnology, renewable energy includes applications of graphene-based energy storage devices.

    , Faisal Rehman

    Faisal Rehman Mr. Faisal Rehman is working as Research Associate at College of EME, National University of Sciences and Technology (NUST), Islamabad, Pakistan. He has completed M.E (Electronics System Design) from Sukkur IBA University, Pakistan and Master of Science (MS) degree in Digital Fabrication Design from Massachusetts Institute of Technology (MIT), USA. His research interests are Bio Chip, Material Engineering, 2D Materials, Bio Electronics, Nano Electronics, Micro Electronics, Embedded Electronics, CAD Design CNC Machining, 3D design and Fabrication, and Micro Electromechanical Systems.

    ORCID logo
    , Zubeda Bhatti , Tehsin Naqvi

    Tehsin Naqvi Dr. Muhammad Tehsin is a tenure-track Assistant Professor at the Department of Defence and Strategic Studies at Quaid-I-Azam University in Islamabad, Pakistan. He was awarded Ph.D in International Relations by the University of Vienna, focusing on Iranian Nuclear Proliferation as well as nuclear proliferation throughout the Middle East.

    EMAIL logo
    and Khalid Hussain Thebo

    Khalid Hussain Thebo Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene- based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, Mxene & Metal Chalcogenides); membrane science/ technology for drinking water purification and wastewater reuse, gas membranes; proton exchange membranes and photocatalysis.

    EMAIL logo
Published/Copyright: October 11, 2021

Abstract

Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.


Corresponding authors: Tehsin Naqvi, Department of Defence & Strategic Studies, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan, E-mail: ; and Khalid Hussain Thebo, Institute of Metal Research, Chinese Academy of Sciences (UCAS), Shenyang, China, E-mail:

Funding source: Quaid-i-Azam University Islamabad

Funding source: National University of Science and Technology (NUST)

Funding source: Sukkur IBA University

Funding source: Shah Abdul Latif University Khairpur Mirs, Pakistan

Funding source: University of Chinese Academy of Sciences (UCAS)

About the authors

Saeed Akhtar Bhatti

Saeed Akhtar Bhatti Dr. Bhatti has done M.Sc and M.Phil degree in Defense & Strategic studies from Karachi University, and Quaid-e-Azam University, Pakistan respectively. Dr. Bhatti is also Gold medalist in Master in Communication Studies (Conflict Management) from USA. He also completed his PhD on “Chemical and biological Threat” from Quaid-e-Azam University Islamabad. Dr. Bhati has vast experience in Chem-bio defense policies.

Fida Hussain Memon

Fida Hussain Memon Dr. Memon is currently working as a faculty member at Sukkur IBA University, Sindh, Pakistan. He obtained his B.Sc and M.Sc degree in electrical engineering from Sukkur IBA University, Sindh, Pakistan. His current research focus on nanomaterials, nanotechnology, renewable energy includes applications of graphene-based energy storage devices.

Faisal Rehman

Faisal Rehman Mr. Faisal Rehman is working as Research Associate at College of EME, National University of Sciences and Technology (NUST), Islamabad, Pakistan. He has completed M.E (Electronics System Design) from Sukkur IBA University, Pakistan and Master of Science (MS) degree in Digital Fabrication Design from Massachusetts Institute of Technology (MIT), USA. His research interests are Bio Chip, Material Engineering, 2D Materials, Bio Electronics, Nano Electronics, Micro Electronics, Embedded Electronics, CAD Design CNC Machining, 3D design and Fabrication, and Micro Electromechanical Systems.

Tehsin Naqvi

Tehsin Naqvi Dr. Muhammad Tehsin is a tenure-track Assistant Professor at the Department of Defence and Strategic Studies at Quaid-I-Azam University in Islamabad, Pakistan. He was awarded Ph.D in International Relations by the University of Vienna, focusing on Iranian Nuclear Proliferation as well as nuclear proliferation throughout the Middle East.

Khalid Hussain Thebo

Khalid Hussain Thebo Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene- based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, Mxene & Metal Chalcogenides); membrane science/ technology for drinking water purification and wastewater reuse, gas membranes; proton exchange membranes and photocatalysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Quaid-i-Azam University Islamabad, National University of Science and Technology (NUST), Sukkur IBA University, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan, and University of Chinese Academy of Sciences (UCAS), Beijing China.

