Home Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals
Article
Licensed
Unlicensed Requires Authentication

Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals

  • Khurram Shahzad , Aman Shah Abdul Majid , Mumtaz Khan , Muhammad Adnan Iqbal ORCID logo EMAIL logo and Asjad Ali
Published/Copyright: January 26, 2021

Abstract

Technetium radionuclide (99mTc) has excellent extent of disintegration properties and occupies a special place in the field of nuclear medicinal chemistry and other health disciplines. Current review describes recent approaches of synthesis in detailed ways for radio-pharmaceuticals of technetium which have been developed to treat and diagnose the biotic disorders. These technetium labeled radio-pharmaceuticals have been established to apply in the field of diagnostic nuclear medicine especially for imaging of different body parts such as brain, heart, kidney, bones and so on, through single photon emission computed tomography (SPECT) that is thought to be difficult to image such organs by using common X-ray and MRI (Magnetic Resonance Imaging) techniques. This review highlights and accounts an inclusive study on the various synthetic routes of technetium labeled radio-pharmaceuticals using ligands with various donor atoms such as carbon, nitrogen, sulphur, phosphorus etc. These compounds can be utilized as next generation radio-pharmaceuticals.


Corresponding author: Muhammad Adnan Iqbal, Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; and Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad, 38000, Pakistan, E-mail:

Award Identifier / Grant number: NRPU-8198NRPU-8396

Acknowledgments

Authors acknowledge Department of Chemistry, University of Agriculture Faisalabad-38000 for providing facilities to complete this research work. Corresponding author also acknowledge Higher Education Commission (HEC) for awarding research grants NRPU-8396 & NRPU 8198 under National Research Program for Universities (NRPU).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Higher Education Comission of Pakistan (HEC-Pak), NRPU-8396 and NRPU-8198.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdo, R.-A.; Lamare, F.; Fernandez, P.; Bentourkia, M. H. Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging. Australas. Phys. Eng. Sci. Med. 2019, 42(4), 981–993; https://doi.org/10.1007/s13246-019-00797-8.Search in Google Scholar

Abram, U.; Alberto, R. Technetium and rhenium: coordination chemistry and nuclear medical applications. J. Braz. Chem. Soc. 2006, 17(8), 1486–1500; https://doi.org/10.1590/s0103-50532006000800004.Search in Google Scholar

Ackermann, J.; Noufele, C. N.; Hagenbach, A.; Abram, U. Nitrosyltechnetium (I) complexes with 2‐(diphenylphosphanyl) aniline. Z. Anorg. Allg. Chem. 2019, 645(1), 8–13; https://doi.org/10.1002/zaac.201800395.Search in Google Scholar

Aebischer, N.; Schibli, R. R. Alberto and AE Merbach. Angew. Chem. 2000, 112, 260; https://doi.org/10.1002/(sici)1521-3757(20000103)112:1<260::aid-ange260>3.0.co;2-a.10.1002/(SICI)1521-3757(20000103)112:1<260::AID-ANGE260>3.0.CO;2-ASearch in Google Scholar

Agorastos, N.; Borsig, L.; Renard, A.; Antoni, P.; Viola, G.; Spingler, B.; Kurz, P.; Alberto, R. Cell‐specific and nuclear targeting with [M(CO)3]+(M = 99mTc, Re)‐based complexes conjugated to acridine orange and bombesin. Chem. Eur. J. 2007, 13(14), 3842–3852; https://doi.org/10.1002/chem.200700031.Search in Google Scholar

Aguilar-Ortiz, E.; Jalilian, A. R.; Avila-Rodriguez, M. A. Synthesis, characterization and evaluation of a Cu-labeled macrocyclic-porphyrin as a potential chelator for 64 Cu-based radiopharmaceuticals. J. Radioanal. Nucl. Chem. 2019, 320(1), 79–86; https://doi.org/10.1007/s10967-019-06454-4.Search in Google Scholar

Ahmadpour, S.; Hosseinimehr, S. J. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci. 2019, 239, 116870; https://doi.org/10.1016/j.lfs.2019.116870.Search in Google Scholar

Ahn, S. H.; Chun, M. K.; Kim, E.; Jeong, J. H.; Nayab, S.; Lee, H. Copper (II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl) amine: synthesis, structure and application towards polymerization of rac-lactide. Polyhedron 2017, 127, 51–58; https://doi.org/10.1016/j.poly.2017.01.050.Search in Google Scholar

Akbar, M. U.; Ahmad, M. R.; Shaheen, A.; Mushtaq, S. A review on evaluation of technetium-99m labeled radiopharmaceuticals. J. Radioanal. Nucl. Chem. 2016, 310(2), 477–493; https://doi.org/10.1007/s10967-016-5019-7.Search in Google Scholar

Alberto, R. Technetium. ChemInform 2004, 35(46), 127–270. https://doi.org/10.1002/chin.200446238.Search in Google Scholar

Alberto, R.; Meola, G.; Valdés, D. H. Chapter 11 – technetium and rhenium complexes with aromatic hydrocarbons as ligands: an entry into biomimetic imaging. In Advances in Bioorganometallic Chemistry; Hirao, T., Moriuchi, T., Eds. Elsevier, 2019; pp 215–241.10.1016/B978-0-12-814197-7.00011-XSearch in Google Scholar

Alberto, R.; Ortner, K.; Wheatley, N.; Schibli, R.; Schubiger, A. P. Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J. Am. Chem. Soc. 2001, 123(13), 3135–3136; https://doi.org/10.1021/ja003932b.Search in Google Scholar

Alberto, R.; Schibli, R.; Egli, A.; Schubiger, A. P.; Abram, U.; Kaden, T. A. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]− in aqueous solution and its reaction with a bifunctional ligand. J. Am. Chem. Soc. 1998, 120(31), 7987–7988; https://doi.org/10.1021/ja980745t.Search in Google Scholar

Al-Nahhas, A.; Fanti, S. Radiolabelled peptides in diagnosis and therapy: an introduction. Eur. J. Nucl. Med. Mol. Imag. 2012, 39(1), 1–3; https://doi.org/10.1007/s00259-012-2064-5.Search in Google Scholar

Amin, A.; Mustafa, M.; El-Hadi, E. A.; Monier, A.; Badwey, A.; Saad, E. Pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT: does it have a place in predicting survival in patients with glioblastoma multiforme? J. Neuro-oncol. 2015, 121(2), 303–309; https://doi.org/10.1007/s11060-014-1633-9.Search in Google Scholar

Anderson, C. J.; Ling, X.; Schlyer, D. J.; Cutler, C. S. A short history of nuclear medicine. In Radiopharmaceutical Chemistry; Lewis, J.S.; Windhorst, A.D.; Zeglis, B.M., Eds. Springer, 2019; pp 11–26.10.1007/978-3-319-98947-1_2Search in Google Scholar

Andrieu, J.; Camus, J. M.; Richard, P.; Poli, R.; Gonsalvi, L.; Vizza, F.; Peruzzini, M. Amino‐phosphanes in RhI‐catalyzed hydroformylation: hemilabile behavior of P, N ligands under high CO pressure and catalytic properties. Eur. J. Inorg. Chem. 2006, 2006(1), 51–61; https://doi.org/10.1002/ejic.200500432.Search in Google Scholar

Ashraf, R.; Iqbal, M. A.; Bhatti, H. N.; Janjua, M. R. S. A.; El‐Naggar, M. Bioactivity and DNA/BSA interactions of selenium N‐heterocyclic carbene adducts. ChemistrySelect 2020, 5(35), 10970–10981; https://doi.org/10.1002/slct.202001990.Search in Google Scholar

Autti, T.; Raininko, R.; Launes, J.; Nuutila, A.; Santavuori, P. Jansky–Bielschowsky variant disease: CT, MRI, and SPECT findings. Pediatr. Neurol. 1992, 8(2), 121–126; https://doi.org/10.1016/0887-8994(92)90032-t.Search in Google Scholar

Bailey, J. J.; Dewaraja, Y.; Hubers, D.; Srinivasa, R.; Frey, K. Biodistribution of 99mTc-MAA on SPECT/CT performed for 90 Y-radioembolization therapy planning: a pictorial review. Clin. Transl. Imag. 2017, 5(5), 473–485; https://doi.org/10.1007/s40336-017-0245-8.Search in Google Scholar PubMed PubMed Central

Balasekaran, S. M.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees, M.; Abram, U. Fluoridonitrosyl complexes of technetium (I) and technetium (II). Synthesis, characterization, reactions, and DFT calculations. Inorg. Chem. 2014, 53(10), 5117–5128; https://doi.org/10.1021/ic500229r.Search in Google Scholar PubMed

Balasekaran, S.; Hagenbach, A.; Drees, M.; Abram, U. [TcII(NO)(trifluoroacetate)4F]2− – synthesis and reactions. Dalton Trans. 2017, 46(39), 13544–13552; https://doi.org/10.1039/c7dt03084c.Search in Google Scholar PubMed

Ballinger, J. R. Pitfalls and limitations of SPECT, PET, and therapeutic radiopharmaceuticals. Paper Presented at the Seminars in Nuclear Medicine, 2015.10.1053/j.semnuclmed.2015.02.007Search in Google Scholar PubMed

Ballot, S.; Noiret, N.; Hindré, F.; Denizot, B.; Garin, E.; Rajerison, H.; Benoit, J.-P. 99mTc/188 Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur. J. Nucl. Med. Mol. Imag. 2006, 33(5), 602–607; https://doi.org/10.1007/s00259-005-0007-0.Search in Google Scholar PubMed

Bartholoma, M. D.; Louie, A. S.; Valliant, J. F.; Zubieta, J. Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem. Rev. 2010, 110(5), 2903–2920; https://doi.org/10.1021/cr1000755.Search in Google Scholar PubMed

Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev. 2019, 393, 79–117; https://doi.org/10.1016/j.ccr.2019.04.014.Search in Google Scholar

Baumeister, J. E.; Reinig, K. M.; Barnes, C. L.; Kelley, S. P.; Jurisson, S. S. Technetium and rhenium schiff base compounds for nuclear medicine: syntheses of rhenium analogues to 99mTc-furifosmin. Inorg. Chem. 2018, 57(20), 12920–12933; https://doi.org/10.1021/acs.inorgchem.8b02156.Search in Google Scholar PubMed

Bejot, R.; Kersemans, V.; Kelly, C.; Carroll, L.; King, R. C.; Gouverneur, V. Pre-clinical evaluation of a 3-nitro-1,2,4-triazole analogue of [18F] FMISO as hypoxia-selective tracer for PET. Nucl. Med. Biol. 2010, 37(5), 565–575; https://doi.org/10.1016/j.nucmedbio.2010.03.011.Search in Google Scholar PubMed

