Abstract
Organometallic complexes of neodymium have unique coordinating ability to form both micro and macromolecules as well as metal-based polymers. These complexes have been reported in different fields and play a tremendous role in luminescence, catalytic, biological and magnetic applications. So, the current study will comprise all possible routes for the synthesis of organometallic complexes of neodymium. Neodymium complexes have been synthesized of single, double, triple and tetra linkages with H, C, N, O as well as S, B, and X. The detailed synthetic routes have been classified into four categories but in brief, neodymium forms complexes by reacting metal chloride, nitrate or oxide (hydrated or dehydrated) as precursor along with appropriate ligand. Most applied solvents for neodymium complexes were Toluene and THF. These complexes required a range of temperature based on the nature of complexes as well as linkages. The authors have surveyed the research work published through 2011–2020 and provide a comprehensive overview to understand the synthetic routes of organometallic complexes of neodymium.
Funding source: Higher Education Commision, Pakistan
Award Identifier / Grant number: NRPU-8198NRPU-8396
Acknowledgment
The authors are thankful to the Department of Chemistry, University of Agriculture Faisalabad-Pakistan for providing necessary facilities to compile this review.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Dr. MAI is thankful to Higher Education Commission of Pakistan (HEC-Pak) for awarding research grant NRPU-8396 & NRPU-8198.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abbasi, M.; Yaqoob, M.; Haque, R. A.; Iqbal, M. A. Potential of gold candidates against human colon cancer. Mini Rev. Med. Chem.2020; https://doi.org/10.2174/1389557520666200807130721.Search in Google Scholar
Abdel-Rahman, R. M.; Al-Footy, K. O.; Aqlan, F. Synthesis and antiinflammatory evaluation of some more new 1, 2, 4-triazolo [3, 4-b] thiadiazoles as an antimicrobial agent: Part-I. Int. J. Chemtech Res.2011, 3.Search in Google Scholar
Abinet, E.; Martin, D.; Standfuss, S.; Kulinna, H.; Spaniol, T. P.; Okuda, J. Rare-earth metal allyl and hydrido complexes supported by an (NNNN)-type macrocyclic ligand: synthesis, structure, and reactivity toward biomass-derived furanics. Chemistry2011, 17, 15014–15026; https://doi.org/10.1002/chem.201102145.Search in Google Scholar
Abrahams, A. r.; Madanhire, T.; Hosten, E.; Betz, R. Synthesis and characterization of lanthanide complexes prepared with 2-((E)-(1-hydroxy-2-methylpropan-2-ylimino) methyl)-6-methoxyphenol. J. Coord. Chem.2017, 70, 1994–2014; https://doi.org/10.1080/00958972.2017.1319568.Search in Google Scholar
Aillaud, I.; Lyubov, D.; Collin, J.; Guillot, R.; Hannedouche, J.; Schulz, E.; Trifonov, A. Chiral amido alkyl rare earth complexes: a new family of asymmetric intramolecular hydroamination catalysts. Organometallics2008, 27, 5929–5936; https://doi.org/10.1021/om800618k.Search in Google Scholar
Ain, Q.; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms. Spectrochim. Acta Mol. Biomol. Spectrosc.2015, 140, 27–34; https://doi.org/10.1016/j.saa.2014.12.040.Search in Google Scholar
Ain, Q.; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K. Synthesis, structural characterization and biological studies of neodymium(III) and samarium(III) complexes with mercaptotriazole Schiff bases. Appl. Organomet. Chem.2016, 30, 102–108; https://doi.org/10.1002/aoc.3405.Search in Google Scholar
Al Zoubi, W.; Ko, Y. G. Organometallic complexes of Schiff bases: recent progress in oxidation catalysis. J. Organomet. Chem.2016, 822, 173–188; https://doi.org/10.1016/j.jorganchem.2016.08.023.Search in Google Scholar
Ali, B.; Shakir, M. R.; Iqbal, M. A. Techniques in the synthesis of mononuclear manganese complexes: a review. Rev. Inorg. Chem.2017, 37, 105–130; https://doi.org/10.1515/revic-2017-0004.Search in Google Scholar
Ansari, A. A.; Ilmi, R.; Iftikhar, K. Hypersensitivity in the 4f–4f absorption spectra of tris (acetylacetonato) neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions. J. Lumin.2012, 132, 51–60; https://doi.org/10.1016/j.jlumin.2011.06.054.Search in Google Scholar
Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Herdtweck, E.; Spiegler, M. Synthesis and structural characterisation of rare-earth bis (dimethylsilyl) amides and their surface organometallic chemistry on mesoporous MCM-41. J. Chem. Soc., Dalton Trans.1998, 847–858; https://doi.org/10.1039/a705608g.Search in Google Scholar
Anwar, H.; Haque, R. A.; Saleem, R. S. Z.; Iqbal, M. A. Recent advances in synthesis of organometallic complexes of indium. Rev. Inorg. Chem.2020, 40, published ahead of print; https://doi.org/10.1515/revic-2020-0005.Search in Google Scholar
Ashraf, R.; Bhatti, H. N.; Iqbal, M. A.; Jamil, Y. Synthesis of aryl linked binuclear silver N-heterocyclic carbene complexes, DNA interaction study and biological potentials. Inorg. Chem. Commun.2020, 119, 108077; https://doi.org/10.1016/j.inoche.2020.108077.Search in Google Scholar
Ashraf, R.; Iqbal, M. A.; Bhatti, H. N.; Janjua, M. R. S. A.; El-Naggar, M. Bioactivity and DNA/BSA interactions of selenium N-heterocyclic carbene adducts. ChemistrySelect2020, 5, 10970–10981; https://doi.org/10.1002/slct.202001990.Search in Google Scholar
Atif, M.; Bhatti, H. N.; Haque, R. A.; Iqbal, M. A.; Khadeer, M. B. A.; Majid, A. M. S. A. Synthesis, structure, and anticancer activity of symmetrical and non-symmetrical silver (I)-N-heterocyclic carbene complexes. Appl. Biochem. Biotechnol.2020, 191, 1171–1189; https://doi.org/10.1007/s12010-019-03186-9.Search in Google Scholar
Atwood, D. A.; Harvey, M. J. Group 13 compounds incorporating salen ligands. Chem. Rev.2001, 101, 37–52; https://doi.org/10.1021/cr990008v.Search in Google Scholar