  3. Conflict of interest statement: The authors declare no competing financial interest.

References

Ahmed Janjhi, F.; Chandio, I.; Ali Memon, A.; Ahmed, Z.; Hussain Thebo, K.; Ali Ayaz Pirzado, A.; Hakro, A. A.; Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Separ. Purif. Technol. 2020, 274, 117969; https://doi.org/10.1016/j.seppur.2020.117969.Search in Google Scholar

Ahmed, Z.; Rehman, F.; Ali, U.; Ali, A.; Iqbal, M.; Thebo, K. H. Recent advances in MXene-based separation membranes. ChemBioEng Rev. 2021, 8(2), 110–120; https://doi.org/10.1002/cben.202000026.Search in Google Scholar

Ali, A.; Aamir, M.; Thebo, K. H.; Akhtar, J. Laminar graphene oxide membranes towards selective ionic and molecular separations: challenges and progress. Chem. Rec. 2020, 20(4), 344–354; https://doi.org/10.1002/tcr.201900024.Search in Google Scholar PubMed

Ali, Z.; Mehmood, M.; Ahmad, J.; Li, X.; Majeed, A.; Tabassum, H.; Hou, P.-X.; Liu, C. A platelet graphitic nanofiber-carbon nanotube hybrid for efficient oxygen evolution reaction. ChemCatChem 2020a, 12(1), 360–365; https://doi.org/10.1002/cctc.201901462.Search in Google Scholar

Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 2020b, 259, 126831; https://doi.org/10.1016/j.matlet.2019.126831.Search in Google Scholar

Ali, A.; Pothu, R.; Siyal, S. H.; Phulpoto, S.; Sajjad, M.; Thebo, K. H. Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2019, 2(1), 83–88; https://doi.org/10.1016/j.mset.2018.11.002.Search in Google Scholar

Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Express 2019, 6(10), 105627; https://doi.org/10.1088/2053-1591/ab41d4.Search in Google Scholar

Amitai, G.; Murata, H.; Andersen, J. D.; Koepsel, R. R.; Russell, A. J. Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 2010, 31(15), 4417–4425; https://doi.org/10.1016/j.biomaterials.2010.02.004.Search in Google Scholar PubMed

Bailey, M. M.; Heddleston, J. M.; Davis, J.; Staymates, J. L.; Hight Walker, A. R. Functionalized, carbon nanotube material for the catalytic degradation of organophosphate nerve agents. Nano Res. 2014, 7(3), 390–398; https://doi.org/10.1007/s12274-014-0405-3.Search in Google Scholar

Baker, D. J.; Jones, K. A.; Mobbs, S. F.; Sepai, O.; Morgan, D.; Murray, V. S. Safe management of mass fatalities following chemical, biological, and radiological incidents. Prehospital Disaster Med. 2009, 24(3), 180–188; https://doi.org/10.1017/s1049023x00006786.Search in Google Scholar PubMed

Bandala, E. R.; Velasco, Y.; Torres, L. G. Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J. Hazard. Mater. 2008, 160(2–3), 402–407; https://doi.org/10.1016/j.jhazmat.2008.03.011.Search in Google Scholar PubMed

Bigley, A. N.; Raushel, F. M. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem. Biol. Interact. 2019, 308, 80–88; https://doi.org/10.1016/j.cbi.2019.05.023.Search in Google Scholar PubMed PubMed Central

Bjarnason, S.; Mikler, J.; Hill, I.; Tenn, C.; Garrett, M.; Caddy, N.; Sawyer, T. W. Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Hum. Exp. Toxicol. 2008, 27(3), 253–261; https://doi.org/10.1177/0960327108090269.Search in Google Scholar PubMed

Capoun, T.; Krykorkova, J. Study of decomposition of chemical warfare agents using solid decontamination substances. Toxics 2019, 7(4), 63; https://doi.org/10.3390/toxics7040063.Search in Google Scholar PubMed PubMed Central

Chan, W. C. W. Nano research for COVID-19. ACS Nano 2020, 14(4), 3719–3720; https://doi.org/10.1021/acsnano.0c02540.Search in Google Scholar PubMed PubMed Central

Chandio, I.; Janjhi, F. A.; Memon, A. A.; Memon, S.; Ali, Z.; Thebo, K. H.; Pirzadod, A. A. A.; Hakro, A. A.; Khan, W. S. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2020, 500, 114848; https://doi.org/10.1016/j.desal.2020.114848.Search in Google Scholar

Chen, Y.-N.; Hsueh, Y.-H.; Hsieh, C.-T.; Tzou, D.-Y.; Chang, P.-L. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Environ. Res. Publ. Health 2016, 13(4), 430; https://doi.org/10.3390/ijerph13040430.Search in Google Scholar PubMed PubMed Central