Benz, M.; Spingler, B.; Alberto, R.; Braband, H. Toward organometallic 99mTc imaging agents: synthesis of water-stable 99Tc–NHC complexes. J. Am. Chem. Soc. 2013, 135(46), 17566–17572; https://doi.org/10.1021/ja409499u.Search in Google Scholar PubMed

Bhattacharya, A.; Meena, R.; Sood, A.; Ghoshal, S.; Shukla, J.; Mittal, B. Hypoxia imaging using18F-FMISO PET/CT in predicting treatment response in patients with head and neck cancer. J. Nucl. Med. 2019, 60(suppl. 1), 358.Search in Google Scholar

Blower, P. Towards molecular imaging and treatment of disease with radionuclides: the role of inorganic chemistry. Dalton Trans. 2006, 14, 1705–1711; https://doi.org/10.1039/b516860k.Search in Google Scholar PubMed

Bokhari, S.; Morgenstern, R.; Weinberg, R.; Kinkhabwala, M.; Panagiotou, D.; Castano, A.; DeLuca, A.; Jin, Z.; Maurer, M. S. Standardization of 99mTechnetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J. Nucl. Cardiol. 2018, 25(1), 181–190; https://doi.org/10.1007/s12350-016-0610-4.Search in Google Scholar PubMed

Bolzati, C.; Salvarese, N.; Carpanese, D.; Seraglia, R.; Meléndez-Alafort, L.; Rosato, A.; Capasso, D.; Saviano, M.; Del Gatto, A.; Comegna, D. [99mTc][Tc(N)PNP43]-labeled RGD peptides as new probes for a selective detection of αvβ3 integrin: synthesis, structure–activity and pharmacokinetic studies. J. Med. Chem. 2018, 61(21), 9596–9610; https://doi.org/10.1021/acs.jmedchem.8b01075.Search in Google Scholar PubMed

Boschi, A.; Martini, P.; Uccelli, L. 188Re (V) nitrido radiopharmaceuticals for radionuclide therapy. Pharmaceuticals 2017, 10(1), 12; https://doi.org/10.3390/ph10010012.Search in Google Scholar PubMed PubMed Central

Boschi, A.; Uccelli, L.; Martini, P. A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging. Appl. Sci. 2019, 9(12), 2526; https://doi.org/10.3390/app9122526.Search in Google Scholar

Boyd, G. E. Technetium and promethium. J. Chem. Educ. 1959, 36(1), 3; https://doi.org/10.1021/ed036p3.Search in Google Scholar

Braband, H.; Imstepf, S.; Benz, M.; Spingler, B.; Alberto, R. Combining bifunctional chelator with (3+2)-cycloaddition approaches: synthesis of dual-function technetium complexes. Inorg. Chem. 2012, 51(7), 4051–4057; https://doi.org/10.1021/ic202212e.Search in Google Scholar PubMed

Bravo, J.; Bolaño, S.; Gonsalvi, L.; Peruzzini, M. Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA) and derivatives. Part II. The quest for tailored ligands, complexes and related applications. Coord. Chem. Rev. 2010, 254(5–6), 555–607; https://doi.org/10.1016/j.ccr.2009.08.006.Search in Google Scholar

Caporale, A.; Bolzati, C.; Incisivo, G. M.; Salvarese, N.; Grieco, P.; Ruvo, M. Improved synthesis on solid phase of dithiocarbamic cRGD‐derivative and 99mTc‐radiolabelling. J. Pept. Sci. 2019, 25(2), e3140; https://doi.org/10.1002/psc.3140.Search in Google Scholar PubMed

Castillo Gomez, J. D.; Hagenbach, A.; Abram, U. Propargyl‐substituted thiocarbamoylbenzamidines of technetium and rhenium: steps towards bioconjugation with use of click chemistry. Eur. J. Inorg. Chem. 2016, 2016(35), 5427–5434; https://doi.org/10.1002/ejic.201601039.Search in Google Scholar

Chakraborty, S.; Das, S.; Chakravarty, R.; Sarma, H. D.; Vatsa, R.; Shukla, J.; Mittal, B. R.; Dash, A. An improved kit formulation for one-pot synthesis of [99mTc]Tc-HYNIC-E[c(RGDfK)]2 for routine clinical use in cancer imaging. J. Label. Compd. Radiopharm. 2019, 62(12), 823–834; https://doi.org/10.1002/jlcr.3786.Search in Google Scholar PubMed

Chan, C. Y.; Barnard, P. J. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands. Dalton Trans. 2015, 44(44), 19126–19140; https://doi.org/10.1039/c5dt03295d.Search in Google Scholar PubMed

Chang, J. M.; Lee, H. J.; Goo, J. M.; Lee, H.-Y.; Lee, J. J.; Chung, J.-K.; Im, J.-G. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J. Radiol. 2006, 7(1), 57–69; https://doi.org/10.3348/kjr.2006.7.1.57.Search in Google Scholar PubMed PubMed Central

Chen, X.; Li, L.; Liu, F.; Liu, B. Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg. Med. Chem. Lett. 2006, 16(21), 5503–5506; https://doi.org/10.1016/j.bmcl.2006.08.050.Search in Google Scholar PubMed

Chen, Y.; Huang, Z. W.; He, L.; Zheng, S. L.; Li, J. L. Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate–deoxyglucose complex ([99mTc]-DTPA-DG) as a potential imaging modality for tumors. Appl. Radiat. Isot. 2006, 64(3), 342–347; https://doi.org/10.1016/j.apradiso.2005.08.004.Search in Google Scholar PubMed

Chen, F.; Pu, X.; Xiao, Y.; Shao, K.; Wang, J.; Hu, W.; Zhu, B.; Jiang, M. Preparation and SPECT imaging of the novel Anxa 1-targeted probe 99mTc-p-SCN-Bn-DTPA-GGGRDN-IF7. J. Radioanal. Nucl. Chem. 2019, 320(2), 525–530; https://doi.org/10.1007/s10967-019-06500-1.Search in Google Scholar

Chung, C. Management of neuroendocrine tumors. Am. J. Health Syst. Pharm. 2016, 73(21), 1729–1744; https://doi.org/10.2146/ajhp150373.Search in Google Scholar PubMed

Cohen, J. C.; Horton, J. D.; Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 2011, 332(6037), 1519–1523; https://doi.org/10.1126/science.1204265.Search in Google Scholar PubMed PubMed Central

Dallagi, T.; Saidi, M.; Jaouen, G.; Top, S. Synthesis and Biodistribution of 1-[2-(cyclopentadienyltricarbonyltechnetium-99m)-2-oxo-ethoxy-phenyl]-1,2-di-(p-hydroxyphenyl) but-1-ene for tumor imaging. J. Organomet. Chem. 2019, 891, 1–6; https://doi.org/10.1016/j.jorganchem.2019.04.006.Search in Google Scholar

Darmon, J. M.; Yu, R. P.; Semproni, S. P.; Turner, Z. R.; Stieber, S. C. E.; DeBeer, S.; Chirik, P. J. Electronic structure determination of pyridine N-heterocyclic carbene iron dinitrogen complexes and neutral ligand derivatives. Organometallics 2014, 33(19), 5423–5433; https://doi.org/10.1021/om500727t.Search in Google Scholar PubMed PubMed Central

Das, T.; Chakraborty, S.; Banerjee, S.; Mukherjee, A.; Samuel, G.; Sarma, H.; Nair, C. K. K., Kagiya, V. T.; Venkatesh, M. Preparation and preliminary biological evaluation of a 177Lu labeled sanazole derivative for possible use in targeting tumor hypoxia. Bioorg. Med. Chem. 2004, 12(23), 6077–6084; https://doi.org/10.1016/j.bmc.2004.09.007.Search in Google Scholar PubMed

Das, S.; Mathur, A.; Sakhare, N.; Mallia, M. B.; Sarma, H. D.; Sachdev, S. S.; Dash, A. Synthesis and biodistribution studies of 99mTc labeled fatty acid derivatives prepared via “Click approach” for potential use in cardiac imaging. J. Label. Compd. Radiopharm. 2018, 61(14), 1048–1057; https://doi.org/10.1002/jlcr.3681.Search in Google Scholar PubMed

Das, S.; Sakhare, N.; Mathur, A.; Mallia, M. B.; Mirapurkar, S.; Sheela, M.; Sarma, H. D.; Sachdev, S. S.; Dash, A. Synthesis and evaluation of 99mTc-analogues of [123/131I] mIBG prepared via [99mTc][Tc(CO)3(H2O)3]+ synthon for targeting norepinephrine transporter. Nucl. Med. Biol. 2019, 68, 49–57; https://doi.org/10.1016/j.nucmedbio.2019.01.001.Search in Google Scholar PubMed

de Barros, A. L. B.; Cardoso, V. N.; das Graças Mota, L.; Leite, E. A.; de Oliveira, M. C.; Alves, R. J. A novel d-glucose derivative radiolabeled with technetium-99m: synthesis, biodistribution studies and scintigraphic images in an experimental model of Ehrlich tumor. Bioorg. Med. Chem. Lett. 2010, 20(8), 2478–2480; https://doi.org/10.1016/j.bmcl.2010.03.003.Search in Google Scholar PubMed

Delbeke, D.; Coleman, R. E.; Guiberteau, M. J.; Brown, M. L.; Royal, H. D.; Siegel, B. A.; Townsend, D. W.; Berland, L. L.; Parker, J. A.; Hubner, K. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J. Nucl. Med. 2006, 47(5), 885–895.Search in Google Scholar

Drozdovitch, V.; Brill, A. B.; Callahan, R. J.; Clanton, J. A.; DePietro, A.; Goldsmith, S. J.; Greenspan, B. S.; Gross, M. D.; Hays, M. T.; Moore, S. C. Use of radiopharmaceuticals in diagnostic nuclear medicine in the United States: 1960–2010. Health Phys. 2015, 108(5), 520; https://doi.org/10.1097/hp.0000000000000261.Search in Google Scholar PubMed PubMed Central

Duan, X.; Gan, Q.; Song, X.; Fang, S. a.; Zhang, X.; Ruan, Q.; Zhang, J. Synthesis and biological evaluation of novel 99mTc‐oxo and 99mTc‐tricarbonyl complexes with C3′‐functionalized thymidine dithiocarbamate for tumor imaging. Appl. Organomet. Chem. 2018, 32(8), e4424; https://doi.org/10.1002/aoc.4424.Search in Google Scholar

Duan, X.; Liu, T.; Zhang, Y.; Zhang, J. Synthesis and biological evaluation of novel 99mTc (CO)3-labeled thymidine analogs as potential probes for tumor proliferation imaging. Molecules 2016, 21(4), 510; https://doi.org/10.3390/molecules21040510.Search in Google Scholar PubMed PubMed Central

Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7(4), 941–945; https://doi.org/10.1021/nl062962v.Search in Google Scholar PubMed PubMed Central