Baisch, U.; DellAmico, D. B.; Calderazzo, F.; Conti, R.; Labella, L.; Marchetti, F.; Quadrelli, E. A. The mononuclear and dinuclear dimethoxyethane adducts of lanthanide trichlorides [LnCl3 (DME) 2] n, n= 1 or 2, fundamental starting materials in lanthanide chemistry: preparation and structures. Inorg. Chim. Acta.2004, 357, 1538–1548; https://doi.org/10.1016/j.ica.2003.11.011.Search in Google Scholar
Bambirra, S.; Meetsma, A.; Hessen, B. Lanthanum tribenzyl complexes as convenient starting materials for organolanthanum chemistry. Organometallics2006, 25, 3454–3462; https://doi.org/10.1021/om060262v.Search in Google Scholar
Bassett, A. P.; Magennis, S. W.; Glover, P. B.; Lewis, D. J.; Spencer, N.; Parsons, S.; Pikramenou, Z. Highly luminescent, triple-and quadruple-stranded, dinuclear Eu, Nd, and Sm (III) lanthanide complexes based on bis-diketonate ligands. J. Am. Chem. Soc.2004, 126, 9413–9424; https://doi.org/10.1021/ja048022z.Search in Google Scholar
Behrle, A. C.; Schmidt, J. A. Synthesis and reactivity of homoleptic α-metalated N,N-dimethylbenzylamine rare-earth-metal complexes. Organometallics2011, 30, 3915–3918; https://doi.org/10.1021/om200363z.Search in Google Scholar
Berezhnytska, O.; Savchenko, I.; Ivakha, N.; Trunova, O.; Rusakova, N.; Smola, S.; Rogovtsov, O. Synthesis, characterization, and luminescent properties of polymer complexes of Nd(III) with β-dicarbonyl ligands. Nanoscale Res. Lett.2017, 12, 338; https://doi.org/10.1186/s11671-017-2074-0.Search in Google Scholar
Binil, P.; Anoop, M.; Jisha, K.; Suma, S.; Sudarsanakumar, M. Synthesis, spectral characterization, thermal and biological studies of lanthanide (III) complexes of oxyphenbutazone. J. Rare Earths2014, 32, 43–51; https://doi.org/10.1016/s1002-0721(14)60032-6.Search in Google Scholar
Birin, K. P.; Gorbunova, Y. G.; Tsivadze, A. Y. Selective one-step synthesis of triple-decker (porphyrinato)(phthalocyaninato) early lanthanides: the balance of concurrent processes. Dalton Trans.2011, 40, 11539–11549; https://doi.org/10.1039/C1DT11141H.Search in Google Scholar
Biswas, B.; Salunke-Gawali, S.; Weyhermüller, T.; Bachler, V.; Bill, E.; Chaudhuri, P. A ferromagnetically coupled diiron (III) complex with am-phenylenediaminbased ligand. Eur. J. Inorg. Chem.2008, 2008, 2391–2395; https://doi.org/10.1002/ejic.200800255.Search in Google Scholar
Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J. Chem. Soc., Dalton Trans.1973, 10, 1021–1023; https://doi.org/10.1039/DT9730001021.Search in Google Scholar
Britovsek, G. J. P.; England, J.; White, A. J. P. Non-heme iron(II) complexes containing tripodal tetradentate nitrogen ligands and their application in alkane oxidation catalysis. Inorg. Chem.2005, 44, 8125–8134; https://doi.org/10.1021/ic0509229.Search in Google Scholar
Brunner, T. S.; Benndorf, P.; Gamer, M. T.; Knöfel, N.; Gugau, K.; Roesky, P. W. Enantiopure amidinate complexes of the rare-earth elements. Organometallics2016, 35, 3474–3487; https://doi.org/10.1021/acs.organomet.6b00523.Search in Google Scholar
Caporale, A. Synthesis of novel ligands for the stabilization of organometallic complexes having potential antitumor activity.2016; https://doi.org/10.1109/sspd.2016.7590585.Search in Google Scholar
Caporale, A.; Palma, G.; Mariconda, A.; Del Vecchio, V.; Iacopetta, D.; Parisi, O. I.; Longo, P. Synthesis and antitumor activity of new group 3 metallocene complexes. Molecules2017, 22, 526; https://doi.org/10.3390/molecules22040526.Search in Google Scholar
Cendrowski-Guillaume, S. M.; Nierlich, M.; Lance, M.; Ephritikhine, M. First chemical transformations of lanthanide borohydride compounds: synthesis and crystal structures of [(η-C8H8)Nd(BH4)(THF)]2 and [(η-C8H8)Nd(THF)4][BPh4]. Organometallics1998, 17, 786–788; https://doi.org/10.1021/om9709446.Search in Google Scholar
Cheng, J.; Wang, H.; Nishiura, M.; Hou, Z. Binuclear rare-earth polyhydride complexes bearing both terminal and bridging hydride ligands. Chem. Sci.2012, 3, 2230–2233; https://doi.org/10.1039/C2SC20300F.Search in Google Scholar
Cherkasova, E. V.; Peresypkina, E. V.; Virovets, A. V.; Cherkasova, T. G. Synthesis, crystal structure, and structural features of hexa(isothiocyanate)chromates(III) of lanthanum(III) and neodymium(III) complexes with nicotinic acid. Russ. J. Inorg. Chem.2013, 58, 1040–1046; https://doi.org/10.1134/s0036023613090076.Search in Google Scholar
Chorazy, S.; Sieklucka, B.; Ohkoshi, S.-i. Near-infrared photoluminescence in hexacyanido-bridged Nd–Cr layered ferromagnet. Cryst. Growth Des.2016, 16, 4918–4925; https://doi.org/10.1021/acs.cgd.6b00476.Search in Google Scholar
Cristóvão, B.; Kłak, J.; Miroslaw, B.; Mazur, L. Synthesis, crystal structures and magnetic characterization of heterodinuclear CuIIGdIII and CuIITbIII Schiff base complexes. Inorg. Chim. Acta.2011, 378, 288–296; https://doi.org/10.1016/j.ica.2011.09.017.Search in Google Scholar
Cristóvão, B.; Miroslaw, B.; Kłak, J. N,N′-bis (5-bromo-2-hydroxy-3-methoxybenzylidene)-1, 3-diaminopropane Cu–4f–Cu and Cu–4f complexes: synthesis, crystal structures and magnetic properties. Polyhedron2012, 34, 121–128; https://doi.org/10.1016/j.poly.2011.12.013.Search in Google Scholar
Decortes, A.; Castilla, A. M.; Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of Co2 to epoxides. Angew. Chem. Int. Ed.2010, 49, 9822–9837; https://doi.org/10.1002/anie.201002087.Search in Google Scholar
Dixit, N.; Mishra, L.; Mustafi, S. M.; Chary, K. V. R.; Houjou, H. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+). Spectrochim. Acta Mol. Biomol. Spectrosc.2009, 73, 29–34; https://doi.org/10.1016/j.saa.2009.01.015.Search in Google Scholar
Döring, C.; Kempe, R. Crystal structure of tribenzyltris (tetrahydrofurano) neodymium (III),[Nd (CH2Ph) 3 (OC4H8) 3]. Z. Kristallogr. N. Cryst. Struct.2008, 223, 397–398; https://doi.org/10.1524/ncrs.2008.0174.Search in Google Scholar
