Home Heterotridentate organodiphosphines in Pt(η3–P1X1P2)(Y) derivatives-structural aspects
Article
Licensed
Unlicensed Requires Authentication

Heterotridentate organodiphosphines in Pt(η3–P1X1P2)(Y) derivatives-structural aspects

  • Milan Melník EMAIL logo and Peter Mikuš
Published/Copyright: July 22, 2021

Abstract

This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O13–P1O1P2), N13–P1N1P2) and P23–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.


Corresponding author: Milan Melník, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic, E-mail:

Funding source: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV doi.org/10.13039/501100006109

Award Identifier / Grant number: VEGA 1/0463/18

Funding source: Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR doi.org/10.13039/501100006108

Award Identifier / Grant number: KEGA 027UK-4/2020

Funding source: Agentúra na Podporu Výskumu a Vývoja doi.org/10.13039/501100005357

Award Identifier / Grant number: APVV-15-0585

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the projects VEGA 1/0463/18, KEGA 027UK-4/2020, and APVV-15-0585.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ainscough, E. W.; Brodie, A. M.; Burrell, A. K.; Derwahl, A.; Jameson, G. B.; Taylor, S. K. Platinum(II) and palladium(II) complexes containing a mixed donor `P2N' multidentate ligand. Polyhedron 2004, 23, 1159–1168. https://doi.org/10.1016/j.poly.2004.01.015.Search in Google Scholar

Ansell, Ch. W. G.; Cooper, M. K.; Dancey, K. P.; Duckworth, P. A.; Henrick, K.; McPartlin, M.; Tasker, P. A. Template synthesis of a new P2N2 macrocyclic ligand via direct alkylation of coordinated amido nitrogen atoms; X-ray structure analysis of the free ligand and its neutral NiII complex. J. Chem. Soc. Chem. Commun. 1985, 439–441. https://doi.org/10.1039/C39850000439.Search in Google Scholar

Carlisle, S.; Matta, A.; Valles, H.; Bracken, J. B.; Miranda, M.; Yoo, J.; Hahn, Ch. Water addition to alkynes promoted by a dicationic platinum(II) complex. Organometallics 2011, 30, 6446–6457. https://doi.org/10.1021/om2007908.Search in Google Scholar

Cucciolito, M. E.; D'Amora, A.; Tuzi, A.; Vitagliano, A. Catalytic hydroarylation of olefins promoted by dicationic platinum(II) and palladium(II) complexes. The interplay of C−C bond formation and M−C bond cleavage. Organometallics 2007, 26, 5216–5223; https://doi.org/10.1021/om700692s.Search in Google Scholar

DeMott, J. C.; Bhuvanesh, N.; Ozerov, O. V. Frustrated Lewis pair-like splitting of aromatic C–H bonds and abstraction of halogen atoms by a cationic [(FPNP)Pt]+ species. Chem. Sci. 2013, 2, 642–649. https://doi.org/10.1039/C2SC21385K.Search in Google Scholar

Edouard, G. A.; Kelley, P.; Herbert, D. E.; Agapie, T. Aryl ether cleavage by group 9 and 10 transition metals: stoichiometric studies of selectivity and mechanism. Organometallics 2015, 34, 5254–5277. https://doi.org/10.1021/acs.organomet.5b00710.Search in Google Scholar

Feller, M.; Ben-Ari, E.; Iron, M. A.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Konstantinovski, L.; Milstein, D. Cationic, neutral, and anionic PNP PdII and PtII complexes: dearomatization by deprotonation and double-deprotonation of pincer systems. Inorg. Chem. 2010, 49, 1615–1625. https://doi.org/10.1021/ic902012z.Search in Google Scholar PubMed

Hahn, Ch. Structural investigations of platinum(II) styrene and styryl complexes and mechanistic study of vinylic deprotonation. Organometallics 2010, 29, 1331–1338. https://doi.org/10.1021/om900482k.Search in Google Scholar

Kundu, S.; Brennessel, W. W.; Jones, W. D. Making M–CN bonds from M–Cl in (PONOP)M and (dippe)Ni systems (M = Ni, Pd, and Pt) using t-BuNC. Inorg. Chim. Acta 2011a, 379, 109–114. https://doi.org/10.1016/j.ica.2011.09.048.Search in Google Scholar

Kundu, S.; Brennessel, W. W.; Jones, W. D. Synthesis and reactivity of new Ni, Pd, and Pt 2,6-Bis(di-tert-butylphosphinito)pyridine pincer complexes. Inorg. Chem. 2011b, 50, 9443–9453. https://doi.org/10.1021/ic201102v.Search in Google Scholar PubMed

Lansing, R. B.; Goldberg, K. I.; Kemp, R. A. Unsymmetrical RPNPR′ pincer ligands and their group 10 complexes. Dalton Trans 2011, 35, 8950–8958. https://doi.org/10.1039/C1DT10265F.Search in Google Scholar