Eliseenko, S. S.; Bhadbhade, M.; Liu, F. Multifunctional chiral aminophosphines for enantiodivergent catalysis in a palladium‐catalyzed allylic alkylation reaction. Chirality 2020, 32(11), 1311–1323; https://doi.org/10.1002/chir.23275.Search in Google Scholar PubMed

Erfani, M.; Malek, H.; Sadat Ebrahimi, S. E.; Hassanzadeh, L. New 99mTc(CO)3‐radiolabeled arylpiperazine pharmacophore as potent 5HT1A serotonin receptor radiotracer: docking studies, chemical synthesis, radiolabeling, and biological evaluation. J. Label. Compd. Radiopharm. 2019, 62(4), 166–177; https://doi.org/10.1002/jlcr.3709.Search in Google Scholar PubMed

Fani, M.; Maecke, H.; Okarvi, S. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2012, 2(5), 481; https://doi.org/10.7150/thno.4024.Search in Google Scholar PubMed PubMed Central

Färber, S. F.; Wurzer, A.; Reichart, F.; Beck, R.; Kessler, H.; Wester, H.-J. R.; Notni, J. Therapeutic radiopharmaceuticals targeting integrin αvβ6. ACS Omega 2018, 3(2), 2428–2436; https://doi.org/10.1021/acsomega.8b00035.Search in Google Scholar PubMed PubMed Central

Fernández, S.; Giglio, J.; Rey, A. M.; Cerecetto, H. Influence of ligand denticity on the properties of novel 99mTc (I)–carbonyl complexes. Application to the development of radiopharmaceuticals for imaging hypoxic tissue. Bioorg. Med. Chem. 2012, 20(13), 4040–4048; https://doi.org/10.1016/j.bmc.2012.05.010.Search in Google Scholar PubMed

Fichna, J.; Janecka, A. Synthesis of target-specific radiolabeled peptides for diagnostic imaging. Bioconjugate Chem. 2003, 14(1), 3–17; https://doi.org/10.1021/bc025542f.Search in Google Scholar PubMed

Flaherty, K.; DeLuca, A.; Bokhari, S. Improvement of diagnostic accuracy of Transthyretin cardiac amyloidosis (TTR-CA) with 99mTechnetium pyrophosphate SPECT imaging. J. Nucl. Med. 2019, 60(suppl. 1), 669.Search in Google Scholar

Forrester, J. S.Jr; Liebson, P. R.; Parrillo, J. E.; Klein, L. W. Risk stratification post-myocardial infarction: is early coronary angiography the more effective strategy? Prog. Cardiovasc. Dis. 2002, 45(1), 49–66; https://doi.org/10.1053/pcad.2002.123464.Search in Google Scholar PubMed

Francis, M.; Fogelman, I. 99mTc diphosphonate uptake mechanism on bone. In Bone Scanning in Clinical Practice; Fogelman, I., Ed. Springer, 1987; pp 7–17.10.1007/978-1-4471-1407-9_2Search in Google Scholar

Freesmeyer, M.; Winkens, T.; Kühnel, C.; Opfermann, T.; Seifert, P. Technetium-99m SPECT/US hybrid imaging compared with conventional diagnostic thyroid imaging with scintigraphy and ultrasound. Ultrasound Med. Biol. 2019, 45(5), 1243–1252; https://doi.org/10.1016/j.ultrasmedbio.2019.01.003.Search in Google Scholar PubMed

Fuertes, S.; Chueca, A. J.; Martín, A.; Sicilia, V. New NHC cycloplatinated compounds. Significance of the cyclometalated group on the electronic and emitting properties of bis-cyanide compounds. J. Organomet. Chem. 2019, 889, 53–61; https://doi.org/10.1016/j.jorganchem.2019.03.012.Search in Google Scholar

Gaemperli, O.; Schepis, T.; Valenta, I.; Koepfli, P.; Husmann, L.; Scheffel, H.; Leschka, S.; Eberli, F. R.; Luscher, T. F.; Alkadhi, H. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 2008, 248(2), 414–423; https://doi.org/10.1148/radiol.2482071307.Search in Google Scholar PubMed

Gambini, J. P.; Cabral, P.; Alonso, O.; Savio, E.; Figueroa, S. D.; Zhang, X.; Ma, L.; Deutscher, S. L.; Quinn, T. P. Evaluation of 99mTc-glucarate as a breast cancer imaging agent in a xenograft animal model. Nucl. Med. Biol. 2011, 38(2), 255–260; https://doi.org/10.1016/j.nucmedbio.2010.08.002.Search in Google Scholar PubMed

Gao, D.; Guo, X.; Zhang, X.; Chen, S.; Wang, Y.; Chen, T.; Huang, G.; Gao, Y.; Tian, Z.; Yang, Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 2020, 5, 100035; https://doi.org/10.1016/j.mtbio.2019.100035.Search in Google Scholar PubMed PubMed Central

Garcia-Garayoa, E.; Schibli, R.; Schubiger, P. Peptides radiolabeled with Re-186/188 and Tc-99m as potential diagnostic and therapeutic agents. Nucl. Sci. Tech. 2007, 18(2), 88–100; https://doi.org/10.1016/s1001-8042(07)60026-8.Search in Google Scholar

Geleijnse, M.; Vigna, C.; Kasprzak, J.; Rambaldi, R.; Salvatori, M.; Elhendy, A.; Cornel, J.; Fioretti, P.; Roelandt, J. Usefulness and limitations of dobutamine–atropine stress echocardiography for the diagnosis of coronary artery disease in patients with left bundle branch block. A multicentre study. Eur. Heart J. 2000, 21(20), 1666–1673; https://doi.org/10.1053/euhj.1999.2008.Search in Google Scholar PubMed

Gener, T.; Campo, A. T.; Alemany-González, M.; Nebot, P.; Delgado-Sallent, C.; Chanovas, J.; Puig, M. V. Serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: contribution to the actions of risperidone. Neuropharmacology 2019, 158, 107743; https://doi.org/10.1016/j.neuropharm.2019.107743.Search in Google Scholar PubMed

Ghosh, P. R. FDA approves two new technetium-labeled cardiac agents and a pharmacologic alternative to exercise in stress-thallium studies. J. Nucl. Med. 1991, 32(5), 11N–19N.Search in Google Scholar

Goins, B.; Bao, A.; Phillips, W. T. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into preformed liposomes for diagnostic imaging and radionuclide therapy. In Liposomes; D’Souza, G.G.M., Ed. Springer: Switzerland, 2017; pp 155–178.10.1007/978-1-4939-6591-5_13Search in Google Scholar PubMed

Gomez, J. C.; Hagenbach, A.; Gerling-Driessen, U.; Koksch, B.; Beindorff, N.; Brenner, W.; Abram, U. Thiourea derivatives as chelating agents for bioconjugation of rhenium and technetium. Dalton Trans. 2017, 46(42), 14602–14611; https://doi.org/10.1039/c7dt01834g.Search in Google Scholar PubMed

Gorzkiewicz, M.; Appelhans, D.; Boye, S.; Lederer, A.; Voit, B.; Klajnert-Maculewicz, B. Effect of the structure of therapeutic adenosine analogues on stability and surface electrostatic potential of their complexes with poly(propyleneimine) dendrimers. Macromol. Rapid Commun. 2019, 40(15), 1900181; https://doi.org/10.1002/marc.201900181.Search in Google Scholar PubMed

Gou, G.; Niu, Z.; Han, W. Synthesis of N-heterocyclic carbene palladium magnetic nanocatalyst and its applications in Suzuki coupling reaction. Mater. Chem. Phys. 2019, 230, 145–150; https://doi.org/10.1016/j.matchemphys.2019.03.058.Search in Google Scholar

Guizani, S.; Malek Saied, N.; Picard, C.; Benoist, E.; Saidi, M. Synthesis and preliminary biological evaluation of the first 99mTc (I)‐specific semi‐rigid tridentate ligand based on a click chemistry strategy. J. Label. Compd. Radiopharm. 2014, 57(3), 158–163; https://doi.org/10.1002/jlcr.3182.Search in Google Scholar PubMed

Hayes, T. R.; Lyon, P. A.; Barnes, C. L.; Trabue, S.; Benny, P. D. Influence of functionalized pyridine ligands on the radio/chemical behavior of [MI(CO)3]+ (M = Re and 99mTc) 2+1 complexes. Inorg. Chem. 2015, 54(4), 1528–1534; https://doi.org/10.1021/ic502520x.Search in Google Scholar PubMed

Heijenbrok-Kal, M. H.; Fleischmann, K. E.; Hunink, M. M. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am. Heart J. 2007, 154(3), 415–423; https://doi.org/10.1016/j.ahj.2007.04.061.Search in Google Scholar PubMed

Herschman, H. R. Molecular imaging: looking at problems, seeing solutions. Science 2003, 302(5645), 605–608; https://doi.org/10.1126/science.1090585.Search in Google Scholar PubMed

Hewitt, S. C.; Korach, K. S. Estrogen receptors: new directions in the new millennium. Endocr. Rev. 2018, 39(5), 664–675; https://doi.org/10.1210/er.2018-00087.Search in Google Scholar PubMed PubMed Central

Hickey, J. L.; Simpson, E. J.; Hou, J.; Luyt, L. G. An integrated imaging probe design: the synthesis of 99mTc/Re‐containing macrocyclic peptide scaffolds. Chem. Eur. J. 2015, 21(2), 568–578; https://doi.org/10.1002/chem.201404774.Search in Google Scholar PubMed

Holmes, A. A.; Phillips, L. M. Cardiopulmonary exercise testing and SPECT myocardial perfusion imaging: pre-test probability is the key. J. Nucl. Cardiol. 2019, 26(1), 107–108; https://doi.org/10.1007/s12350-017-0996-7.Search in Google Scholar PubMed

Horváth, H. H.; Papp, G.; Csajági, C.; Joó, F. Selective catalytic hydrogenations in a microfluidics-based high throughput flow reactor on ion-exchange supported transition metal complexes: a modular approach to the heterogenization of soluble complex catalysts. Catal. Commun. 2007, 8(3), 442–446; https://doi.org/10.1016/j.catcom.2006.07.016.Search in Google Scholar

Huppe, A. I.; Mehta, A. K.; Brem, R. F. Molecular breast imaging: a comprehensive review. Semin. Ultrasound CT MR 2018, 39(1), 60–69; https://doi.org/10.1053/j.sult.2017.10.001.Search in Google Scholar PubMed

Iikuni, S.; Ono, M.; Tanimura, K.; Watanabe, H.; Yoshimura, M.; Saji, H. Synthesis and biological evaluation of novel technetium-99m-labeled phenylquinoxaline derivatives as single photon emission computed tomography imaging probes targeting β-amyloid plaques in Alzheimer’s disease. RSC Adv. 2017, 7(33), 20582–20590; https://doi.org/10.1039/c6ra28395k.Search in Google Scholar