Claudot, J.; Soubeyrand-Lenoir, E.; Maurin, G. Competitive adsorption of water and chemical warfare agents on transition metal embedded graphene. Appl. Surf. Sci. 2021, 551, 149433; https://doi.org/10.1016/j.apsusc.2021.149433.Search in Google Scholar

Colino, C. I.; Millán, C. G.; Lanao, J. M. Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int. J. Mol. Sci. 2018, 19(6), 1627; https://doi.org/10.3390/ijms19061627.Search in Google Scholar PubMed PubMed Central

Denet, E.; Espina-Benitez, M. B.; Pitault, I.; Pollet, T.; Blaha, D.; Bolzinger, M.-A.; Rodriguez-Nava, V.; Briançon, S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int. J. Pharm. 2020, 583, 119373; https://doi.org/10.1016/j.ijpharm.2020.119373.Search in Google Scholar PubMed

Deshmukh, S. P.; Patil, S. M.; Mullani, S. B.; Delekar, S. D. Silver nanoparticles as an effective disinfectant: a review. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 954–965; https://doi.org/10.1016/j.msec.2018.12.102.Search in Google Scholar PubMed PubMed Central

Devereaux, A.; Amundson, D. E.; Parrish, J. S.; Lazarus, A. A. Vesicants and nerve agents in chemical warfare. Decontamination and treatment strategies for a changed world. Postgrad. Med. 2002, 112(4), 90–96; https://doi.org/10.3810/pgm.2002.10.1334.Search in Google Scholar PubMed

Fang, Y.; Huang, X. J.; Chen, P. C.; Xu, Z. K. Polymer materials for enzyme immobilization and their application in bioreactors. BMB Rep. 2011, 44(2), 87–95; https://doi.org/10.5483/BMBRep.2011.44.2.87.Search in Google Scholar PubMed

Gatoo, M. A.; Naseem, S.; Arfat, M. Y.; Mahmood Dar, A.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Int. 2014, 2014, 498420; https://doi.org/10.1155/2014/498420.Search in Google Scholar PubMed PubMed Central

Geraci, M. J. Mustard gas: imminent danger or eminent threat? Ann. Pharmacother. 2008, 42(2), 237–246; https://doi.org/10.1345/aph.1K445.Search in Google Scholar PubMed

Ghanem, E.; Raushel, F. M. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol. Appl. Pharmacol. 2005, 207(Suppl. 2), 459–470; https://doi.org/10.1016/j.taap.2005.02.025.Search in Google Scholar PubMed

Gopinath, P. M.; Dhanasekaran, D.; Ranjani, A.; Thajuddin, N.; Akbarsha, M. A.; Velmurugan, M.; Panneerselvam, A. Optimization of sporicidal activity and environmental Bacillus endospores decontamination by biogenic silver nanoparticle. Future Microbiol 2015, 10(5), 725–741; https://doi.org/10.2217/fmb.14.150.Search in Google Scholar PubMed

Grimsley, J. K.; Scholtz, J. M.; Pace, C. N.; Wild, J. R. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry 1997, 36(47), 14366–14374; https://doi.org/10.1021/bi971596e.Search in Google Scholar PubMed

Grover, N.; Dinu, C. Z.; Kane, R. S.; Dordick, J. S. Enzyme-based formulations for decontamination: current state and perspectives. Appl. Microbiol. Biotechnol. 2013, 97(8), 3293–3300; https://doi.org/10.1007/s00253-013-4797-x.Search in Google Scholar PubMed

Hamilton, M. G.; Hill, I.; Conley, J.; Sawyer, T. W.; Caneva, D. C.; Lundy, P. M. Clinical aspects of percutaneous poisoning by the chemical warfare agent VX: effects of application site and decontamination. Mil. Med. 2004, 169(11), 856–862; https://doi.org/10.7205/milmed.169.11.856.Search in Google Scholar PubMed

Han, Q.; Yang, L.; Liang, Q.; Ding, M. Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon 2017, 122, 556–563; https://doi.org/10.1016/j.carbon.2017.05.031.Search in Google Scholar

Henych, J.; Štengl, V.; Mattsson, A.; Tolasz, J.; Österlund, L. Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation. J. Hazard. Mater. 2018, 359, 482–490; https://doi.org/10.1016/j.jhazmat.2018.07.095.Search in Google Scholar PubMed