Lenero, K. Q. A.; Guari, Y.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Donnadiere, B.; Sabo- Etienne, S.; Chaudret, B.; Lutz, M.; Spek, A. L. Dalton Trans 2013, 42, 6495–6512. https://doi.org/10.1039/C3DT32395A.Search in Google Scholar

Liang, L. Ch.; Lin, J. M.; Lee, W. Y. Benzene C–H activation by platinum(II) complexes of bis(2-diphenylphosphinophenyl)amide. Chem. Commun. 2005, 19, 2462–2464. https://doi.org/10.1039/B501520K.Search in Google Scholar

Melník, M.; Mikuš, P. Organodiphosphines in PtP2X2 (X = As, Ge or Te) derivatives – structural aspects. Main Group Met. Chem. 2020, 43, 132–137. https://doi.org/10.1515/mgmc-2020-0016.Search in Google Scholar

Melník, M.; Mikuš, P. Organomonophosphines in PtP2Cl2derivatives: structural aspects. Rev. Inorg. Chem. 2015, 22, 179–189. https://doi.org/10.1515/revic-2015-0004.Search in Google Scholar

Perera, S. D.; Shaw, B. L.; Thornton-Pett, M. Deprotonation, deuteriation and substitution of the backbone of some azine diphosphine complexes of palladium and platinum: crystal structures of [Ptl(PPh2CH=CButN–N=CButCH2PPh2)] and [PtCl(PPh2CH2CBut=N–N=CButCH2PPh2)] [OC6H2(NO2)3-2,4,6]. Dalton Trans 1994, 3311–3323. https://doi.org/10.1039/DT9940003311.Search in Google Scholar

Rosenberg, B.; van Camp, L.; Traslo, J. E.; Mansour, V. H. , Platinum compounds: a new class of potent antitumor agents. Nature 1969, 222, 385–386. https://www.nature.com/articles/222385a0.10.1038/222385a0Search in Google Scholar

Sacco, A.; Vasapollo, G.; Nobile, C. F.; Piergiovann, A. i.; Pellinghelli, M. A.; Lanfranchi, M. Syntheses and structures of 2-diphenylphosphinomethylenide-6-diphenylphosphinomethylenepyridine complexes of palladium(II) and platinum(II); crystal structures of [PtCl2-(CHPPH2)-6-(CH2PPh2)pyridine] and [Pd(COOMe)2-(CHPPh2)-6-(CH2PPh2)pyridine]. J. Organomet. Chem. 1988, 356, 397–409. https://doi.org/10.1016/0022-328X(88)83156-5.Search in Google Scholar

Srgo, M. J.; Stephan, D. W. Ni(ii), Pd(ii) and Pt(ii) complexes of PNP and PSP tridentate amino–phosphine ligands. Dalton Trans 2012, 41, 6791–6802. https://doi.org/10.1039/C2DT30373F.Search in Google Scholar PubMed

Taguchi, H.; Chang, Y. H.; Takeuchi, K.; Ozawa, F. Catalytic synthesis of an unsymmetrical PNP-Pincer-Type phosphaalkene ligand. Organometallics 2015, 34, 1589–1596. https://doi.org/10.1021/acs.organomet.5b00195.Search in Google Scholar

Takeuchi, K.; Taguchi, H.; Tanigawa, I.; Tsujimoto, S.; Matsuo, T.; Tanaka, H.; Yoshizawa, K.; Ozawa, F. A square-planar complex of platinum(0). Angew. Chem. Int. Ed. Engl. 2016, 55, 15347–15350; https://doi.org/10.1002/anie.201609515.Search in Google Scholar PubMed

Tsukada, N.; Tamura, O.; Inoue, Y. Synthesis and structures of palladium and platinum A-frame complexes bridged by a novel binucleating ligand, N,N‘-Bis[(2-diphenylphosphino)phenyl]-formamidine. Organometallics 2002, 21, 2521–2528. https://doi.org/10.1021/om020003f.Search in Google Scholar

Varshney, A.; Webster, M. L.; Gray, G. M. Syntheses and reactions of the cis-PtCl2{Ph2P(CH2CH2O)nCH2CH2PPh2-P,P'} (n = 3-5) metallacrown ether complexes. The x-ray crystal structures of the n = 4 and 5 complexes and of [cis-Pt{Ph2P(CH2CH2O)4CH2CH2PPh2-P,P',O}(H2O)](BF4)2. Inorg. Chem. 1992, 31, 2580–2587. https://doi.org/10.1021/ic00038a050. https://doi.org/10.1021/ic00038a050.Search in Google Scholar

Wang, X.; Yao, L.; Pan, Y.; Huang, K. W. Synthesis of group 10 metal complexes with a new unsymmetrical PN3P-pincer ligand through ligand post-modification: structure and reactivity. J. Organomet. Chem. 2017, 845, 25–29. https://doi.org/10.1016/j.jorganchem.2016.12.032.Search in Google Scholar

Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans 2007, 955–964. https://doi.org/10.1039/B617136B.Search in Google Scholar PubMed

Received: 2021-06-07
Accepted: 2021-07-07
Published Online: 2021-07-22
Published in Print: 2022-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2021-0011/html
Scroll to top button