Døssing, A.; Kadziola, A.; Gawryszewska, P.; Watras, A.; Melchior, A. Structure, stability and spectroscopic features of the neodymium(III) complex of the octadentate polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl)aminomethyl]-2.2′-bipyridine. Inorg. Chim. Acta.2017, 467.10.1016/j.ica.2017.07.040Search in Google Scholar
Duan, Y.-L.; He, J.-X.; Wang, W.; Zhou, J.-J.; Huang, Y.; Yang, Y. Synthesis and characterization of dinuclear rare-earth complexes supported by amine-bridged bis(phenolate) ligands and their catalytic activity for the ring-opening polymerization of l-lactide. Dalton Trans.2016, 45, 10807–10820; https://doi.org/10.1039/C6DT01486K.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2010. Coord. Chem. Rev.2012, 256, 2641–2740; https://doi.org/10.1016/j.ccr.2012.07.027.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2011. Coord. Chem. Rev.2013, 257, 1122–1231; https://doi.org/10.1016/j.ccr.2012.12.010.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2012. Coord. Chem. Rev.2014, 261, 73–155; https://doi.org/10.1016/j.ccr.2013.11.008.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2013. Coord. Chem. Rev.2015, 284, 124–205; https://doi.org/10.1016/j.ccr.2014.09.017.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2015. Coord. Chem. Rev.2016, 318, 29–130; https://doi.org/10.1016/j.ccr.2016.04.001.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2016. Coord. Chem. Rev.2017, 338, 27–140; https://doi.org/10.1016/j.ccr.2017.02.001.Search in Google Scholar
Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2017. Coord. Chem. Rev.2018, 370, 129–223; https://doi.org/10.1016/j.ccr.2018.05.013.Search in Google Scholar
Edelmann, F. T.; Farnaby, J. H.; Jaroschik, F.; Wilson, B. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2018. Coord. Chem. Rev.2019, 398, 113005; https://doi.org/10.1016/j.ccr.2019.07.002.Search in Google Scholar
Evans, W. J.; Johnston, M. A.; Clark, R. D.; Anwander, R.; Ziller, J. W. Heteroleptic and heterometallic divalent lanthanide bis(trimethylsilyl)amide complexes: mixed ligand, inverse sandwich, and alkali metal derivatives. Polyhedron2001, 20, 2483–2490; https://doi.org/10.1016/S0277-5387(01)00848-8.Search in Google Scholar
Fang, L.; Yao, Y.; Zhang, Y.; Shen, Q.; Wang, Y. Synthesis and structure of lanthanide aryloxo complexes and their polymerization behavior for ϵ-caprolactone. Z. Anorg. Allg. Chem.2013, 639, 2324–2330; https://doi.org/10.1002/zaac.201300218.Search in Google Scholar
Feng, Z.; Wang, S.; Wu, Y.; Li, Q.; Zhao, X.; Wang, X.; Wang, S. cis-1,4-Polymerization of isoprene catalyzed by rare-earth metal amido complexes supported by 2-t-butylimino- or 2-amino-functionalized indolyl ligand. Inorg. Chem. Commun.2020, 121, 108195; https://doi.org/10.1016/j.inoche.2020.108195.Search in Google Scholar
Feng, Z.; Zhu, X.; Wang, S.; Wang, S.; Zhou, S.; Wei, Y.; Mu, X. Synthesis, structure, and reactivity of lanthanide complexes incorporating indolyl ligands in novel hapticities. Inorg. Chem.2013, 52, 9549–9556; https://doi.org/10.1021/ic401515q.Search in Google Scholar
Fun, H.-K.; Quah, C. K.; Vijesh, A.; Malladi, S.; Isloor, A. M. 4-Amino-3-(1-naphthyloxymethyl)-1H-1, 2, 4-triazole-5 (4H)-thione. Acta Crystallogr. Sec. E Struct. Rep. Online2010, 66, o29–o30; https://doi.org/10.1107/s1600536809051368.Search in Google Scholar
Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V. Calix[4]pyrroles: old yet new anion-binding agents. J. Am. Chem. Soc.1996, 118, 5140–5141; https://doi.org/10.1021/ja960307r.Search in Google Scholar
García, M. E.; García-Vivó, D.; Ramos, A.; Ruiz, M. A. Phosphinidene-bridged binuclear complexes. Coord. Chem. Rev.2017, 330, 1–36; https://doi.org/10.1016/j.ccr.2016.09.008.Search in Google Scholar
Golovnev, N. N.; Molokeev, M. S.; Vereshchagin, S. N.; Atuchin, V. V. Synthesis and thermal transformation of a neodymium(III) complex [Nd(HTBA)2(C2H3O2)(H2O)2]·2H2O to non-centrosymmetric oxosulfate Nd2O2SO4. J. Coord. Chem.2015, 68, 1865–1877; https://doi.org/10.1080/00958972.2015.1031119.Search in Google Scholar
Gu, X.-Y.; Han, X.-Z.; Yao, Y.-M.; Zhang, Y.; Shen, Q. Synthesis and characterization of lanthanide complexes bearing a ferrocene-containing N-aryloxo-β-ketoiminate ligand. J. Organomet. Chem.2010, 695, 2726–2731; https://doi.org/10.1016/j.jorganchem.2010.07.037.Search in Google Scholar
Guangxiang, L. A 4d-4f heterometallic coordination polymer: synthesis, crystal structure and near-infrared luminescent properties. J. Rare Earths2012, 30, 716–720.10.1016/S1002-0721(12)60117-3Search in Google Scholar
Gun’ko, Y. K.; Bulychev, B. M.; Soloveichik, G. L.; Belsky, V. K. Unsolvated lanthanidocene hydrides and borohydrides. X-ray crystal structure of [(η5-C5H3tBu2)2Ln(μ-H)]2 (Ln = Ce, Sm). J. Organomet. Chem.1992, 424, 289–300; https://doi.org/10.1016/0022-328X(92)80004-H.Search in Google Scholar
Habib, A.; Bhatti, H. N.; Iqbal, M. A.; Shahid, M. Unique trinuclear Ag (I)-N-heterocyclic carbene (NHC) complex having three silver centers: synthesis and characterization. J. Chem. Soc. Pakistan2020, 42, 429–436.10.52568/000654Search in Google Scholar
Hajiashrafi, T.; Nemati Kharat, A.; Love, J. A.; Patrick, B. O. Synthesis, characterization and crystal structure of three new lanthanide (III) complexes with the [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine (MeTPA) ligand; new precursors for lanthanide (III) oxide nano-particles. Polyhedron2013, 60, 30–38; https://doi.org/10.1016/j.poly.2013.04.061.Search in Google Scholar
Han, X.; Wu, L.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and characterization of N-aryloxo-functionalized β-ketoiminate rare-earth complexes and their catalytic activity for the polymerization of ɛ-caprolactone. Chin. Sci. Bull.2009, 54, 3795; https://doi.org/10.1007/s11434-009-0514-7.Search in Google Scholar
Hangaly, N. K.; Petrov, A. R.; Rufanov, K. A.; Harms, K.; Elfferding, M.; Sundermeyer, J. r. Cyclopentadienylphosphazene (CpPN) complexes of rare-earth metals: synthesis, structural characterization, and hydroamination catalysis. Organometallics2011, 30, 4544–4554; https://doi.org/10.1021/om200264n.Search in Google Scholar