Holdren, S.; Tsyshevsky, R.; Fears, K.; Owrutsky, J.; Wu, T.; Wang, X.; Eichhorn, B. W.; Kuklja, M. M.; Zachariah, M. R. Adsorption and destruction of the G-series nerve agent simulant dimethyl methylphosphonate on zinc oxide. ACS Catal. 2019, 9(2), 902–911; https://doi.org/10.1021/acscatal.8b02999.Search in Google Scholar

Huang, H. J.; Zhen, S.-Y.; Li, P.-Y.; Tzeng, S.-D.; Chiang, H.-P. Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction. Opt. Express 2016, 24(14), 15603–15608; https://doi.org/10.1364/OE.24.015603.Search in Google Scholar PubMed

Hussain, S.; Li, Y.; Thebo, K. H.; Ali, Z.; Owais, M.; Hussain, S. Effect of iron oxide co-doping on structural, thermal, and electrochemical properties of samarium doped ceria solid electrolyte. Mater. Chem. Phys. 2021, 267, 124576; https://doi.org/10.1016/j.matchemphys.2021.124576.Search in Google Scholar

Iqbal, M.; Ali, A.; Ahmad, K. S.; Rana, F. M.; Khan, J.; Khan, K.; Thebo, K. H. Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Appl. Sci. 2019a, 1(6), 647; https://doi.org/10.1007/s42452-019-0663-5.Search in Google Scholar

Iqbal, M.; Ali, A.; Nahyoon, N. A.; Majeed, A.; Pothu, R.; Phulpoto, S.; Thebo, K. H. Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater. Sci. Energy Technol. 2019b, 2(1), 41–45; https://doi.org/10.1016/j.mset.2018.09.002.Search in Google Scholar

Iqbal, M.; Ibrar, A.; Ali, A.; Rehman, F.; Jatoi, A. H.; Jatoi, W. B.; Phulpoto, S. N.; Thebo, K. H. Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance. Environ. Technol. 2020a, 4(1), 1–8; https://doi.org/10.1080/09593330.2020.1850880.Search in Google Scholar PubMed

Iqbal, M.; Thebo, A. A.; Jatoi, W. B.; Tabassum, M. T.; Rehman, M. U.; Thebo, K. H.; Mohsin, M. A.; Ullah, S.; Jatoi, A. H.; Shah, I. Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 2020b, 116, 107902; https://doi.org/10.1016/j.inoche.2020.107902.Search in Google Scholar

Iqbal, M.; Thebo, A. A.; Shah, A. H.; Iqbal, A.; Thebo, K. H.; Phulpoto, S.; Mohsin, M. A. Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg. Chem. Commun. 2017, 76, 71–76; https://doi.org/10.1016/j.inoche.2016.11.023.Search in Google Scholar

Jaffri, S. B.; Ahmad, K. S.; Thebo, K. H.; Rehman, F. Sustainability consolidation via employment of biomimetic ecomaterials with an accentuated photo-catalytic potential: emerging progressions. Rev. Inorg. Chem. 2020, 41, 131–150; https://doi.org/10.1515/revic-2020-0018.Search in Google Scholar

Jang, S.; Ka, D.; Jung, H.; Kim, M.-K.; Jung, H.; Jin, Y. Zr(OH)4/GO nanocomposite for the degradation of nerve agent soman (GD) in high-humidity environments. Materials 2020, 13(13), 2954; https://doi.org/10.3390/ma13132954.Search in Google Scholar PubMed PubMed Central

Khan, J.; Ullah, H.; Sajjad, M.; Ali, A.; Thebo, K. H. Synthesis, characterization and electrochemical performance of cobalt fluoride nanoparticles by reverse micro-emulsion method. Inorg. Chem. Commun. 2018, 98, 132–140; https://doi.org/10.1016/j.inoche.2018.10.018.Search in Google Scholar

Khan, J.; Ullah, H.; Sajjad, M.; Bahadar, A.; Bhatti, Z.; Soomro, F.; Memon, F. H.; Iqbal, M.; Rehman, F.; Hussain Thebo, K. High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance. Inorg. Chem. Commun. 2021, 130, 108751; https://doi.org/10.1016/j.inoche.2021.108751.Search in Google Scholar

Khan, J.; Ullah, H.; Sajjad, M.; Jatoi, W. B.; Ali, A.; Khan, K.; Thebo, K. H. Controlled synthesis of ammonium manganese tri-fluoride nanoparticles with enhanced electrochemical performance. Mater. Res. Express 2019, 6(7), 075074; https://doi.org/10.1088/2053-1591/ab18bb.Search in Google Scholar