Imai, M.; Kosaka, Y.; Tachi, M.; Mori, K.; Maruno, H. Does delayed image of myocardial fatty acid metabolism SPECT predict prognosis? J. Nucl. Med. 2019, 60(suppl. 1), 1445.Search in Google Scholar

Inkster, J.; Dearling, J.; Snay, E.; Packard, A. Synthesis of 18F-labeled acridinium cations: a new class of potential myocardial perfusion imaging agents. J. Nucl. Med. 2019, 60(suppl. 1), 1086.Search in Google Scholar

Irfan, M.; Rehman, R.; Razali, M. R.; Iqbal, M. A. Organotellurium compounds: an overview of synthetic methodologies. Rev. Inorg. Chem. 2020, 1 (ahead-of-print).10.1515/revic-2020-0006Search in Google Scholar

Johnstone, E. V.; Yates, M. A.; Poineau, F.; Sattelberger, A. P.; Czerwinski, K. R. Technetium: the first radioelement on the periodic table. J. Chem. Educ. 2017, 94(3), 320–326; https://doi.org/10.1021/acs.jchemed.6b00343.Search in Google Scholar

Jończyk, J.; Lodarski, K.; Staszewski, M.; Godyń, J.; Zaręba, P.; Soukup, O.; Janockova, J.; Korabecny, J.; Sałat, K.; Malikowska-Racia, N.; Hebda, M.; Szałaj, N.; Filipek, B.; Walczyński, K.; Malawska, B.; Bajda, M. Search for multifunctional agents against Alzheimer’s disease among non-imidazole histamine H3 receptor ligands. In vitro and in vivo pharmacological evaluation and computational studies of piperazine derivatives. Bioorg. Chem. 2019, 90, 103084; https://doi.org/10.1016/j.bioorg.2019.103084.Search in Google Scholar PubMed

Joseph, M.; Suni, V.; Kurup, M. R. P.; Nethaji, M.; Kishore, A.; Bhat, S. G. Structural, spectral and antimicrobial studies of copper (II) complexes of 2-benzoylpyridine N (4)-cyclohexyl thiosemicarbazone. Polyhedron 2004, 23(18), 3069–3080; https://doi.org/10.1016/j.poly.2004.09.026.Search in Google Scholar

Jurisson, S. S.; Lydon, J. D. Potential technetium small molecule radiopharmaceuticals. Chem. Rev. 1999, 99(9), 2205–2218; https://doi.org/10.1021/cr980435t.Search in Google Scholar PubMed

Kamel, M. H.; Khalil, M. I.; Davis, R.; Spiess, P. E. Management of the clinically negative (cN0) groin penile cancer patient: a review. Urology 2019, 131, 5–13, https://doi.org/10.1016/j.urology.2019.05.005.Search in Google Scholar PubMed

Kankala, S.; Thota, N.; Björkling, F.; Taylor, M. K.; Vadde, R.; Balusu, R. Silver carbene complexes: an emerging class of anticancer agents. Drug Dev. Res. 2019, 80(2), 188–199; https://doi.org/10.1002/ddr.21478.Search in Google Scholar PubMed

Kathawala, R. J.; Gupta, P.; Ashby, C. R.Jr; Chen, Z.-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updates 2015, 18, 1–17; https://doi.org/10.1016/j.drup.2014.11.002.Search in Google Scholar PubMed

Kenry; Liu, B. Bio-orthogonal click chemistry for in vivo bioimaging. Trends Chem. 2019, 1(8), 763–778; https://doi.org/10.1016/j.trechm.2019.08.003.Search in Google Scholar

Khan, M.; Mehmood, Q. Technetium-99m radiopharmaceuticals: a review on basic and applied aspects. Nucleus 2020, 56(4), 163–171.Search in Google Scholar

Khan, N. U. H.; Naqvi, S. A. R.; Roohi, S.; Sherazi, T. A.; Khan, Z. A.; Zahoor, A. F. Technetium‐99m radiolabeling and biological study of epirubicin for in vivo imaging of multi‐drug‐resistant Staphylococcus aureus infections via single photon emission computed tomography. Chem. Biol. Drug Des. 2019, 93(2), 154–162; https://doi.org/10.1111/cbdd.13393.Search in Google Scholar PubMed

Kim, Y.-S.; He, Z.; Hsieh, W.-Y.; Liu, S. A novel ternary ligand system useful for preparation of cationic 99mTc-diazenido complexes and 99mTc-labeling of small biomolecules. Bioconjugate Chem. 2006, 17(2), 473–484; https://doi.org/10.1021/bc0502715.Search in Google Scholar PubMed PubMed Central

Kimura, H.; Mori, D.; Harada, N.; Ono, M.; Ohmomo, Y.; Kajimoto, T.; Kawashima, H.; Saji, H. Microwave-assisted synthesis of organometallic complexes of 99mTc(CO)3 and Re(CO)3: its application to radiopharmaceuticals. Chem. Pharm. Bull. 2012, 60(1), 79–85; https://doi.org/10.1248/cpb.60.79.Search in Google Scholar PubMed

Kimura, H.; Ueda, M.; Kawashima, H.; Arimitsu, K.; Yagi, Y.; Saji, H. Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyl-technetium-labeled A-85380: an imaging probe for single-photon emission computed tomography investigation of nicotinic acetylcholine receptors in the brain. Bioorg. Med. Chem. 2019, 27(11), 2245–2252; https://doi.org/10.1016/j.bmc.2019.04.030.Search in Google Scholar PubMed

Kosari-Nasab, M.; Shokouhi, G.; Azarfarin, M.; Amirkhiz, M. B.; Abbasi, M. M.; Salari, A.-A. Serotonin 5-HT1A receptors modulate depression-related symptoms following mild traumatic brain injury in male adult mice. Metab. Brain Dis. 2019, 34(2), 575–582; https://doi.org/10.1007/s11011-018-0366-4.Search in Google Scholar

Kostelnik, T. I.; Orvig, C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev. 2018, 119(2), 902–956; https://doi.org/10.1021/acs.chemrev.8b00294.Search in Google Scholar

Kotegov, K.; Pavlov, O.; Shvedov, V. Technetium. In Advances in inorganic chemistry and radiochemistry, Vol. 11. Elsevier, 1968; pp 1–90.10.1016/S0065-2792(08)60165-XSearch in Google Scholar

Kunze, S.; Zobi, F.; Kurz, P.; Spingler, B.; Alberto, R. Vitamin B12 as a ligand for technetium and rhenium complexes. Angew. Chem. Int. Ed. 2004, 43(38), 5025–5029; https://doi.org/10.1002/anie.200460923.Search in Google Scholar PubMed

Lehmann, S.; Paquet, C.; Malaplate-Armand, C.; Magnin, E.; Schraen, S.; Quillard-Muraine, M.; Bousiges, O.; Delaby, C.; Dumurgier, J.; Hugon, J. Diagnosis associated with Tau higher than 1200 pg/mL: insights from the clinical and laboratory practice. Clin. Chim. Acta 2019, 495, 451–456; https://doi.org/10.1016/j.cca.2019.04.081.Search in Google Scholar PubMed

Li, N.; Zhu, H.; Chu, T.-W.; Yang, Z. Preparation and biological evaluation of 99mTc-N4IPA for single photon emission computerized tomography imaging of hypoxia in mouse tumor. Eur. J. Med. Chem. 2013, 69, 223–231; https://doi.org/10.1016/j.ejmech.2013.08.005.Search in Google Scholar PubMed

Li, Z.; Lin, X.; Zhang, J.; Wang, X.; Jin, Z.; Zhang, W.; Zhang, Y. Kit formulation for preparation and biological evaluation of a novel 99mTc-oxo complex with metronidazole xanthate for imaging tumor hypoxia. Nucl. Med. Biol. 2016, 43(2), 165–170; https://doi.org/10.1016/j.nucmedbio.2015.11.001.Search in Google Scholar PubMed

Li, X.; Chen, S.; Liu, Z.; Zhao, Z.; Lu, J. Syntheses and evaluations of the methoxy modified 99mTc-labeled triphenyl phosphonium cations: potential radiometallic probes for multidrug resistance detection. J. Organomet. Chem. 2018, 871, 28–35; https://doi.org/10.1016/j.jorganchem.2018.07.003.Search in Google Scholar

Liko, F.; Hindre, F.; Fernandez-Megia, E. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016, 17(10), 3103–3114; https://doi.org/10.1021/acs.biomac.6b00929.Search in Google Scholar PubMed

Lin, X.; Jin, Z.; Ren, J.; Pang, Y.; Zhang, W.; Huo, J.; Wang, X.; Zhang, J.; Zhang, Y. Synthesis and biodistribution of a new 99mTc‐oxo complex with deoxyglucose dithiocarbamate for tumor imaging. Chem. Biol. Drug Des. 2012, 79(3), 239–245; https://doi.org/10.1111/j.1747-0285.2011.01280.x.Search in Google Scholar PubMed

Lin, Y.-H.; Tsai, Y.-C.; Lin, K. J.; Lin, J.-D.; Wang, C.-C.; Chen, S.-T. Computer-aided diagnostic technique in 2-deoxy-2-[18F] fluoro-d-glucose-positive thyroid nodule: clinical experience of 74 non-thyroid cancer patients. Ultrasound Med. Biol. 2019, 45(1), 108–121; https://doi.org/10.1016/j.ultrasmedbio.2018.09.002.Search in Google Scholar PubMed

Lindberg, A.; Lu, S.; Nag, S.; Schou, M.; Liow, J.-S.; Zoghbi, S. S.; Frankland, M. P.; Gladding, R. L.; Morse, C. L.; Takano, A. Synthesis and evaluation of two new candidate high-affinity full agonist PET radioligands for imaging 5-HT1B receptors. Nucl. Med. Biol. 2019, 70, 1–13; https://doi.org/10.1016/j.nucmedbio.2019.01.005.Search in Google Scholar PubMed PubMed Central

Lipowska, M.; Klenc, J.; Jarkas, N.; Marzilli, L. G.; Taylor, A. T. Monoanionic 99mTc-tricarbonyl-aminopolycarboxylate complexes with uncharged pendant groups: radiosynthesis and evaluation as potential renal tubular tracers. Nucl. Med. Biol. 2017, 47, 48–55; https://doi.org/10.1016/j.nucmedbio.2016.12.008.Search in Google Scholar PubMed PubMed Central

Lipowska, M.; Klenc, J.; Taylor, A. T.; Marzilli, L. G. fac-99mTc/Re-tricarbonyl complexes with tridentate aminocarboxyphosphonate ligands: suitability of the phosphonate group in chelate ligand design of new imaging agents. Inorg. Chim. Acta. 2019, 486, 529–537; https://doi.org/10.1016/j.ica.2018.11.012.Search in Google Scholar PubMed PubMed Central

Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008, 60(12), 1347–1370; https://doi.org/10.1016/j.addr.2008.04.006.Search in Google Scholar PubMed PubMed Central

Liu, S.; Chakraborty, S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans. 2011, 40(23), 6077–6086; https://doi.org/10.1039/c0dt01462a.Search in Google Scholar PubMed

Liu, G.; Dou, S.; He, J.; Vanderheyden, J.-L.; Rusckowski, M.; Hnatowich, D. J. Preparation and properties of 99mTc(CO)3+-labeled N,N-bis (2-pyridylmethyl)-4-aminobutyric acid. Bioconjugate Chem. 2004, 15(6), 1441–1446; https://doi.org/10.1021/bc049866a.Search in Google Scholar PubMed PubMed Central

Liu, L.; Zhao, M.; Wang, Z.; Qin, Y.; Wang, X. Synthesis and biological evaluation of novel technetium-99m-labeled HYNIC-D-glucose as a potential tumor imaging agent. J. Radioanal. Nucl. Chem. 2014, 301(3), 731–737; https://doi.org/10.1007/s10967-014-3207-x.Search in Google Scholar

Lodhi, N. A.; Park, J. Y.; Kim, K.; Kim, Y. J.; Shin, J. H.; Lee, Y.-S.; Im, H.-J.; Jeong, J. M.; Khalid, M.; Cheon, G. J. Development of 99mTc-labeled human serum albumin with prolonged circulation by chelate-then-click approach: a potential blood pool imaging agent. Mol. Pharm. 2019, 16(4), 1586–1595; https://doi.org/10.1021/acs.molpharmaceut.8b01258.Search in Google Scholar PubMed

Maeda, K.; Ohnishi, A.; Sasaki, M.; Ikari, Y.; Aita, K.; Watanabe, Y.; Kusuhara, H.; Sugiyama, Y.; Senda, M. Quantitative investigation of hepatobiliary transport of [11C]telmisartan in humans by PET imaging. Drug Metabol. Pharmacokinet. 2019, 34(5), 293–299; https://doi.org/10.1016/j.dmpk.2019.02.004.Search in Google Scholar PubMed

Malek‐Saied, N.; Aissi, R. E.; Ladeira, S.; Benoist, E. Synthesis and biological evaluation of a novel 99mTc‐cyclopentadienyltricarbonyl technetium complex as a new potential brain perfusion imaging agent. Appl. Organomet. Chem. 2011, 25(9), 680–686.10.1002/aoc.1827Search in Google Scholar

Mallol, J.; Zolle, I. Preparation of technetium 99mTc pharmaceuticals. In Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine; Zolle, I., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 95–98.10.1007/978-3-540-33990-8_6Search in Google Scholar

Man, Y. S.; Foster, J.; Carapuça, E.; Davies, J. A.; Parker, A. L.; Sosabowski, J.; Halldén, G. Systemic delivery and SPECT/CT in vivo imaging of 125 I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Sci. Rep. 2019, 9(1), 1–12.10.1038/s41598-019-49150-9Search in Google Scholar

Mancuso, P.; Tricarico, R.; Bhattacharjee, V.; Cosentino, L.; Kadariya, Y.; Jelinek, J.; Nicolas, E.; Einarson, M.; Beeharry, N.; Devarajan, K. Thymine DNA glycosylase as a novel target for melanoma. Oncogene 2019, 38(19), 3710; https://doi.org/10.1038/s41388-018-0640-2.Search in Google Scholar PubMed PubMed Central

Mao, J.-G.; Clearfield, A. Metal carboxylate-phosphonate hybrid layered compounds: synthesis and single crystal structures of novel divalent metal complexes with N-(phosphonomethyl) iminodiacetic acid. Inorg. Chem. 2002, 41(9), 2319–2324; https://doi.org/10.1021/ic011094w.Search in Google Scholar PubMed

Mariappan Balasekaran, S.; Molski, M.; Hagenbach, A.; Abram, U. Nitrosylation of hexafluoridotechnetate (IV). Z. Anorg. Allg. Chem. 2013, 639(5), 672–675; https://doi.org/10.1002/zaac.201300105.Search in Google Scholar

Marvelli, L.; Bergamini, P.; Marchi, A.; Bersani, G.; Ferretti, V.; Bertolasi, V. Direct formation of new water soluble Re and Tc complexes containing PTA (1,3,5-triaza-7-phosphaadamantane) from their permetallated salts. Reactivity and X-ray crystal structures. Inorg. Chim. Acta. 2018, 470, 352–359; https://doi.org/10.1016/j.ica.2017.06.056.Search in Google Scholar

Mathur, A.; Mallia, M. B.; Banerjee, S.; Sarma, H.; Pillai, M. Preparation and evaluation of a 99mTcN–PNP complex of sanazole analogue for detecting tumor hypoxia. Bioorg. Med. Chem. Lett 2013, 23(5), 1394–1397; https://doi.org/10.1016/j.bmcl.2012.12.079.Search in Google Scholar PubMed

Mignani, S.; Shi, X.; Zablocka, M.; Majoral, J.-P. Dendrimer-enabled therapeutic antisense delivery systems as innovation in medicine. Bioconjugate Chem. 2019, 30(7), 1938–1950; https://doi.org/10.1021/acs.bioconjchem.9b00385.Search in Google Scholar PubMed

Mikolajczak, R.; van der Meulen, N. P.; Lapi, S. E. Radiometals for imaging and theranostics, current production, and future perspectives. J. Label. Compd. Radiopharm. 2019, 62(10), 615–634; https://doi.org/10.1002/jlcr.3770.Search in Google Scholar PubMed

Mindt, T.; Struthers, H.; Garcia-Garayoa, E.; Desbouis, D.; Schibli, R. Strategies for the development of novel tumor targeting technetium and rhenium radiopharmaceuticals. CHIMIA Int. J. Chem. 2007, 61(11), 725–731; https://doi.org/10.2533/chimia.2007.725.Search in Google Scholar

Miranda, S. E.; Lemos, J. A.; Fernandes, R. S.; Ottoni, F. M.; Alves, R. J.; Ferretti, A.; Rubello, D.; Cardoso, V. N.; de Barros, A. L. Technetium-99m-labeled lapachol as an imaging probe for breast tumor identification. Rev. Española Med. Nucl. Imagen Mol. 2019, 38(3), 167–172; https://doi.org/10.1016/j.remn.2018.10.006.Search in Google Scholar PubMed

Miroslavov, A. E.; Britvin, S. N.; Braband, H.; Alberto, R.; Stepanova, E. S.; Shevyakova, A. P.; Sidorenko, G. V.; Lumpov, A. A. Water-soluble carbonyl complexes of 99Tc(I) and Re(I) with adamantane-cage aminophosphines PTA and CAP. J. Organomet. Chem. 2019, 896, 83–89; https://doi.org/10.1016/j.jorganchem.2019.05.029.Search in Google Scholar

Mizuno, Y.; Uehara, T.; Jen, C.-W.; Akizawa, H.; Arano, Y. The synthesis of a 99mTc-labeled tetravalent targeting probe upon isonitrile coordination to 99mTc I for enhanced target uptake in saturable systems. RSC Adv. 2019, 9(45), 26126–26135; https://doi.org/10.1039/c9ra04311j.Search in Google Scholar PubMed PubMed Central

Mojarrad, P.; Zamani, S.; Seyedhamzeh, M.; Omoomi, F. D.; Karimpourfard, N.; Hadadian, S.; Ebrahimi, S. E. S.; Hamedani, M. P.; Farzaneh, J.; Ardestani, M. S. Novel radiopharmaceutical (technetium-99m)-(DOTA-NHS-ester)-Methionine as a SPECT-CT tumor imaging agent. Eur. J. Pharmaceut. Sci. 2020, 141, 105112; https://doi.org/10.1016/j.ejps.2019.105112.Search in Google Scholar PubMed

Morais, M.; Ferreira, V. F.; Figueira, F.; Mendes, F.; Raposinho, P.; Santos, I.; Oliveira, B. L.; Correia, J. D. Technetium-99m complexes of l-arginine derivatives for targeting amino acid transporters. Dalton Trans. 2017, 46(42), 14537–14547; https://doi.org/10.1039/c7dt01146f.Search in Google Scholar PubMed

Mori, D.; Kimura, H.; Kawashima, H.; Yagi, Y.; Arimitsu, K.; Ono, M.; Saji, H. Development of 99mTc radiolabeled A85380 derivatives targeting cerebral nicotinic acetylcholine receptor: novel radiopharmaceutical ligand 99mTc-A-YN-IDA-C4. Bioorg. Med. Chem. 2019, 27(18), 4200–4210; https://doi.org/10.1016/j.bmc.2019.07.053.Search in Google Scholar PubMed

Motaleb, M.; El-Said, H.; Abdallah, M.; Atef, M. Synthesis and evaluation of 99mTc-NIDA and 99mTc-DMIDA complexes for hepatobiliary imaging. Radiochemistry 2012, 54(5), 501–505; https://doi.org/10.1134/s1066362212050153.Search in Google Scholar

Mukiza, J.; Byamukama, E.; Sezirahiga, J.; Ngbolua, K.; Ndebwanimana, V. A review on technetium and rhenium based radiopharmaceuticals for diagnostic imaging and therapeutic nuclear medicine. Rwanda Med. J. 2018, 75(1), 14–22.Search in Google Scholar

Müller, C.; Dumas, C.; Hoffmann, U.; Schubiger, P. A.; Schibli, R. Organometallic 99mTc-technetium (I)-and Re-rhenium (I)-folate derivatives for potential use in nuclear medicine. J. Organomet. Chem. 2004, 689(25), 4712–4721; https://doi.org/10.1016/j.jorganchem.2004.08.045.Search in Google Scholar

Mundwiler, S.; Kündig, M.; Ortner, K.; Alberto, R. A new [2+1] mixed ligand concept based on [99(m)Tc(OH2)3(CO)3]+: a basic study. Dalton Trans. 2004, 9, 1320–1328; https://doi.org/10.1039/b400220b.Search in Google Scholar PubMed

Nadeem, Q.; Can, D.; Shen, Y.; Felber, M.; Mahmood, Z.; Alberto, R. Synthesis, characterization and bioevaluation of technetium-99m labeled N-(2-Hydroxybenzyl)-2-amino-2-deoxy-d-glucose as a tumor imaging agent. Pak. J. Pharm. Sci. 2013, 26(2), 353–357.Search in Google Scholar

Nadeem, Q.; Can, D.; Shen, Y.; Felber, M.; Mahmood, Z.; Alberto, R. Synthesis of tripeptide derivatized cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes. Org. Biomol. Chem. 2014, 12(12), 1966–1974; https://doi.org/10.1039/c3ob41866a.Search in Google Scholar PubMed