Haque, R. A.; Iqbal, M. A.; Mohamad, F.; Razali, M. R. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver (I) and selenium compounds. J. Mol. Struct.2018, 1155, 362–370; https://doi.org/10.1016/j.molstruc.2017.10.092.Search in Google Scholar
Hayat, H.; Iqbal, M. A. Modern techniques in synthesis of organometallic compounds of germanium. In Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry; IntechOpen, 2018.10.5772/intechopen.79985Search in Google Scholar
Hou, Y.; Shi, J.; Chu, W.; Sun, Z. Synthesis, crystal structure, and near-IR luminescent properties of lanthanide bis (β-diketonate) complexes. Eur. J. Inorg. Chem.2013, 2013, 3063–3069; https://doi.org/10.1002/ejic.201300013.Search in Google Scholar
Huang, L.-L.; Han, X.-Z.; Yao, Y.-M.; Zhang, Y.; Shen, Q. Synthesis of ferrocene-containing N-aryloxo β-ketoiminate lanthanide complexes and polymerization of ε-caprolactone. Appl. Organomet. Chem.2011, 25, 464–469; https://doi.org/10.1002/aoc.1788.Search in Google Scholar
Huang, W.; Upton, B. M.; Khan, S. I.; Diaconescu, P. L. Synthesis and characterization of paramagnetic lanthanide benzyl complexes. Organometallics2013, 32, 1379–1386; https://doi.org/10.1021/om3010433.Search in Google Scholar
Ilmi, R.; Iftikhar, K. Structure elucidation by sparkle/RM1, effect of lanthanide contraction and photophysical properties of lanthanide(III) trifluoroacetylacetonate complexes with 1,10-phenanthroline. J. Photochem. Photobiol. Chem.2016, 325, 68–82; https://doi.org/10.1016/j.jphotochem.2016.03.018.Search in Google Scholar
Irfan, M.; Rehman, R.; Razali, M. R.; Iqbal, M. A. Organotellurium compounds: an overview of synthetic methodologies. Rev. Inorg. Chem.2020, 40, published ahead of print; https://doi.org/10.1515/revic-2020-0006.Search in Google Scholar
Jana, A.; Majumder, S.; Carrella, L.; Nayak, M.; Weyhermueller, T.; Dutta, S.; Mohanta, S. Syntheses, structures, and magnetic properties of diphenoxo-bridged CuIILnIII and NiII(Low-Spin)LnIII compounds derived from a compartmental ligand (Ln = Ce−Yb). Inorg. Chem.2010, 49, 9012–9025; https://doi.org/10.1021/ic101445n.Search in Google Scholar
Jothieswaran, J.; Fadlallah, S.; Bonnet, F.; Visseaux, M. Recent advances in rare earth complexes bearing allyl ligands and their reactivity towards conjugated dienes and styrene polymerization. Catalysts2017, 7, 378; https://doi.org/10.3390/catal7120378.Search in Google Scholar
Kamal, A.; Iqbal, M. A.; Bhatti, H. N. Therapeutic applications of selenium-derived compounds. Rev. Inorg. Chem.2018, 38, 49–76; https://doi.org/10.1515/revic-2018-0008.Search in Google Scholar
Kanchana, P.; Packiaraj, S.; Pushpaveni, A.; Govindarajan, S. Isolation, spectroscopic and thermal properties of hydrazinium tris (oxydiacetato) lanthanate (III) hemi (pentahydrate). J. Therm. Anal. Calorim.2017, 129, 3–14; https://doi.org/10.1007/s10973-017-6162-2.Search in Google Scholar
Kasani, A.; Kamalesh Babu, R. P.; McDonald, R.; Cavell, R. G. [Ph2P(NSiMe3)]2CLi2: a dilithium dianionic methanide salt with an unusual Li4C2 cluster structure. Angew. Chem. Int. Ed.1999, 38, 1483–1484, https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1483::AID-ANIE1483>3.0.CO;2-D.10.1002/(SICI)1521-3773(19990517)38:10<1483::AID-ANIE1483>3.0.CO;2-DSearch in Google Scholar
Kerton, F. M.; Holloway, S.; Power, A.; Soper, R. G.; Sheridan, K.; Lynam, J. M.; Willans, C. E. Accelerated syntheses of amine-bis (phenol) ligands in polyethylene glycol or “on water” under microwave irradiation. Can. J. Chem.2008, 86, 435–443; https://doi.org/10.1139/v08-043.Search in Google Scholar
Khvostov, A. V.; Nesterov, V. V.; Bulychev, B. M.; Sizov, A. I.; Antipin, M. Y. ansa-Ytterbocene(III) chloride and borohydride with a short bridge and bulky substituents: synthesis and crystal structures of [meso-(CH3)2Si[3-(CH3)3SiC5H3]2Yb(μ2-Cl)]2 and meso-(CH3)2Si[3-(CH3)3SiC5H3]2Yb[(μ2-H)3BH](THF). J. Organomet. Chem.1999, 589, 222–225; https://doi.org/10.1016/S0022-328X(99)00405-2.Search in Google Scholar
Li, C.; Cai, D.; Yin, J.; Cai, L.; Zeng, M.; Wang, J.; Zhu, W. Crystal structure, fluorescence spectroscopy, and electrochemical property of two neodymium coordination polymers with phenoxy acids. Russ. J. Coord. Chem.2016, 42, 476–485; https://doi.org/10.1134/s107032841606004x.Search in Google Scholar
Li, W.; Li, J.; Li, H.; Yan, P.; Hou, G.; Li, G. NIR luminescence of 2-(2,2,2-trifluoroethyl)-1-indone (TFI) neodymium and ytterbium complexes. J. Lumin.2014, 146, 205–210; https://doi.org/10.1016/j.jlumin.2013.09.009.Search in Google Scholar
Li, J.; Li, H.; Yan, P.; Chen, P.; Hou, G.; Li, G. Synthesis, crystal structure, and luminescent properties of 2-(2,2,2-trifluoroethyl)-1-indone lanthanide complexes. Inorg. Chem.2012, 51, 5050–5057; https://doi.org/10.1021/ic202473b.Search in Google Scholar
Li, J.; Zhao, J.; Ma, G.; McDonald, R.; Cavell, R. G. Mono and bis carbene neodymium(III) spirocyclic complexes with a cumulene carbon metal structure. J. Organomet. Chem.2019, 895, 7–14; https://doi.org/10.1016/j.jorganchem.2019.05.018.Search in Google Scholar
Li, Q.; Zhou, S.; Wang, S.; Zhu, X.; Zhang, L.; Feng, Z.; Wei, Y. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino-or amido-functionalized pyrrolyl ligands. Dalton Trans.2013, 42, 2861–2869; https://doi.org/10.1039/c2dt32513f.Search in Google Scholar
Liu, D.-z.; Sun, W.-l.; Ren, R.; Wang, Y.-h.; Shen, Z.-q. Synthesis of poly [6-(2, 6-bis (1′-methylbenzimidazolyl) pyridin-4-yloxy) hexyl acrylate](PBIP) and magnetic property of its neodymium complex (PBIP-Nd3+). Chin. J. Polym. Sci.2016, 34, 910–918; https://doi.org/10.1007/s10118-016-1804-6.Search in Google Scholar
Lv, W.; Wang, Y.; Wu, B.; Yao, Y.; Shen, Q. Synthesis, structure, and reactivity of homodinuclear lanthanide complexes bearing salen-type Schiff-base ligand. Z. Anorg. Allg. Chem.2012, 638, 1167–1172; https://doi.org/10.1002/zaac.201200046.Search in Google Scholar