Khan, K.; Tareen, A. K.; Aslam, M.; Thebo, K. H.; Khan, U.; Wang, R.; Shams, S. S.; Han, Z.; Ouyang, Z. A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst. Prog. Solid State Chem. 2019, 54, 1–19; https://doi.org/10.1016/j.progsolidstchem.2018.12.001.Search in Google Scholar

Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 2018, 123, 505–526; https://doi.org/10.1016/j.micpath.2018.08.008.Search in Google Scholar PubMed

Koenig, K. L. Preparedness for terrorism: managing nuclear, biological and chemical threats. Ann. Acad. Med. Singapore 2009, 38(12), 1026–1030.10.47102/annals-acadmedsg.V38N12p1026Search in Google Scholar

Krause, J.; McDonnell, G.; Riedesel, H. Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide. Contemp. Top. Lab. Anim. Sci. 2001, 40(6), 18–21.Search in Google Scholar

Kumar, A.; Sharma, K.; Dixit, A. R. Role of graphene in biosensor and protective textile against viruses. Med. Hypotheses 2020, 144, 110253; https://doi.org/10.1016/j.mehy.2020.110253.Search in Google Scholar PubMed PubMed Central

Kumar, V.; Goel, R.; Chawla, R.; Silambarasan, M.; Sharma, R. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective. Journal of Pharmacy And Bioallied Sciences 2010, 2(3), 220–2238; doi: https://doi.org/10.4103/0975-7406.68505.Search in Google Scholar PubMed PubMed Central

Kumar Raghav, P.; Mohanty, S. Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med. Hypotheses 2020, 144, 110031; https://doi.org/10.1016/j.mehy.2020.110031.Search in Google Scholar PubMed PubMed Central

Li, H.; Ma, L.; Zhou, L.; Gao, J.; Huang, Z.; He, Y.; Jiang, Y. Magnetic integrated metal/enzymatic nanoreactor for chemical warfare agent degradation. Colloid. Surface. Physicochem. Eng. Aspect. 2019, 571, 94–100; https://doi.org/10.1016/j.colsurfa.2019.03.061.Search in Google Scholar

Li, Q.; Dang, L.; Li, S.; Liu, X.; Guo, Y.; Lu, C.; Kou, X.; Wang, Z. Preparation of α-linolenic-acid-loaded water-in-oil-in-water microemulsion and its potential as a fluorescent delivery carrier with a free label. J. Agric. Food Chem. 2018, 66(49), 13020–13030; https://doi.org/10.1021/acs.jafc.8b04678.Search in Google Scholar PubMed

Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord. Chem. Rev. 2017, 346, 101–111; https://doi.org/10.1016/j.ccr.2016.11.008.Search in Google Scholar

Mahato, T. H.; Prasad, G. K.; Singh, B.; Acharya, J.; Srivastava, A. R.; Vijayaraghavan, R. Nanocrystalline zinc oxide for the decontamination of sarin. J. Hazard. Mater. 2009, 165(1–3), 928–932; https://doi.org/10.1016/j.jhazmat.2008.10.126.Search in Google Scholar PubMed

Mahayoni, E.; Min, S.; Kim, J.; Jeong, K.; Kim, S. H. Effective degradation of sulfur mustard simulant using novel sulfur-doped mesoporous zinc oxide under ambient conditions. J. Hazard. Mater. 2021, 411, 125144; https://doi.org/10.1016/j.jhazmat.2021.125144.Search in Google Scholar PubMed

Mahlambi, M. M.; Ngila, C. J.; Mamba, B. B. Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—a review. J. Nanomater. 2015, 2015, 790173; https://doi.org/10.1155/2015/790173.Search in Google Scholar

Mahmoud Nasrollahzadeh, M. S.; Jamalipour Soufi, G.; Iravani, S.; Varma, R. S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials 2020, 10, 1072; https://doi.org/10.3390/nano10061072.Search in Google Scholar PubMed PubMed Central

Maqbool, I.; Rehman, F.; Soomro, F.; Bhatti, Z.; Ali, U.; Jatoi, A. H.; Lal, B.; Iqbal, M.; Phulpoto, S.; Ali, A.; Thebo, K. H. Graphene-based materials for fighting coronavirus disease 2019: challenges and opportunities. ChemBioEng Rev. 2021, 8(2), 67–77; https://doi.org/10.1002/cben.202000039.Search in Google Scholar

Moffett, P. M.; Baker, B. L.; Kang, C. S.; Johnson, M. S. Evaluation of time required for water-only decontamination of an oil-based agent. Mil. Med. 2010, 175(3), 185–187; https://doi.org/10.7205/milmed-d-09-00012.Search in Google Scholar PubMed