Nayak, D. K.; Baishya, R.; Natarajan, R.; Sen, T.; Debnath, M. C. Tricarbonyl 99mTc (i) and Re (i)–thiosemicarbazone complexes: synthesis, characterization and biological evaluation for targeting bacterial infection. Dalton Trans. 2015, 44(36), 16136–16148; https://doi.org/10.1039/c5dt02264a.Search in Google Scholar PubMed

O’Donohoe, R. L.; Carroll, A. G.; Kennelly, R. P.; Malone, D. E.; Ryan, R.; Cline, M. Acute gastrointestinal bleeding in adults and children: evidence-based emergency imaging. In Evidence-Based Emergency Imaging: Optimizing Diagnostic Imaging of Patients in the Emergency Care Setting; Kelly, A., Cronin, P., Puig, S., Applegate, K. E., Eds. Springer International Publishing: Cham, 2018; pp 355–371.10.1007/978-3-319-67066-9_23Search in Google Scholar

Ocampo-García, B. E.; Ramírez, F. d. M.; Ferro-Flores, G.; De León-Rodríguez, L. M.; Santos-Cuevas, C. L.; Morales-Avila, E.; de Murphy, C. A.; Pedraza-López, M.; Medina, L. A.; Camacho-López, M. A. 99mTc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl. Med. Biol. 2011, 38(1), 1–11; https://doi.org/10.1016/j.nucmedbio.2010.07.007.Search in Google Scholar PubMed

Ochiai, K.; Yamada, A.; Kimoto, Y.; Imamura, H.; Ikeda, T.; Matsukubo, M.; Ieiri, S.; Moritake, H. Long-term remission of bilateral Wilms tumors that developed from premature separation of chromatids/mosaic variegated aneuploidy syndrome due to bilateral nephrectomy and peritoneal dialysis. Pediatr. Blood Canc. 2019, 66(8), e27804; https://doi.org/10.1002/pbc.27804.Search in Google Scholar PubMed

Oehlke, E.; Kong, S.; Arciszewski, P.; Wiebalck, S.; Abram, U. Aryl and NHC compounds of technetium and rhenium. J. Am. Chem. Soc. 2012, 134(22), 9118–9121; https://doi.org/10.1021/ja3033718.Search in Google Scholar PubMed

Otero, L.; Vieites, M.; Boiani, L.; Denicola, A.; Rigol, C.; Opazo, L.; Olea-Azar, C.; Maya, J. D.; Morello, A.; Krauth-Siegel, R. L. Novel antitrypanosomal agents based on palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism as potential therapeutic targets. J. Med. Chem. 2006, 49(11), 3322–3331; https://doi.org/10.1021/jm0512241.Search in Google Scholar PubMed

Padovano, F.; Mariani, G.; Ferdeghini, M. Hybrid imaging for breast malignancies. In Nuclear Medicine Textbook; Volterrani, D.; Erba, P.A.; Carrió, I.; Strauss, H.W.; Mariani, G., Eds. Springer, 2019; pp 543–570.10.1007/978-3-319-95564-3_23Search in Google Scholar

Palangka, C. R.; Hanaoka, H.; Yamaguchi, A.; Murakami, T.; Tsushima, Y. Al 18 F-labeled alpha-melanocyte-stimulating hormone (α-MSH) peptide derivative for the early detection of melanoma. Ann. Nucl. Med. 2019, 33(10), 733–739; https://doi.org/10.1007/s12149-019-01383-4.Search in Google Scholar PubMed

Pandit-Taskar, N.; Modak, S. Norepinephrine transporter as a target for imaging and therapy. J. Nucl. Med. 2017, 58(Suppl. 2), 39S; https://doi.org/10.2967/jnumed.116.186833.Search in Google Scholar PubMed PubMed Central

Panza, F.; Lozupone, M.; Seripa, D.; Imbimbo, B. P. Amyloid‐β immunotherapy for Alzheimer disease: is it now a long shot? Ann. Neurol. 2019, 85(3), 303–315; https://doi.org/10.1002/ana.25410.Search in Google Scholar PubMed

Papagiannopoulou, D. Technetium‐99m radiochemistry for pharmaceutical applications. J. Label. Compd. Radiopharm. 2017, 60(11), 502–520; https://doi.org/10.1002/jlcr.3531.Search in Google Scholar PubMed

Parrott, M. C.; Benhabbour, S. R.; Saab, C.; Lemon, J. A.; Parker, S.; Valliant, J. F.; Adronov, A. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 2009, 131(8), 2906–2916; https://doi.org/10.1021/ja8078175.Search in Google Scholar PubMed

Paterson, L. M.; Kornum, B. R.; Nutt, D. J.; Pike, V. W.; Knudsen, G. M. 5‐HT radioligands for human brain imaging with PET and SPECT. Med. Res. Rev. 2013, 33(1), 54–111; https://doi.org/10.1002/med.20245.Search in Google Scholar PubMed PubMed Central

Patra, M.; Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. A potent glucose–platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew. Chem. Int. Ed. 2016, 55(7), 2550–2554; https://doi.org/10.1002/anie.201510551.Search in Google Scholar PubMed PubMed Central

Peltek, O. O.; Muslimov, A. R.; Zyuzin, M. V.; Timin, A. S. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J. Nanobiotechnol. 2019, 17(1), 90; https://doi.org/10.1186/s12951-019-0524-9.Search in Google Scholar PubMed PubMed Central

Peña-Zalbidea, S.; Huang, A. Y.-T.; Kavunja, H. W.; Salinas, B.; Desco, M.; Drake, C.; Woodruff, P. J.; Vaquero, J. J.; Swarts, B. M. Chemoenzymatic radiosynthesis of 2-deoxy-2-[18F] fluoro-d-trehalose ([18F]-2-FDTre): a PET radioprobe for in vivo tracing of trehalose metabolism. Carbohydr. Res. 2019, 472, 16–22; https://doi.org/10.1016/j.carres.2018.11.002.Search in Google Scholar PubMed PubMed Central

Pinter, P.; Soellner, J.; Strassner, T. Sky-blue triplet emitters with cyclometalated imidazopyrazine-based NHC-ligands and aromatic bulky acetylacetonates. Chem. Eur J. 2019, 25(64), 14495–14499; https://doi.org/10.1002/chem.201903074.Search in Google Scholar PubMed

Pirmettis, I.; Arano, Y.; Tsotakos, T.; Okada, K.; Yamaguchi, A.; Uehara, T.; Morais, M.; Correia, J.; Santos, I.; Martins, M. New 99mTc(CO)3 mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection. Mol. Pharm. 2012, 9(6), 1681–1692; https://doi.org/10.1021/mp300015s.Search in Google Scholar PubMed

Prats, E.; Aisa, F.; AbOs, M. D.; Villavieja, L.; GarcIa-Lopez, F.; Asenjo, M. J.; Razola, P.; Banzo, J. Mammography and 99mTc@ MIBI Scintimammographyin Suspected Breast Cancer. Society of Nuclear Medicine and Molecular Imaging. 1999.Search in Google Scholar

Pysz, M. A.; Gambhir, S. S.; Willmann, J. K. Molecular imaging: current status and emerging strategies. Clin. Radiol. 2010, 65(7), 500–516; https://doi.org/10.1016/j.crad.2010.03.011.Search in Google Scholar PubMed PubMed Central

Qaim, S. M.; Spahn, I. Development of novel radionuclides for medical applications. J. Label. Compd. Radiopharm. 2018, 61(3), 126–140; https://doi.org/10.1002/jlcr.3578.Search in Google Scholar PubMed

Qiu, L.; Cheng, W.; Lin, J.; Luo, S.; Xue, L.; Pan, J. Synthesis and biological evaluation of novel 99mTc-labelled bisphosphonates as superior bone imaging agents. Molecules 2011, 16(8), 6165–6178; https://doi.org/10.3390/molecules16086165.Search in Google Scholar PubMed PubMed Central

Rahmim, A.; Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29(3), 193–207; https://doi.org/10.1097/mnm.0b013e3282f3a515.Search in Google Scholar

Rathmann, S. M.; Ahmad, Z.; Slikboer, S.; Bilton, H. A.; Snider, D. P.; Valliant, J. F. The radiopharmaceutical chemistry of technetium-99m. In Radiopharmaceutical Chemistry; Springer, 2019; pp 311–333.10.1007/978-3-319-98947-1_18Search in Google Scholar

Reubi, J. C.; Mäcke, H. R.; Krenning, E. P. Candidates for peptide receptor radiotherapy today and in the future. J. Nucl. Med. 2005, 46, 67S.Search in Google Scholar

Rightmire, N. R.; Hanusa, T. P. Advances in organometallic synthesis with mechanochemical methods. Dalton Trans. 2016, 45(6), 2352–2362; https://doi.org/10.1039/C5DT03866A.Search in Google Scholar

Rodgers, B.; Kotlyarov, E. Current challenges for imaging of hypoxia in 2019. J. Nucl. Med. 2019, 60(suppl. 1), 1128.Search in Google Scholar

Rodríguez-Argüelles, M. C.; López-Silva, E. C.; Sanmartín, J.; Pelagatti, P.; Zani, F. Copper complexes of imidazole-2-, pyrrole-2-and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J. Inorg. Biochem. 2005, 99(11), 2231–2239; https://doi.org/10.1016/j.jinorgbio.2005.07.018.Search in Google Scholar PubMed

Romanenko, G.; Kuznetsova, O.; Fursova, E. Y.; Letyagin, G.; Ovcharenko, V. The structure of multinuclear copper (II) hexafluoroacetylacetone. J. Struct. Chem. 2019, 60(2), 275–278; https://doi.org/10.1134/s0022476619020124.Search in Google Scholar

Rosenbaum, S. J.; Lind, T.; Antoch, G.; Bockisch, A. False-positive FDG PET uptake − the role of PET/CT. Eur. Radiol. 2006, 16(5), 1054–1065; https://doi.org/10.1007/s00330-005-0088-y.Search in Google Scholar PubMed

Ruan, Q.; Zhang, X.; Lin, X.; Duan, X.; Zhang, J. Novel 99mTc labelled complexes with 2-nitroimidazole isocyanide: design, synthesis and evaluation as potential tumor hypoxia imaging agents. MedChemComm 2018, 9(6), 988–994; https://doi.org/10.1039/c8md00146d.Search in Google Scholar PubMed PubMed Central

Salvarese, N.; Spolaore, B.; Marangoni, S.; Pasin, A.; Galenda, A.; Tamburini, S.; Cicoria, G.; Refosco, F.; Bolzati, C. Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis (thiosemicarbazone) bifunctional chelator. J. Inorg. Biochem. 2018, 183, 18–31; https://doi.org/10.1016/j.jinorgbio.2018.02.023.Search in Google Scholar PubMed

Sanad, M. Synthesis and labeling of some organic compounds with technetium-99m. MSc thesis, Zagazig Univ.(Banha Branch), Faculty of Science, Cairo (Egypt), 2004.Search in Google Scholar