Ma, Y.; Xu, S.; Wang, X.; Liu, M.; Li, Y. X.; Xin, X. L.; Jin, Q. H. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphosphine oxide. Z. Anorg. Allg. Chem.2017, 643, 780–788; https://doi.org/10.1002/zaac.201700109.Search in Google Scholar
Mikhalyova, E. A.; Kolotilov, S. V.; Zeller, M.; Thompson, L. K.; Addison, A. W.; Pavlishchuk, V. V.; Hunter, A. D. Synthesis, structure and magnetic properties of Nd 3+ and Pr 3+ 2D polymers with tetrafluoro-p-phthalate. Dalton Trans.2011, 40, 10989–10996; https://doi.org/10.1039/c1dt11237f.Search in Google Scholar
Mirsaidov, U.; Shajmuradov, I. B.; Khikmatov, M. X-ray diffraction study of tristetrahydrofuranates of tetrahydroborates of lanthanum, neodymium and lutetium. Zh. Neorg. Khim.1986, 31, 1321–1323.Search in Google Scholar
Miyasaka, H.; Saitoh, A.; Abe, S. Magnetic assemblies based on Mn (III) salen analogues. Coord. Chem. Rev.2007, 251, 2622–2664; https://doi.org/10.1016/j.ccr.2007.07.028.Search in Google Scholar
Mohanan, K.; Subhadrambika, N.; Selwin Joseyphus, R.; Swathy, S. S.; Nisha, V. P. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III) chloride complexes with a heterocyclic Schiff base ligand. J. Saudi Chem. Soc.2016, 20, 379–390; https://doi.org/10.1016/j.jscs.2012.07.007.Search in Google Scholar
Naz, N.; Saqib, S.; Ashraf, R.; Majeed, M. I.; Iqbal, M. A. Synthesis of new organoselenium compounds: characterization and biological studies. Maced. J. Chem. Chem. Eng.2020, 39, 1–10; https://doi.org/10.20450/mjcce.2020.1912.Search in Google Scholar
Obasi, L.; Oruma, U.; Al-Swaidan, I.; Ramasami, P.; Ezeorah, C.; Ochonogor, A. Synthesis, characterization and antibacterial studies of N-(benzothiazol-2-yl)-4-chlorobenzenesulphonamide and its neodymium(III) and thallium(III) complexes. Molecules2017, 22, 153; https://doi.org/10.3390/molecules22020153.Search in Google Scholar
Otero, A.; Lara-Sanchez, A.; Fernandez-Baeza, J.; Alonso-Moreno, C.; Marquez-Segovia, I.; Sanchez-Barba, L. F.; Rodriguez, A. M. Heteroscorpionate rare-earth initiators for the controlled ring-opening polymerization of cyclic esters. Dalton Trans.2011, 40, 4687–4696; https://doi.org/10.1039/C0DT01678K.Search in Google Scholar
Otero, A.; Lara-Sánchez, A.; Fernández-Baeza, J.; Martínez-Caballero, E.; Márquez-Segovia, I.; Alonso-Moreno, C.; López-Solera, I. New achiral and chiral NNE heteroscorpionate ligands. Synthesis of homoleptic lithium complexes as well as halide and alkyl scandium and yttrium complexes. Dalton Trans.2010, 39, 930–940; https://doi.org/10.1039/B914966J.Search in Google Scholar
Pan, L.; Gao, X.-h.; Lv, X.-c.; Tan, Z.-c.; Cao, H. Crystal structure and properties of complexes [Ln (Gly) 4 Im·(ClO 4) 4] n (Ln: Nd, Sm) constructed from eight-coordination containing square antiprism. J. Mol. Struct.2016, 1117, 57–63; https://doi.org/10.1016/j.molstruc.2016.03.049.Search in Google Scholar
Pandey, S. K.; Ahamd, A.; Pandey, O.; Nizamuddin, K. Polyethylene glycol mediated, one-pot, three-component synthetic protocol for novel 3-[3-substituted-5-mercapto-1, 2, 4-triazol-4-yl]-spiro-(indan-1′, 2-thiazolidin)-4-ones as new class of potential antimicrobial and antitubercular agents. J. Heterocycl. Chem.2014, 51, 1233–1239; https://doi.org/10.1002/jhet.1605.Search in Google Scholar
Paul, Y.; Pandey, S. K. Oxovanadium-phosphazene complexes: synthesis and characterization. Synth. React. Inorg. Met. Org. Chem.2003, 33, 1515–1526; https://doi.org/10.1081/SIM-120025437.Search in Google Scholar
Peng, H.; Zhang, Z.; Qi, R.; Yao, Y.; Zhang, Y.; Shen, Q.; Cheng, Y. Synthesis, reactivity, and characterization of sodium and rare-earth metal complexes bearing a dianionic N-aryloxo-functionalized β-ketoiminate ligand. Inorg. Chem.2008, 47, 9828–9835; https://doi.org/10.1021/ic8011469.Search in Google Scholar
Pi, C.; Wang, Y.; Zheng, W.; Wan, L.; Wu, H.; Weng, L.; Schleyer, P. v. R. A persistent dipotassium 1, 2, 4-diazaphospholide radical complex: synthesis, X-ray structure, and bonding. Angew. Chem. Int. Ed.2010, 49, 1842–1845; https://doi.org/10.1002/anie.200906303.Search in Google Scholar
Pierson, S. A.; Nacham, O.; Clark, K. D.; Nan, H.; Mudryk, Y.; Anderson, J. L. Synthesis and characterization of low viscosity hexafluoroacetylacetonate-based hydrophobic magnetic ionic liquids. New J. Chem.2017, 41, 5498–5505.10.1039/C7NJ00206HSearch in Google Scholar
Platt, A. W. G. Lanthanide phosphine oxide complexes. Coord. Chem. Rev.2017, 340, 62–78; https://doi.org/10.1016/j.ccr.2016.09.012.Search in Google Scholar
Polovkova, M. A.; Martynov, A. G.; Birin, K. P.; Nefedov, S. E.; Gorbunova, Y. G.; Tsivadze, A. Y. Determination of the structural parameters of heteronuclear (phthalocyaninato) bis (crownphthalocyaninato) lanthanide (III) triple-deckers in solution by simultaneous analysis of NMR and single-crystal X-ray data. Inorg. Chem.2016, 55, 9258–9269; https://doi.org/10.1021/acs.inorgchem.6b01292.Search in Google Scholar
Qian, Q.; Tan, Y.; Zhao, B.; Feng, T.; Shen, Q.; Yao, Y. Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth–lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand. Org. Lett.2014, 16, 4516–4519; https://doi.org/10.1021/ol5020398.Search in Google Scholar
Reji, T. A. F.; Pearl, A. J.; Rosy, B. A. Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid. J. Rare Earths2013, 31, 1009–1016; https://doi.org/10.1016/s1002-0721(13)60022-8.Search in Google Scholar
Riaz, A.; Iqbal, M. A.; Bhatti, H. N.; Shahid, M. Synthesis of sandwich type acyclic tetra-nuclear silver (I)-N-heterocyclic carbene complexes for wound healing applications. Z. Naturforsch. C Biosci.2020, 75, 369–376; https://doi.org/10.1515/znc-2020-0069.Search in Google Scholar
Richter, J.; Liebing, P.; Edelmann, F. T. Early transition metal and lanthanide metallocenes bearing dihydroazulenide ligands. Inorg. Chim. Acta.2017, 475, 18–27; https://doi.org/10.1016/j.ica.2017.06.012.Search in Google Scholar