Murata, H.; Cummings, C. S.; Koepsel, R. R.; Russell, A. J. Polymer-based protein engineering can rationally tune enzyme activity, pH-dependence, and stability. Biomacromolecules 2013, 14(6), 1919–1926; https://doi.org/10.1021/bm4002816.Search in Google Scholar PubMed

Nahyoon, N. A.; Liu, L.; Rabe, K.; Thebo, K. H.; Yuan, L.; Sun, J.; Yang, F. Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochim. Acta 2018, 271, 41–48; https://doi.org/10.1016/j.electacta.2018.03.109.Search in Google Scholar

Pal, K.; Kyzas, G. Z.; Kralj, S.; Gomes de Souza, F. Sunlight sterilized, recyclable and super hydrophobic anti-COVID laser-induced graphene mask formulation for indelible usability. J. Mol. Struct. 2021, 1233, 130100; https://doi.org/10.1016/j.molstruc.2021.130100.Search in Google Scholar PubMed PubMed Central

Palmieri, V.; Papi, M. Can graphene take part in the fight against COVID-19? Nano Today 2020, 33, 100883; https://doi.org/10.1016/j.nantod.2020.100883.Search in Google Scholar PubMed PubMed Central

Palomo, J. M.; Filice, M. New emerging bio-catalysts design in biotransformations. Biotechnol. Adv. 2015, 33(5), 605–613; https://doi.org/10.1016/j.biotechadv.2014.12.010.Search in Google Scholar PubMed

Paul, S.; Hazra, N.; Hazra, S.; Banerjee, A. Carbon dot mediated trihybrid formation by reduction of GO and in situ gold nanocluster fabrication: photo-switching behaviour and degradation of chemical warfare agent stimulants. J. Mater. Chem. C 2020, 8(44), 15735–15741; https://doi.org/10.1039/D0TC03554H.Search in Google Scholar

Prokop, Z.; Oplustil, F.; DeFrank, J.; Damborský, J. Enzymes fight chemical weapons. Biotechnol. J. 2006, 1(12), 1370–1380; https://doi.org/10.1002/biot.200600166.Search in Google Scholar PubMed

Qian, X.; Chen, L.; Yin, L.; Liu, Z.; Pei, S.; Li, F.; Hou, G.; Chen, S.; Song, L.; Thebo, K. H.; Cheng, H.-M.; Ren, W. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370(6516), 596–600; https://doi.org/10.1126/science.abb9704.Search in Google Scholar PubMed

Raber, E.; Jin, A.; Noonan, K.; McGuire, R.; Kirvel, R. D. Decontamination issues for chemical and biological warfare agents: how clean is clean enough? Int. J. Environ. Health Res. 2001, 11(2), 128–148; https://doi.org/10.1080/09603120020047519.Search in Google Scholar PubMed

Rastogi, V. K.; Wallace, L.; Smith, L. S.; Ryan, S. P.; Martin, B. Quantitative method to determine sporicidal decontamination of building surfaces by gaseous fumigants, and issues related to laboratory-scale studies. Appl. Environ. Microbiol. 2009, 75(11), 3688–3694; https://doi.org/10.1128/aem.02592-08.Search in Google Scholar PubMed PubMed Central

Rehman, F.; Thebo, K. H.; Aamir, M.; Akhtar, J. Chapter 8 – nanomembranes for water treatment. In Nanotechnology in the Beverage Industry; Amrane, A., Rajendran, S., Nguyen, T. A., Assadi, A. A., Sharoba, A. M., Eds. Elsevier, 2020; pp. 207–240; https://doi.org/10.1016/B978-0-12-819941-1.00008-0.Search in Google Scholar

Rodriguez-Abetxuko, A.; Sánchez-deAlcázar, D.; Muñumer, P.; Beloqui, A. Tunable polymeric scaffolds for enzyme immobilization. Front. Bioeng. Biotechnol. 2020, 8(830), 1–27; doi: https://doi.org/10.3389/fbioe.2020.00830.Search in Google Scholar PubMed PubMed Central

Sadeghi, M.; Yekta, S.; Ghaedi, H. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles. Int. Nano Lett. 2016, 6(3), 161–171; https://doi.org/10.1007/s40089-016-0183-x.Search in Google Scholar

Schmitz, K. S. Chapter 4 – life science. In Physical Chemistry; Schmitz, K. S., Ed. Elsevier: Boston, 2018; pp. 755–832.10.1016/B978-0-12-800513-2.00004-8Search in Google Scholar

Seifi, T.; Reza Kamali, A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. Med. Drug Discov. 2021, 11, 100099; doi: https://doi.org/10.1016/j.medidd.2021.100099.Search in Google Scholar PubMed PubMed Central

Sengele, A.; Robert, D.; Keller, N.; Keller, V.; Herissan, A.; Colbeau-Justin, C. Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. J. Catal. 2016, 334, 129–141; https://doi.org/10.1016/j.jcat.2015.11.004.Search in Google Scholar

Shaheen, I.; Ahmad, K. S. Green synthesis of doped Co3O4 nanocatalysts using organic template for fast azo dye degradation from aqueous environment. J. Chem. Technol. Biotechnol. 2020, 95(11), 2898–2910; https://doi.org/10.1002/jctb.6449.Search in Google Scholar

Sharif, S.; Ahmad, K. S.; Rehman, F.; Bhatti, Z.; Thebo, K. H. Two-dimensional graphene oxide based membranes for ionic and molecular separation: current status and challenges. J. Environ. Chem. Eng. 2021, 9(4), 105605; https://doi.org/10.1016/j.jece.2021.105605.Search in Google Scholar

Sharma, A.; Saxena, A.; Singh, B. In-situ degradation of sulphur mustard using (1R)-(-)-(camphorylsulphonyl) oxaziridine impregnated adsorbents. J. Hazard. Mater. 2009, 172(2), 650–653; https://doi.org/10.1016/j.jhazmat.2009.07.046.Search in Google Scholar PubMed

Sharma, P. K.; Gupta, G.; Nigam, A. K.; Pandey, P.; Boopathi, M.; Ganesan, K.; Singh, B. Photoelectrocatalytic degradation of blistering agent sulfur mustard to non-blistering substances using pPy/NiOBPC nanocomposite. J. Mol. Catal. Chem. 2013, 366, 368–374; https://doi.org/10.1016/j.molcata.2012.10.017.Search in Google Scholar

Singh, M. K. A. B. A brief review of construction, working and applications of nanoreactors. Chem. Sci. J. 2018, 9(3), 1000192.10.4172/2150-3494.1000192Search in Google Scholar

Singh, V. V.; Sharma, P. K.; Shrivastava, A.; Gutch, P. K.; Ganesan, K.; Boopathi, M. Electrochemical sensing of chemical warfare agent based on hybrid material silver-aminosilane graphene oxide. Electroanalysis 2020, 32(8), 1671–1680; https://doi.org/10.1002/elan.202000014.Search in Google Scholar

Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z.-Z. Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. J. Hazard. Mater. 2020, 393, 122332; https://doi.org/10.1016/j.jhazmat.2020.122332.Search in Google Scholar PubMed

Srivastava, A. K.; Dwivedi, N.; Dhand, C.; Khan, R.; Sathish, N.; Gupta, M. K.; Kumar, R.; Kumar, S. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. Mater. Today Chem. 2020, 18, 100385; https://doi.org/10.1016/j.mtchem.2020.100385.Search in Google Scholar PubMed PubMed Central

Tavakol, S.; Zahmatkeshan, M.; Mohammadinejad, M. R.; Mehrzadi, S.; Joghataei, M. T.; Alavijeh, M. S.; Seifalian, A. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021, 7, e06841; https://doi.org/10.1016/j.heliyon.2021.e06841.Search in Google Scholar PubMed PubMed Central

Thebo, K. H.; Qian, X.; Wei, Q.; Zhang, Q.; Cheng, H.-M.; Ren, W. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J. Mater. Sci. Technol. 2018a, 34(9), 1481–1486; https://doi.org/10.1016/j.jmst.2018.05.008.Search in Google Scholar

Thebo, K. H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018b, 9(1), 1486; https://doi.org/10.1038/s41467-018-03919-0.Search in Google Scholar PubMed PubMed Central

Wagner, G. W.; Sorrick, D. C.; Procell, L. R.; Brickhouse, M. D.; McVey, I. F.; Schwartz, L. I. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide. Langmuir 2007, 23(3), 1178–1186; https://doi.org/10.1021/la062708i.Search in Google Scholar PubMed

Wartell, M. A., Kleinman, M. T., Huey, B. M, Duffy, L. M., Eds. Strategies to protect the health of deployed U.S. Forces: force protection and decontamination. In National Research Council (US) Commission on Engineering and Technical Systems; National Academies Press (US): Washington (DC), 1999.Search in Google Scholar

Waysbort, D.; McGarvey, D. J.; Creasy, W. R.; Morrissey, K. M.; Hendrickson, D. M.; Durst, H. D. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent. J. Hazard. Mater. 2009, 161(2–3), 1114–1121; https://doi.org/10.1016/j.jhazmat.2008.04.083.Search in Google Scholar PubMed

Weatherby, S.; Seddon, J. M.; Ceroni, P. Luminescent silicon nanostructures and COVID-19. Faraday Discuss. 2020, 222(0), 8–9; https://doi.org/10.1039/D0FD90009E.Search in Google Scholar

Wilmsmeyer, A. R.; Gordon, W. O.; Davis, E. D.; Mantooth, B. A.; Lalain, T. A.; Morris, J. R. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces. Rev. Sci. Instrum. 2014, 85(1), 014101; https://doi.org/10.1063/1.4846656.Search in Google Scholar PubMed

Xi, H. L.; Zhao, S. P.; Zhou, W. Advances in peroxide-based decontaminating technologies. Huan Jing Ke Xue 2013, 34(5), 1645–1652.Search in Google Scholar

Yang, Y. C.; Baker, J. A.; Ward, J. R. Decontamination of chemical warfare agents. Chem. Rev. 1992, 92(8), 1729–1743; https://doi.org/10.1021/cr00016a003.Search in Google Scholar

Zahra, T.; Ahmad, K. S.; Ali, D. Ecospheric decontamination attained via green nanobiotechnological NiO-based nanocatalyst derived from nature’s biofactories. Int. J. Nanomed. 2020a, 15, 8357–8367; https://doi.org/10.2147/IJN.S272726.Search in Google Scholar PubMed PubMed Central

Zahra, T.; Ahmad, K. S.; Thomas, A. G.; Zequine, C.; Gupta, R. K.; Malik, M. A.; Sohail, M. Phyto-inspired and scalable approach for the synthesis of PdO–2Mn2O3: a nano-material for application in water splitting electro-catalysis. RSC Adv. 2020b, 10(50), 29961–29974; https://doi.org/10.1039/D0RA04571C.Search in Google Scholar

Zahra, T.; Ahmad, K. S.; Sharif, S. Identification and implication of organic compounds of Viola odorata: a potential source for bio-fabrication of nickel oxide nanoparticles. Appl. Nanosci. 2021a, 11(5), 1593–1603; https://doi.org/10.1007/s13204-021-01777-9.Search in Google Scholar

Zahra, T.; Ahmad, K. S.; Zequine, C.; Gupta, R. K.; Thomas, A. G.; Malik, M. A.; Jaffrii, S. B.; Ali, D. Electro-catalyst [ZrO2/ZnO/PdO]-NPs green functionalization: fabrication, characterization and water splitting potential assessment. Int. J. Hydrogen Energy 2021b, 46(37), 19347–19362; https://doi.org/10.1016/j.ijhydene.2021.03.094.Search in Google Scholar

Zhang, Q.; Qian, X.; Thebo, K. H.; Cheng, H.-M.; Ren, W. Controlling reduction degree of graphene oxide membranes for improved water permeance. Sci. Bull. 2018, 63(12), 788–794; https://doi.org/10.1016/j.scib.2018.05.015.Search in Google Scholar

Zhao, S.; Xi, H.; Zuo, Y.; Han, S.; Zhu, Y.; Li, Z.; Yuan, L.; Wang, Z.; Liu, C. Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs). J. Hazard. Mater. 2019, 367, 91–98; https://doi.org/10.1016/j.jhazmat.2018.12.075.Search in Google Scholar PubMed

Zhao, S.; Xi, H.; Zuo, Y.; Wang, Q.; Wang, Z.; Yan, Z. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. J. Hazard. Mater. 2018, 344, 136–145; https://doi.org/10.1016/j.jhazmat.2017.09.055.Search in Google Scholar PubMed

Zhao, Y. Z.; Guo, X.; Zhong, J. Y.; Guo, N.; Chen, L. C.; Dong, Z. Y. Characterization of FM2382 from Fulvimarina manganoxydans sp. Nov. 8047 with potential enzymatic decontamination of sulfur mustard. Protein Expr. Purif. 2018, 141, 63–70; https://doi.org/10.1016/j.pep.2017.08.004.Search in Google Scholar PubMed

Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D. T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials 2020, 10(2), 387; https://doi.org/10.3390/nano10020387.Search in Google Scholar PubMed PubMed Central

Received: 2021-07-23
Accepted: 2021-09-27
Published Online: 2021-10-11
Published in Print: 2022-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2021-0019/html?lang=en
Scroll to top button