Sayed, M.; Motaleb, M.; Ibrahim, I.; Awad, G.; Ahmed, R. Intranasal drug delivery of iodo-haloperidol as a radiopharmaceutical brain imaging agent. J. Radioanal. Nucl. Chem. 2019, 319(3), 927–935; https://doi.org/10.1007/s10967-018-6359-2.Search in Google Scholar

Scalambra, F.; Lorenzo‐Luis, P.; de los Ríos, I.; Romerosa, A. New findings in metal complexes with antiproliferative activity containing 1,3,5‐triaza‐7‐phosphaadamantane (PTA) and derivative ligands. Eur. J. Inorg. Chem. 2019, 2019(11–12), 1529–1538; https://doi.org/10.1002/ejic.201801426.Search in Google Scholar

Schibli, R.; La Bella, R.; Alberto, R.; Garcia-Garayoa, E.; Ortner, K.; Abram, U.; Schubiger, P. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc (I)− tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem. 2000, 11(3), 345–351; https://doi.org/10.1021/bc990127h.Search in Google Scholar PubMed

Scholtysik, C.; Njiki Noufele, C.; Hagenbach, A.; Abram, U. Complexes of technetium (V) and rhenium (V) with β-diketonates. Inorg. Chem. 2019, 58(8), 5241–5252; https://doi.org/10.1021/acs.inorgchem.9b00326.Search in Google Scholar PubMed

Schroer, J.; Wagner, S.; Abram, U. Rhenium complexes with 2-(diphenylphosphinomethyl) aniline: formation of a cyclic, trinuclear oxorhenium (V) core. Inorg. Chem. 2010, 49(22), 10694–10701; https://doi.org/10.1021/ic101792j.Search in Google Scholar PubMed

Shad, H.; Hussain, A.; Shahzad, K.; Alam, M.; Ilyas, M.; Hussain, G.; Khan, Z.; Ahmad, K. Multi-component synthesis of novel diazoles: their characterization and biological evaluation. Arch. Organ. Inorgan. Chem. Sci. 2018, 1(2), 52–56; https://doi.org/10.32474/aoics.2018.01.000107.Search in Google Scholar

Shahzad, K.; Abbas, F.; Pandey, D.; Ajmal, S.; Khadim, M.; Tahir, M. U. Synthesis, Characterization and Biological Evaluation of Novel Tetrasubsituted Imidazole Compounds, 3. PeerScientist Services Pvt. Ltd., Miyapur, Hyderabad. 2020.10.26434/chemrxiv.12480605.v1Search in Google Scholar

Shamsel-Din, H.; Zaki, E. Synthesis, 99mTc-radiolabeling and in vivo evaluation of a new sulphonamide derivative for solid tumor imaging. J. Radioanal. Nucl. Chem. 2020, 326(1), 129–136; https://doi.org/10.1007/s10967-020-07317-z.Search in Google Scholar

Shimizu, Y.; Tanimura, K.; Iikuni, S.; Watanabe, H.; Saji, H.; Ono, M. Development of technetium-99m-labelled BODIPY-based probes targeting lipid droplets toward the diagnosis of hyperlipidemia-related diseases. Molecules 2019, 24(12), 2283; https://doi.org/10.3390/molecules24122283.Search in Google Scholar PubMed PubMed Central

Shirani, J.; Meera, S.; Dilsizian, V. The cardiorenal axis: myocardial perfusion, metabolism, and innervation. Curr. Cardiol. Rep. 2019, 21(7), 60; https://doi.org/10.1007/s11886-019-1147-3.Search in Google Scholar PubMed

Shrot, S.; Salhov, M.; Dvorski, N.; Konen, E.; Averbuch, A.; Hoffmann, C. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. Neuroradiology 2019, 61(7), 757–765; https://doi.org/10.1007/s00234-019-02195-z.Search in Google Scholar PubMed

Simms, R. W.; Causey, P. W.; Weaver, D. M.; Sundararajan, C.; Stephenson, K. A.; Valliant, J. F. Preparation of technetium‐99m bifunctional chelate complexes using a microfluidic reactor: a comparative study with conventional and microwave labeling methods. J. Label. Compd. Radiopharm. 2012, 55(1), 18–22; https://doi.org/10.1002/jlcr.1946.Search in Google Scholar

Slart, R. H.; Glaudemans, A. W.; Noordzij, W.; Bijzet, J.; Hazenberg, B. P.; Nienhuis, H. L. Time for new imaging and therapeutic approaches in cardiac amyloidosis. Eur. J. Nucl. Med. Mol. Imag. 2019, 46(7), 1402–1406; https://doi.org/10.1007/s00259-019-04325-4.Search in Google Scholar PubMed

Sogbein, O. O.; Green, A. E.; Valliant, J. F. Aqueous fluoride and the preparation of [99mTc(CO)3(OH2)3]+ and 99mTc− carborane complexes. Inorg. Chem. 2005, 44(25), 9585–9591; https://doi.org/10.1021/ic051123t.Search in Google Scholar PubMed

Song, X.; Wang, Y.; Zhang, J.; Jin, Z.; Zhang, W.; Zhang, Y. Synthesis and evaluation of a novel 99mTc nitrido radiopharmaceutical with alendronate dithiocarbamate as a potential bone‐imaging agent. Chem. Biol. Drug Des. 2018, 91(2), 545–551; https://doi.org/10.1111/cbdd.13117.Search in Google Scholar PubMed

Stieb, S.; Eleftheriou, A.; Warnock, G.; Guckenberger, M.; Riesterer, O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur. J. Nucl. Med. Mol. Imag. 2018, 45(12), 2201–2217; https://doi.org/10.1007/s00259-018-4116-y.Search in Google Scholar PubMed

Stott Reynolds, T. J.; Smith, C. J.; Lewis, M. R. Peptide-based radiopharmaceuticals for molecular imaging of prostate cancer. In Molecular & Diagnostic Imaging in Prostate Cancer: Clinical Applications and Treatment Strategies; Schatten, H., Ed. Springer International Publishing: Cham, 2018; pp 135–158.10.1007/978-3-319-99286-0_8Search in Google Scholar PubMed

Sun, Y.; Dai, H.; Chen, S.; Zhang, Y.; Wu, T.; Cao, X.; Zhao, G.; Xu, A.; Wang, J.; Wu, L. Disruption of chromosomal architecture of COX2 locus sensitizes lung cancer cells to radiotherapy. Mol. Ther. 2018, 26(10), 2456–2465; https://doi.org/10.1016/j.ymthe.2018.08.002.Search in Google Scholar PubMed PubMed Central

Sureshkumar, A.; Hansen, B.; Ersahin, D. Role of nuclear medicine in imaging. Seminars in Ultrasound, CT and MRI; 2019.10.1053/j.sult.2019.10.005Search in Google Scholar PubMed

Tada, T.; Osuda, K.; Nakata, T.; Muranaka, I.; Himeno, M.; Muratsubaki, S.; Murase, H.; Sato, K.; Hirose, M.; Fukuma, T. A novel approach to the selection of an appropriate pacing position for optimal cardiac resynchronization therapy using CT coronary venography and myocardial perfusion imaging: FIVE STaR method (fusion image using CT coronary venography and perfusion SPECT applied for cardiac resynchronization therapy). J. Nucl. Cardiol. 2019, 15, 178–185.10.1007/s12350-019-01856-zSearch in Google Scholar PubMed PubMed Central

Taghizadeh, E.; Mardani, R.; Rostami, D.; Taghizadeh, H.; Bazireh, H.; Hayat, S. M. G. Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: a review. J. Cell. Biochem. 2019, 120(6), 8891–8898; https://doi.org/10.1002/jcb.28311.Search in Google Scholar PubMed

Tejería, M. E.; Giglio, J.; Dematteis, S.; Rey, A. Development and characterization of a 99mTc‐tricarbonyl–labelled estradiol derivative obtained by “Click Chemistry” with potential application in estrogen receptors imaging. J. Label. Compd. Radiopharm. 2017, 60(11), 521–527; https://doi.org/10.1002/jlcr.3527.Search in Google Scholar PubMed

Tejería, E.; Giglio, J.; Fernández, L.; Rey, A. Development and evaluation of a 99mTc(V)-nitrido complex derived from estradiol for breast cancer imaging. Appl. Radiat. Isot. 2019, 154, 108854; https://doi.org/10.1016/j.apradiso.2019.108854.Search in Google Scholar PubMed

Urla, C.; Warmann, S. W.; Sparber-Sauer, M.; Schuck, A.; Leuschner, I.; Klingebiel, T.; Blumenstock, G.; Seitz, G.; Koscielniak, E.; Fuchs, J. Treatment and outcome of the patients with rhabdomyosarcoma of the biliary tree: experience of the Cooperative Weichteilsarkom Studiengruppe (CWS). BMC Canc. 2019, 19(1), 945; https://doi.org/10.1186/s12885-019-6172-5.Search in Google Scholar PubMed PubMed Central

Valotassiou, V.; Angelidis, G.; Psimadas, D.; Tsougos, I.; Georgoulias, P. In the era of FDG PET, is it time for brain perfusion SPECT to gain a place in Alzheimer’s disease imaging biomarkers? Eur. J. Nucl. Med. Mol. Imag. 2020, 47, 1–3. https://doi.org/10.1007/s00259-020-05077-2.Search in Google Scholar PubMed

van der Velden, S.; Dietze, M. M.; Viergever, M. A.; de Jong, H. W. Fast technetium‐99m liver SPECT for evaluation of the pretreatment procedure for radioembolization dosimetry. Med. Phys. 2019, 46(1), 345–355; https://doi.org/10.1002/mp.13253.Search in Google Scholar PubMed PubMed Central

Vanzetto, G.; Fagret, D.; Ghezzi, C. Tc-99m N-NOET: chronicle of a unique perfusion imaging agent and a missed opportunity? J. Nucl. Cardiol. 2004, 11(6), 647–650; https://doi.org/10.1016/j.nuclcard.2004.09.005.Search in Google Scholar PubMed

Vassiliadis, V.; Triantis, C.; Raptopoulou, C. P.; Psycharis, V.; Terzis, A.; Pirmettis, I.; Papadopoulos, M. S.; Papagiannopoulou, D. Synthesis, structural characterization and radiochemistry of “2+1” fac-[99mTc/Re(CO)3(L)(2-mercaptopyridine)] complexes, where L is phosphine or isocyanide. Polyhedron 2014, 81, 511–516; https://doi.org/10.1016/j.poly.2014.07.008.Search in Google Scholar

Vats, K.; Satpati, D.; Sharma, R.; Kumar, C.; Sarma, H. D.; Dash, A. 99mTc‐labeled NGR‐chlorambucil conjugate, 99mTc‐HYNIC‐CLB‐c (NGR) for targeted chemotherapy and molecular imaging. J. Label. Compd. Radiopharm. 2017, 60(9), 431–438; https://doi.org/10.1002/jlcr.3522.Search in Google Scholar PubMed

Vats, K.; Sharma, R.; Kameswaran, M.; Sarma, H. D.; Satpati, D.; Dash, A. Design, synthesis, and comparative evaluation of 99mTc(CO)3‐labeled N‐terminal and C‐terminal modified asparagine–glycine–arginine peptide constructs. J. Pept. Sci. 2019, 25(7), e3192; https://doi.org/10.1002/psc.3192.Search in Google Scholar PubMed

Vaupel, P.; Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Canc. Metastasis Rev. 2007, 26(2), 225–239; https://doi.org/10.1007/s10555-007-9055-1.Search in Google Scholar PubMed

Volkert, W. A.; Jurisson, S. Technetium-99m chelates as radiopharmaceuticals. In Technetium and Rhenium their Chemistry and its Applications, Yoshihara, K.; Omori, T., Eds. Vol. 176; Springer, 1996; pp 123–148.10.1007/3-540-59469-8_5Search in Google Scholar

Volkert, W. A.; Keutsch, E. Bone-seaking radiopharmaceuticals in cancer therapy. Adv. Met. Med. 1991, 1, 115–153.Search in Google Scholar

Vorobyeva, A.; Bragina, O.; Altai, M.; Mitran, B.; Orlova, A.; Shulga, A.; Proshkina, G.; Chernov, V.; Tolmachev, V.; Deyev, S. Comparative evaluation of radioiodine and technetium-labeled DARPin 9_29 for radionuclide molecular imaging of HER2 expression in malignant tumors; hindawi.com: Germany, 2018.10.1155/2018/6930425Search in Google Scholar

Wadas, T. J.; Wong, E. H.; Weisman, G. R.; Anderson, C. J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110(5), 2858–2902; https://doi.org/10.1021/cr900325h.Search in Google Scholar

Wang, J.; Tian, Y.; Duan, X.; Yang, J.; Mao, H.; Tan, C.; Wu, W. Synthesis, radiolabeling and biodistribution studies of [99mTc(CO)3(MN-TZ-BPA)]+ in tumor-bearing mice. J. Radioanal. Nucl. Chem. 2012, 292(1), 177–181; https://doi.org/10.1007/s10967-011-1396-0.Search in Google Scholar

Wang, Z.; Li, X.; Sun, H.; Fuhr, O.; Fenske, D. Synthesis of NHC pincer hydrido nickel complexes and their catalytic applications in hydrodehalogenation. Organometallics 2018, 37(4), 539–544; https://doi.org/10.1021/acs.organomet.7b00848.Search in Google Scholar

Wei, J. P.; Burke, G. J.; Mansberger, A. R. Prospective evaluation of the efficacy of technetium 99m sestamibi and iodine 123 radionuclide imaging of abnormal parathyroid glands. Surgery 1992, 112(6), 1111–1117.Search in Google Scholar

Weiner, R. E.; Thakur, M. L. Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl. Radiat. Isot. 2002, 57(5), 749–763; https://doi.org/10.1016/s0969-8043(02)00192-6.Search in Google Scholar

Wu, S. Y.; Chen, W. L.; Ma, X. P.; Liang, C.; Su, G. F.; Mo, D. L. Copper‐catalyzed [3+2] cycloaddition and interrupted fischer indolization to prepare polycyclic furo [2, 3‐b] indolines from N‐aryl isatin nitrones and methylenecyclopropanes. Adv. Synth. Catal. 2019, 361(5), 965–970; https://doi.org/10.1002/adsc.201801327.Search in Google Scholar

Xavier, C.; Pak, J.-K.; Santos, I.; Alberto, R. Evaluation of two chelators for labelling a PNA monomer with the fac-[99mTc(CO)3]+ moiety. J. Organomet. Chem. 2007, 692(6), 1332–1339; https://doi.org/10.1016/j.jorganchem.2006.10.007.Search in Google Scholar

Xu, Q.; Zhang, S.; Zhao, Y.; Feng, Y.; Liu, L.; Cai, L.; Zhang, W.; Huang, Z.; Wei, H.; Zhuo, L. Radiolabeling, quality control, biodistribution, and imaging studies of 177Lu‐ibandronate. J. Label. Compd. Radiopharm. 2019, 62(1), 43–51; https://doi.org/10.1002/jlcr.3694.Search in Google Scholar PubMed

Xue, Q.; Wang, H.; Liu, J.; Wang, D.; Zhang, H. Synthesis and biodistribution of novel dipicolylamine 99mTc-(CO)3-labeled fatty acid derivatives for myocardial imaging. J. Radioanal. Nucl. Chem. 2016, 310(3), 1181–1194; https://doi.org/10.1007/s10967-016-4916-0.Search in Google Scholar

Yang, D. J.; Kim, C.-G.; Schechter, N. R.; Azhdarinia, A.; Yu, D.-F.; Oh, C.-S.; Bryant, J. L.; Won, J.-J.; Kim, E. E.; Podoloff, D. A. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology 2003, 226(2), 465–473; https://doi.org/10.1148/radiol.2262011811.Search in Google Scholar PubMed

Yang, F.; Wang, K.; Zhou, K.; Dai, B.; Dai, J.; Liang, Y.; Cui, M. Synthesis and bioevaluation of technetium-99m/rhenium labeled phenylquinoxaline derivatives as Tau imaging probes. Eur. J. Med. Chem. 2019, 177, 291–301; https://doi.org/10.1016/j.ejmech.2019.05.065.Search in Google Scholar PubMed

Yang, J.; Xu, J.; Cheuy, L.; Gonzalez, R.; Fisher, D. R.; Miao, Y. Evaluation of a novel Pb-203-labeled lactam-cyclized alpha-melanocyte-stimulating hormone peptide for melanoma targeting. Mol. Pharm. 2019, 16(4), 1694–1702; https://doi.org/10.1021/acs.molpharmaceut.9b00025.Search in Google Scholar PubMed PubMed Central

Yazdani, A.; Janzen, N.; Czorny, S.; Ungard, R. G.; Miladinovic, T.; Singh, G.; Valliant, J. F. Preparation of tetrazine-containing [2+1] complexes of 99mTc and in vivo targeting using bioorthogonal inverse electron demand Diels–Alder chemistry. Dalton Trans. 2017a, 46(42), 14691–14699; https://doi.org/10.1039/c7dt01497j.Search in Google Scholar PubMed

Yazdani, A.; Janzen, N.; Czorny, S.; Valliant, J. F. Technetium (I) complexes of bathophenanthrolinedisulfonic acid. Inorg. Chem. 2017b, 56(5), 2958–2965; https://doi.org/10.1021/acs.inorgchem.6b03058.Search in Google Scholar PubMed

Yousuf, I.; Bashir, M. Metallodrugs in medicine: present, past, and future prospects. Adv. Metallodrugs Prep. Appl. Med. Chem. 2020, 1–39, https://doi.org/10.1002/9781119640868.ch1.Search in Google Scholar

Yu, Y.-P.; Wang, Q.; Liu, Y.-C.; Xie, Y. Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3. Biomaterials 2014, 35(5), 1667–1675; https://doi.org/10.1016/j.biomaterials.2013.10.072.Search in Google Scholar PubMed

Zenati, K.; Saied, N. M.; Asmi, A.; Saidi, M. Synthesis and biological evaluation of 99mTc labeled aryl piperazine derivatives as cerebral radiotracers. J. Radioanal. Nucl. Chem. 2017, 312(1), 67–74; https://doi.org/10.1007/s10967-017-5201-6.Search in Google Scholar

Zhang, J.; Guo, H.; Zhang, S.; Lin, Y.; Wang, X. Synthesis and biodistribution of a novel 99mTcN complex of ciprofloxacin dithiocarbamate as a potential agent for infection imaging. Bioorg. Med. Chem. Lett 2008, 18(19), 5168–5170; https://doi.org/10.1016/j.bmcl.2008.08.109.Search in Google Scholar PubMed

Zhang, Y.-K.; Wang, Y.-J.; Gupta, P.; Chen, Z.-S. Multidrug resistance proteins (MRPs) and cancer therapy. AAPS J. 2015, 17(4), 802–812; https://doi.org/10.1208/s12248-015-9757-1.Search in Google Scholar PubMed PubMed Central

Zheng, X.; Lee, K. H.; Liu, H.; Park, S.-Y.; Yoon, S. S.; Lee, J. Y.; Kim, Y.-G. A bis (pyridine-2-ylmethyl) amine-based selective and sensitive colorimetric and fluorescent chemosensor for Cu2+. Sensor. Actuator. B Chem. 2016, 222, 28–34; https://doi.org/10.1016/j.snb.2015.08.053.Search in Google Scholar

Zhang, L.; Suksanpaisan, L.; Jiang, H.; DeGrado, T. R.; Russell, S. J.; Zhao, M.; Peng, K.-W. Dual isotope SPECT imaging with NIS reporter gene and duramycin to visualize tumor susceptibility to oncolytic virus infection. Mol. Therapy Oncolytics 2019a, 15, 178–185; https://doi.org/10.1016/j.omto.2019.10.002.Search in Google Scholar PubMed PubMed Central

Zhang, L.; Yao, X.; Cao, J.; Hong, H.; Zhang, A.; Zhao, R.; et al. In vivo ester hydrolysis as a new approach in development of positron emission tomography tracers for imaging hypoxia. Mol. Pharm. 2019b, 16(3), 1156–1166; https://doi.org/10.1021/acs.molpharmaceut.8b01131.Search in Google Scholar PubMed

Zhang, P.; Zhao, Z.; Zhang, L.; Wu, W.; Xu, Y.; Pan, D.; Wang, F.; Yang, M. [68Ga] Ga-NOTA-MAL-Cys39-exendin-4, a potential GLP-1R targeted PET tracer for the detection of insulinoma. Nucl. Med. Biol. 2019, 74, 19–24; https://doi.org/10.1016/j.nucmedbio.2019.08.002.Search in Google Scholar PubMed

Zhu, J.; Wang, Y.; Li, Z.; Fang, S. A.; Zhang, J. Synthesis and biological evaluation of novel 99mTc-oxo and 99mTc-nitrido complexes with phenylalanine dithiocarbamate for tumor imaging. J. Radioanal. Nucl. Chem. 2014, 302(1), 211–216; https://doi.org/10.1007/s10967-014-3160-8.Search in Google Scholar

Zhu, H.; Cheng, C.; Dong, A.; Zuo, C. Prospective evaluation of 99mTc-MIBI SPECT/CT for the diagnosis of solid renal tumors. J. Nucl. Med. 2019, 60(suppl. 1), 1572.Search in Google Scholar

Received: 2020-09-30
Accepted: 2020-12-23
Published Online: 2021-01-26
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0021/pdf
Scroll to top button