Robert, D.; Abinet, E.; Spaniol, T. P.; Okuda, J. Cationic allyl complexes of the rare-earth metals: synthesis, structural characterization, and 1,3-butadiene polymerization catalysis. Chem. Eur J.2009, 15, 11937–11947; https://doi.org/10.1002/chem.200901616.Search in Google Scholar
Roitershtein, D. M.; Vinogradov, A. A.; Vinogradov, A. A.; Lyssenko, K. A.; Nelyubina, Y. V.; Anan’ev, I. V.; Nifant’ev, I. E.; Yakovlev, V. A.; Kostitsyna, N. N. Di- and triphenylacetates of lanthanum and neodymium. Synthesis, structural diversity, and application in diene polymerization. Organometallics2013, 32, 1272–1286; https://doi.org/10.1021/om301020r.Search in Google Scholar
Rong, W.; Liu, D.; Zuo, H.; Pan, Y.; Jian, Z.; Li, S.; Cui, D. Rare-earth-metal complexes bearing phosphazene ancillary ligands: structures and catalysis toward highly trans-1,4-selective (co)polymerizations of conjugated dienes. Organometallics2013, 32, 1166–1175; https://doi.org/10.1021/om300967h.Search in Google Scholar
Rufanov, K. A.; Petrov, A. R.; Kotov, V. V.; Laquai, F.; Sundermeyer, J. A lutetium cyclopentadienyl-phosphazene constrained geometry complex (CGC): first isolobal analogues of group 4 cyclopentadienyl-silylamido CGC systems. Eur. J. Inorg. Chem.2005, 2005, 3805–3807; https://doi.org/10.1002/ejic.200500529.Search in Google Scholar
Rufanov, K. A.; Pruß, N. K.; Sundermeyer, J. Simple entry into N-tert-butyl-iminophosphonamide rare-earth metal alkyl and chlorido complexes. Dalton Trans.2016, 45, 1525–1538; https://doi.org/10.1039/c5dt03721b.Search in Google Scholar
Saha, U.; Palmajumder, E.; Mukherjea, K. K. Synthesis, structure, DNA binding studies and nuclease activities of two luminescent neodymium complexes. J. Coord. Chem.2016, 69, 2920–2941; https://doi.org/10.1080/00958972.2016.1218483.Search in Google Scholar
Sakamoto, M.; Manseki, K.; Ōkawa, H. d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord. Chem. Rev.2001, 219, 379–414; https://doi.org/10.1016/s0010-8545(01)00341-1.Search in Google Scholar
Scales, N.; Zhang, Y.; Bhadbhade, M.; Karatchevtseva, I.; Kong, L.; Lumpkin, G. R.; Li, F. Neodymium coordination polymers with propionate, succinate and mixed succinate–oxalate ligands: synthesis, structures and spectroscopic characterization. Polyhedron2015, 102, 130–136; https://doi.org/10.1016/j.poly.2015.07.065.Search in Google Scholar
Schlama, T.; Gouverneur, V.; Mioskowski, C. A new and efficient preparation of carbodiimides from ureas using dimethylphosgeniminium chloride as a dehydrating agent. Tetrahedron Lett.1996, 37, 7047–7048; https://doi.org/10.1016/0040-4039(96)01593-6.Search in Google Scholar
Sekhosana, K. E.; Amuhaya, E.; Khene, S.; Nyokong, T. Synthesis, photophysical and nonlinear optical behavior of neodymium based trisphthalocyanine. Inorg. Chim. Acta.2015, 426, 221–226; https://doi.org/10.1016/j.ica.2014.11.029.Search in Google Scholar
Sekhosana, K. E.; Amuhaya, E.; Nyokong, T. Nonlinear optical behavior of neodymium mono-and bi-nuclear phthalocyanines linked to zinc oxide nanoparticles and incorporated into poly acrylic acid. Polyhedron2016, 105, 159–169; https://doi.org/10.1016/j.poly.2015.12.045.Search in Google Scholar
Sharma, S.; Yawer, M.; Kariem, M.; Sheikh, H. N. Solvothermal synthesis and structure of 3D frameworks of Nd(III) and Y(III) with thiophene-2,5-dicarboxylate and N,N′-diethylformamide. J. Mol. Struct.2016, 1118, 241–249; https://doi.org/10.1016/j.molstruc.2016.04.017.Search in Google Scholar
She, J.; Li, D.; Hou, C.; Yang, W.; Wei, W.; Peng, B. Synthesis, crystal structure and photophysical properties of a neodymium trifluoroacetate complex with 2,2′-bipyridine. J. Rare Earths2011, 29, 193–197; https://doi.org/10.1016/S1002-0721(10)60429-2.Search in Google Scholar
Shen, H.-Y.; Wang, W.-M.; Gao, H.-L.; Cui, J.-Z. Near-infrared luminescence and SMM behaviors of a family of dinuclear lanthanide 8-quinolinolate complexes. RSC Adv.2016, 6, 34165–34174; https://doi.org/10.1039/C6RA02656G.Search in Google Scholar
Shiju, C.; Arish, D.; Kumaresan, S. Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity of lanthanide(III) complexes of a Schiff base ligand derived from glycylglycine and 4-nitrobenzaldehyde. Arab. J. Chem.2017, 10, S2584–S2591; https://doi.org/10.1016/j.arabjc.2013.09.036.Search in Google Scholar
Šimůnek, P.; Pešková, M.; Bertolasi, V.; Macháček, V.; Lyčka, A. Synthesis, NMR and X-ray characterisation of 6-substituted 4-amino-5-aryldiazenyl-1-arylpyridazinium salts. Tetrahedron2005, 61, 8130–8137; https://doi.org/10.1016/j.tet.2005.06.044.Search in Google Scholar
Sinenkov, M. A.; Fukin, G. K.; Cherkasov, A. V.; Ajellal, N.; Roisnel, T.; Kerton, F. M.; Trifonov, A. A. Neodymium borohydride complexes supported by diamino-bis(phenoxide) ligands: diversity of synthetic and structural chemistry, and catalytic activity in ring-opening polymerization of cyclic esters. New J. Chem.2011, 35, 204–212; https://doi.org/10.1039/C0NJ00486C.Search in Google Scholar
Sinenkov, M.; Kirillov, E.; Roisnel, T.; Fukin, G.; Trifonov, A.; Carpentier, J.-F. Rare-earth complexes with multidentate tethered phenoxy-amidinate ligands: synthesis, structure, and activity in ring-opening polymerization of lactide. Organometallics2011, 30, 5509–5523; https://doi.org/10.1021/om200786u.Search in Google Scholar
Skvortsov, G. G.; Shavyrin, A. S.; Kovylina, T. A.; Cherkasov, A. V.; Trifonov, A. A. Rare-earth amido and borohydrido complexes supported by tetradentate amidinate ligands: synthesis, structure, and catalytic activity in polymerization of cyclic esters. Eur. J. Inorg. Chem.2019, 2019, 5008–5017; https://doi.org/10.1002/ejic.201900897.Search in Google Scholar
Skvortsov, G. G.; Tolpygin, A. O.; Lyubov, D. M.; Khamaletdinova, N. M.; Cherkasov, A. V.; Lyssenko, K. A.; Trifonov, A. A. Amidinate bisborohydride complexes of rare-earth metals [6-Me-C5H3N-2-CH2C(NPri)2]Ln(BH4)2THF2 (Ln = Y, Nd): synthesis, structure, and catalytic activity in isoprene polymerization. Russ. Chem. Bull.2016, 65, 2832–2840; https://doi.org/10.1007/s11172-016-1664-9.Search in Google Scholar
Sobola, A. O.; Watkins, G. M.; Van Brecht, B. Synthesis, characterization and antimicrobial activity of copper (II) complexes of some ortho-substituted aniline Schiff bases; crystal structure of bis (2-methoxy-6-imino) methylphenol copper (II) complex. S. Afr. J. Chem.2014, 67, 45–51.Search in Google Scholar
Sohail, M.; Ashraf, M. Z.; Nadeem, R.; Bibi, S.; Rehman, R.; Iqbal, M. A. Techniques in the synthesis of organometallic compounds of tungsten. Rev. Inorg. Chem.2020, 40, 1–45; https://doi.org/10.1515/revic-2019-0013.Search in Google Scholar
Sroor, F. M. A.; Hrib, C. G.; Hilfert, L.; Edelmann, F. T. Lithium-cyclopropylethinylamidinates. Z. Anorg. Allg. Chem.2013, 639, 2390–2394; https://doi.org/10.1002/zaac.201300424.Search in Google Scholar
Sroor, F. M.; Hrib, C. G.; Hilfert, L.; Jones, P. G.; Edelmann, F. T. Lanthanide (III)-bis (cyclopropylethinylamidinates): synthesis, structure, and catalytic activity. J. Organomet. Chem.2015, 785, 1–10; https://doi.org/10.1016/j.jorganchem.2015.01.034.Search in Google Scholar
Stites, J. G.; McCarty, C. N.; Quill, L. L. The rare earth metals and their compounds. VIII. An improved method for the synthesis of some rare earth acetylacetonates1a. J. Am. Chem. Soc.1948, 70, 3142–3143; https://doi.org/10.1021/ja01189a509.Search in Google Scholar
Swavey, S.; Fratini, A.; Grewal, J.; Hutchinson, A. Monometallic europium, terbium, and neodymium complexes formed from the bridging ligand 2,3-bis(2-pyridyl)pyrazine: crystal structure and temperature dependent luminescent properties. Inorg. Chim. Acta.2015, 428, 27–31; https://doi.org/10.1016/j.ica.2015.01.020.Search in Google Scholar
Tolpygin, A. O.; Glukhova, T. A.; Cherkasov, A. V.; Fukin, G. K.; Aleksanyan, D. V.; Cui, D.; Trifonov, A. A. Bis (alkyl) rare-earth complexes supported by a new tridentate amidinate ligand with a pendant diphenylphosphine oxide group. Synthesis, structures and catalytic activity in isoprene polymerization. Dalton Trans.2015, 44, 16465–16474; https://doi.org/10.1039/c5dt02570b.Search in Google Scholar
Tolpygin, A. O.; Linnikova, O. A.; Glukhova, T. A.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A. Bis(amido) rare-earth complexes coordinated by tridentate amidinate ligand: synthesis, structure and catalytic activity in the polymerization of isoprene and rac-lactide. RSC Adv.2016, 6, 17913–17920; https://doi.org/10.1039/C5RA27960G.Search in Google Scholar
Tolpygin, A.; Linnikova, O.; Kovylina, T.; Cherkasov, A.; Fukin, G.; Trifonov, A. Neodymium dihalide complexes with a tridentate amidinate phosphine oxide ligand: synthesis, structure, and catalytic activity in isoprene polymerization. Russ. Chem. Bull.2019, 68, 32–39; https://doi.org/10.1007/s11172-019-2412-8.Search in Google Scholar
Tolpygin, A.; Linnikova, O.; Kovylina, T.; Cherkasov, A.; Fukin, G.; Trifonov, A. Neodymium monochloride and monoallyl complexes {2-[Ph 2 P (O)] C 6 H 4 NC (Bu t) N (2, 6-Me 2 C 6 H 3)} 2 NdR (R= Cl, CH 2 CH= CH 2) with the tridentate amidinate ligand in the catalysis of ring-opening polymerization of cyclic esters. Russ. Chem. Bull.2020, 69, 1114–1121; https://doi.org/10.1007/s11172-020-2876-6.Search in Google Scholar
Trifonov, A. A.; Lyubov, D. M. A quarter-century long story of bis(alkyl) rare-earth (III) complexes. Coord. Chem. Rev.2017, 340, 10–61; https://doi.org/10.1016/j.ccr.2016.09.013.Search in Google Scholar
Tshuva, E. Y.; Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. [ONXO]-type amine bis (phenolate) zirconium and hafnium complexes as extremely active 1-hexene polymerization catalysts. Organometallics2002, 21, 662–670; https://doi.org/10.1021/om010493w.Search in Google Scholar
Vaughn, G. D.; Krein, K. A.; Gladysz, J. Synthesis and reactivity of metallacyclic manganese. alpha.-(silyloxy) alkyl complexes [cyclic](CO) 4MnC (R)(OSi (CH3) 3) P (C6H5) 2. A new thermodynamic driving force for carbonyl insertion. Organometallics1986, 5, 936–942; https://doi.org/10.1021/om00136a016.Search in Google Scholar
Vidyasagar Babu, S.; Reddy, K. H. Spectral and DNA-binding properties of lanthanide complexes with tetradentate ligand. Inorg. Nano-Met. Chem.2017, 47, 456–461; https://doi.org/10.1080/15533174.2016.1186067.Search in Google Scholar
Vinogradova, A.; Lysenkob, K.; Anan’evb, I.; Nifant’eva, I.; Roitershteina, D. Synthesis and structural diversity of lanthanum and neodymium triphenylacetate complexes with trimethyltriazacyclohexane and crown ether. Russ. J. Coord. Chem.2020, 46, 308–316; https://doi.org/10.1134/s1070328420050097.Search in Google Scholar
Wang, L. R.; Liang, Z. H.; Ni, X. F.; Shen, Z. Q. Synthesis, characterization of neodymium chloride complex of amine-bis(phenolate) ligand and its reactivity in the ring-opening polymerization of ɛ-caprolactone. Chin. Chem. Lett.2011, 22, 249–252; https://doi.org/10.1016/j.cclet.2010.09.031.Search in Google Scholar
Wang, Z.; Qian, Y.; Zhang, W.; Wang, J.; He, L.; Lin, Q.; Sun, W.-H. Highly cis-1,4-selective polymerization of isoprene achieved using neodymium chloride 8-hydroxyquinolines. Polym. Int.2015, 64, 1030–1036; https://doi.org/10.1002/pi.4911.Search in Google Scholar
Wang, F.; Wang, S.; Zhu, X.; Zhou, S.; Miao, H.; Gu, X.; Yuan, Q. Novel lanthanide amides incorporating neutral pyrrole ligand in a constrained geometry architecture: synthesis, characterization, reaction, and catalytic activity. Organometallics2013, 32, 3920–3931; https://doi.org/10.1021/om400409x.Search in Google Scholar
Wang, C.; Xiang, L.; Leng, X.; Chen, Y. Synthesis and structure of silicon-bridged boratabenzene fluorenyl rare-earth metal complexes. Organometallics2016, 35, 1995–2002; https://doi.org/10.1021/acs.organomet.6b00282.Search in Google Scholar
Wang, C.; Xiang, L.; Leng, X.; Chen, Y. Rare-earth metal hydrides supported by silicon-bridged boratabenzene fluorenyl ligands: synthesis, structure and reactivity. Dalton Trans.2017, 46, 1218–1227; https://doi.org/10.1039/c6dt04441g.Search in Google Scholar
Weyhermüller, T.; Wagner, R.; Chaudhuri, P. Asymmetrically dibridged diiron (III) complexes with aminebis (phenoxide)-based ligands for a magnetostructural study. Eur. J. Inorg. Chem.2011, 2011, 2547–2557; https://doi.org/10.1002/ejic.201001340.Search in Google Scholar
Xia, Q.; Cui, Y.; Yuan, D.; Wang, Y.; Yao, Y. Synthesis and characterization of lanthanide complexes stabilized by N-aryl substituted β-ketoiminato ligands and their application in the polymerization of rac-lactide. J. Organomet. Chem.2017, 846, 161–168; https://doi.org/10.1016/j.jorganchem.2017.06.002.Search in Google Scholar
Xu, B.; Han, X.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and structural characterization of lanthanide amides stabilized by an N-aryloxo functionalized β-ketoiminate ligand. Chin. J. Chem.2010, 28, 1013–1018; https://doi.org/10.1002/cjoc.201090159.Search in Google Scholar
Yao, Y.; Xu, X.; Liu, B.; Zhang, Y.; Shen, Q.; Wong, W.-T. Carbon-bridged bis (phenolato) lanthanide alkoxides: syntheses, structures, and their application in the controlled polymerization of ε-caprolactone. Inorg. Chem.2005, 44, 5133–5140; https://doi.org/10.1021/ic050022s.Search in Google Scholar
Youssef, T. A. Reactions of chromium and molybdenum carbonyls with bis-(salicylaldehyde)-1,3-propylenediimine Schiff base. J. Coord. Chem.2008, 61, 816–822; https://doi.org/10.1080/00958970701436699.Search in Google Scholar
Zhang, C.; Gu, W.; Wang, Y.; Yao, Y. Synthesis and characterization of trinuclear and mononuclear rare-earth metal aryloxides supported by Salpn ligand and their application for the polymerization of rac-lactide. Polyhedron2017, 134, 22–29; https://doi.org/10.1016/j.poly.2017.06.006.Search in Google Scholar
Zhang, M.; Ni, X.; Shen, Z. Synthesis of bimetallic bis(phenolate) N-heterocyclic carbene lanthanide complexes and their applications in the ring-opening polymerization of l-lactide. Organometallics2014, 33, 6861–6867; https://doi.org/10.1021/om500930m.Search in Google Scholar
Zhang, X.-F.; Shao, X.; Tian, H.; Sun, X.; Han, K. Synthesis, fluorescence, excited triplet state properties and singlet oxygen generation of para-(tert-butylphenoxy) substituted phthalocyanines containing group IV A central elements. Dyes Pigments2013, 99, 480–488; https://doi.org/10.1016/j.dyepig.2013.06.010.Search in Google Scholar
Zhang, S.; Wu, N.; Wu, Y.-X. Highly cis-1,4 selective polymerization of conjugated dienes catalyzed by N-heterocyclic carbene-ligated neodymium complexes. Chin. J. Polym. Sci.2020, 38, 1305–1312; https://doi.org/10.1007/s10118-020-2460-4.Search in Google Scholar
Zhang, L.-L.; Yao, Y.-M.; Luo, Y.-J.; Shen, Q.; Sun, J. Syntheses and crystal structures of four-coordinate aryloxo neodymium complexes. Polyhedron2000, 19, 2243–2247; https://doi.org/10.1016/S0277-5387(00)00535-0.Search in Google Scholar
Zhao, M.; Wang, L.; Li, P.; Ma, J.; Zheng, W. 1,2,4-Diazaphospholide complexes of lanthanum (III), cerium (III), neodymium (III), praseodymium (III), and samarium (III): synthesis, X-ray structural characterization, and magnetic susceptibility studies. Dalton Trans.2016, 45, 11172–11181; https://doi.org/10.1039/c6dt00696e.Search in Google Scholar
Zhao, B.; Xiao, Y.; Yuan, D.; Lu, C.; Yao, Y. Synthesis and characterization of bridged bis(amidato) rare earth metal amides and their applications in C-N bond formation reactions. Dalton Trans.2016, 45, 3880–3887; https://doi.org/10.1039/C5DT04217H.Search in Google Scholar
Zheng, W.; Alkorta, I.; Yang, D.; Wan, L.; Zhao, M.; Elguero, J. Synthesis and structural characterization of 1,2,4-diazaphospholide complexes of titanium (IV) and titanium (III). Inorg. Chem.2011, 50, 12408–12410; https://doi.org/10.1021/ic2021066.Search in Google Scholar
Zheng, W.; Zhang, G.; Fan, K. Synthesis and characterization of η5-1,2,4-diazaphospholide complexes of ruthenium. Organometallics2006, 25, 1548–1550; https://doi.org/10.1021/om060041p.Search in Google Scholar
Zhou, S.-L.; Wang, S.-W.; Yang, G.-S.; Liu, X.-Y.; Sheng, E.-H.; Zhang, K.-H.; Huang, Z.-X. Synthesis, structure, and catalytic activity of tetracoordinate lanthanide amides [(Me3Si) 2N] 3Ln (μ-Cl) Li (THF) 3 (Ln= Nd, Sm, Eu). Polyhedron2003, 22, 1019–1024; https://doi.org/10.1016/s0277-5387(03)00042-1.Search in Google Scholar
Zhou, S.; Wang, H.; Ping, J.; Wang, S.; Zhang, L.; Zhu, X.; Gu, X. Synthesis and characterization of organolanthanide complexes with a calix [4]-pyrrolyl ligand and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Organometallics2012, 31, 1696–1702; https://doi.org/10.1021/om2008925.Search in Google Scholar
Zhou, W.; Wu, Y.-P.; Zhou, Z.-H.; Qin, Z.-S.; Ye, X.; Tian, F.-Y.; Li, D.-S. Construction of a series of lanthanide metal–organic frameworks (Ln-MOFs) based on a new symmetrical penta-aromatic carboxylate strut: structure, luminescent and magnetic properties. Inorg. Chim. Acta.2016, 453, 757–763; https://doi.org/10.1016/j.ica.2016.10.003.Search in Google Scholar
Zhou, S.; Wu, Z.; Zhou, L.; Wang, S.; Zhang, L.; Zhu, X.; Wu, J. Controlled synthesis of racemic indenyl rare-earth metal complexes via the cooperation between the intramolecular coordination of donor atoms and a bridge. Inorg. Chem.2013, 52, 6417–6426; https://doi.org/10.1021/ic4003109.Search in Google Scholar
Zhou, S.; Wu, S.; Zhu, H.; Wang, S.; Zhu, X.; Zhang, L.; Wang, H. Synthesis, structure and catalytic activity of alkali metal-free bent-sandwiched lanthanide amido complexes with calix [4]-pyrrolyl ligands. Dalton Trans.2011, 40, 9447–9453; https://doi.org/10.1039/c1dt10622h.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston