Home Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration
Article
Licensed
Unlicensed Requires Authentication

Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration

  • Khuram Shahzad Ahmad

    Dr. Khuram Shahzad Ahmad is an assistant professor at the Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan. He finished his PhD in Chemistry from the University of Manchester, Manchester, United Kingdom and published 95+ peer reviewed articles. His research interests are the perovskite solar cells fabrication, metal sulphides and oxides synthesis and applications, supercapacitors, sensors, and adsorption in addition to biogenic nanomaterials for electrical applications. Dr. Ahmad is running number of industry based projects currently. chemist.phd33@yahoo.comdr.k.s.ahmad@fjwu.edu.pk

    EMAIL logo
    , Syeda Naima Naqvi

    Syeda Naima Naqvi is a student of Bachelors, in Environmental Sciences at Fatima Jinnah Women University, The Mall, 46000 Rawalpindi. She is pursuing her thesis on modified metallic composites driven environmental remediation of toxic pollutants. Her research interests include material synthesis, their applications and photovoltaics.

    and Shaan Bibi Jaffri

    Shaan Bibi Jaffri is a Pakistan’s Higher Education Commission Ph. D Scholar studying Environmental Chemistry at the Department of Environmental Sciences. She finished her bachelor’s degree in Environmental Sciences in 2015 and M. Phil in Environmental Chemistry in 2017 at Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan. Ms. Jaffri has published 30+ peer reviewed articles in ISI indexed journals. Her research interests are the perovskite solar cells efficiency and stability enhancement via novel materials, fabrication of nanoscale materials for utilization in perovskite solar cells and photo-catalysis of metallic nanoparticles.

Published/Copyright: July 27, 2020

Abstract

Rapid escalation in energy demand and pressure over finite fossil fuels reserves with augmenting urbanization and industrialization points towards adoption of cleaner, sustainable and eco-friendly sources to be employed. Solar cell devices known for efficient conversion of solar energy to electrical energy have been attracting scientific community due to their remarkable conformity with the principles of green chemistry. The future candidacy of solar cells is expressed by their efficient conversion. Such a great potential associated with solar cells has instigated research since many decades leading to the emergence of a wide myriad of solar cells devices with novel constituent materials, designs and architecture reflected in form of three generations of the solar cells. Considering the cleaner and sustainability aspects of the solar energy, current review has systematically compiled different generations of solar cells signifying the advancements in terms of architecture and compositional parameters. In addition to the chronological progression of solar cells, current review has also focused on the innovations done in improvement of solar cells. In terms of efficiency and stability, photovoltaic community is eager to achieve augmented efficiencies and stabilities for using solar cells as an alternative to the conventional fossil fuels.


Corresponding author: Khuram Shahzad Ahmad, Department of Environmental Sciences, Fatima Jinnah Women University, The Mall Rawalpindi, 46000, Rawalpindi, Pakistan, E-mail:

About the authors

Khuram Shahzad Ahmad

Dr. Khuram Shahzad Ahmad is an assistant professor at the Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan. He finished his PhD in Chemistry from the University of Manchester, Manchester, United Kingdom and published 95+ peer reviewed articles. His research interests are the perovskite solar cells fabrication, metal sulphides and oxides synthesis and applications, supercapacitors, sensors, and adsorption in addition to biogenic nanomaterials for electrical applications. Dr. Ahmad is running number of industry based projects currently.

Syeda Naima Naqvi

Syeda Naima Naqvi is a student of Bachelors, in Environmental Sciences at Fatima Jinnah Women University, The Mall, 46000 Rawalpindi. She is pursuing her thesis on modified metallic composites driven environmental remediation of toxic pollutants. Her research interests include material synthesis, their applications and photovoltaics.

Shaan Bibi Jaffri

Shaan Bibi Jaffri is a Pakistan’s Higher Education Commission Ph. D Scholar studying Environmental Chemistry at the Department of Environmental Sciences. She finished her bachelor’s degree in Environmental Sciences in 2015 and M. Phil in Environmental Chemistry in 2017 at Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan. Ms. Jaffri has published 30+ peer reviewed articles in ISI indexed journals. Her research interests are the perovskite solar cells efficiency and stability enhancement via novel materials, fabrication of nanoscale materials for utilization in perovskite solar cells and photo-catalysis of metallic nanoparticles.

Acknowledgments

The concept, idea, data and writing is the intellectual property right of Dr. Khuram Shahzad Ahmad and Lab E-21 of Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alonso-Álvarez, D.; Weiss, C.; Fernandez, J.; Janz, S.; Ekins-Daukes, N. Assessing the operating temperature of multi-junction solar cells with novel rear side layer stack and local electrical contacts. Sol. Energy Mater. Sol.2019, 200, 110025; https://doi.org/10.1016/j.solmat.2019.110025.Search in Google Scholar

Alkis, S.; Chowdhury, F. I.; Alevli, M.; Dietz, N.; Morova, B.; Akturk, S.; Nayfeh, A.; Okyay, A. K. Corrigendum: Enhancement of polycrystalline silicon solar cells efficiency using indium nitride particles. J Opt.2019; https://doi.org/10.1088/2040-8986/ab0ac0.Search in Google Scholar

Anspach, O.; Hurka, B.; Sunder, K. Structured wire: From single wire experiments to multi-crystalline silicon wafer mass production. Sol. Energ. Mat. Sol. C.2014, 131, 58–63; https://doi.org/10.1016/j.solmat.2014.06.008.Search in Google Scholar

Apergis, N.; Bhattacharya, M.; Hadhri, W. Health care expenditure and environmental pollution: a cross-country comparison across different income groups. Environ. Sci. Pollut. Res.2020, 27; https://doi.org/10.1007/s11356-019-07457-0.https://doi.org/10.1007/s11356-019-07457-0Search in Google Scholar PubMed

Artegiani, E.; Menossi, D.; Salavei, A.; Di Mare, S.; Romeo, A. Analysis of the influence on the performance degradation of CdTe solar cells by the front contact. Thin Solid Films2017, 633, 101–105; https://doi.org/10.1016/j.tsf.2016.09.052.Search in Google Scholar

Aung Kyaw, H. M.; Yaacob, K. A.; Mohd Noor, A. F.; Matsuda, A.; Kawamura, G. Effect of deposition time CdSe-TiO2 nanocomposite film by electrophoretic deposition for quantum dot sensitized solar cell. Mater Today2019, 17, 736–742; https://doi.org/10.1016/j.matpr.2019.06.357.Search in Google Scholar

Baines, T.; Zoppi, G.; Bowen, L.; Shalvey, T. P.; Mariotti, S.; Durose, K.; Major, J. D. Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol.2018, 180, 196–204; https://doi.org/10.1016/j.solmat.2018.03.010.Search in Google Scholar

Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energ. Environ. Sci.2016, 9, 1552–1576; https://doi.org/10.1039/c5ee03380b.Search in Google Scholar

Beaucarne, G.; Brown, A. S.; Keevers, M. J.; Corkish, R.; Green, M. A. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells. Prog Photovolt.2002, 10, 345–353; https://doi.org/10.1002/pip.433.Search in Google Scholar

Bivour, M.; Temmler, J.; Steinkemper, H.; Hermle, M. Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol.2015, 142, 34–41; https://doi.org/10.1016/j.solmat.2015.05.031.Search in Google Scholar

Bivour, M.; Macco, B.; Temmler, J.; Kessels, W. E.; Hermle, M. Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells. Energy Procedia2016, 92, 443–449; https://doi.org/10.1016/j.egypro.2016.07.125.Search in Google Scholar

Bouzid, H.; Prosa, M.; Bolognesi, M.; Chehata, N.; Gedefaw, D.; Albonetti, C.; Seri, M. Impact of environmentally friendly processing solvents on the properties of blade-coated polymer solar cells. J. Polym. Sci A Polym. Chem.2018; https://doi.org/10.1002/pola.29286.Search in Google Scholar

Branker, K., Pathak, M. J. M.; Pearce, J. M. A review of solar photovoltaic levelized cost of electricity. Renew. Sust. Energ. Rev.2011, 15, 4470–4482; https://doi.org/10.1016/j.rser.2011.07.104.Search in Google Scholar

Cholasettyhalli Dakshinamurthy, A.; Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Quantum dot sensitized whisperonic solar cells—improving efficiency through whispering gallery modes. Front. Mater.2019, 6; https://doi.org/10.3389/fmats.2019.00282.Search in Google Scholar

Chopra, K. L.; Paulson, P. D.; Dutta, V. Thin-film solar cells: an overview. Prog. Photovolt.2004, 12, 69–92; https://doi.org/10.1002/pip.541.Search in Google Scholar

Chowdhury, F. I.; Alnuaimi, A.; El-Atab, N.; Nayfeh, M.; Nayfeh, A. Enhanced performance of thin-film amorphous silicon solar cells with a top film of 2.85nm silicon nanoparticles. J. Sol.2016, 125, 332–338. https://doi.org/10.1016/j.solener.2015.12.030.Search in Google Scholar

Chen, M.; Chen, N.; Tao, Q.; Chang, Z.; Chen, J. Deposition of germanium film on monocrystalline silicon substrate with cut-off angle. J. Cryst. Growth2019, 522, 86–91; https://doi.org/10.1016/j.jcrysgro.2019.06.008.Search in Google Scholar

Collado-Fregoso, E.; Hood, S. N.; Shoaee, S.; Schroeder, B. C.; McCulloch, I.; Kassal, I.; Durrant, J. R. Intercalated vs nonintercalated morphologies in donor–acceptor bulk heterojunction solar cells: PBTTT: fullerene charge generation and recombination revisited. J. Phys. Chem. Lett.2017, 8, 4061–4068; https://doi.org/10.1021/acs.jpclett.7b01571.Search in Google Scholar PubMed

Dabbabi, S.; Ben Nasr, T.; TurkiKamoun, N. CIGS solar cells for space applications: numerical simulation of the effect of traps created by high-energy electron and proton irradiation on the performance of solar cells. JOM2018, 71; https://doi.org/10.1007/s11837-018-2748-9.Search in Google Scholar

Dey, B. K.; Khan, I.; Mandal, N.; Bhattacharjee, A. Mathematical modelling and characteristic analysis of solar PV Cell. In IEEE 7th Annual information technology, electronics and mobile communication conference (IEMCON), 2016.10.1109/IEMCON.2016.7746318Search in Google Scholar

Domínguez, C.; Antón, I.; Sala, G.; Askins, S. Current-matching estimation for multijunction cells within a CPV module by means of component cells. Prog. Photovolt.2012, 21, 1478–1488; https://doi.org/10.1002/pip.2227.Search in Google Scholar

Fernández, E. F.; Ferrer-Rodríguez, J. P.; Almonacid, F.; Pérez-Higueras, P. Current-voltage dynamics of multi-junction CPV modules under different irradiance levels. Sol. Energy. 2017, 155, 39–50; https://doi.org/10.1016/j.solener.2017.06.012.Search in Google Scholar

Ferron, T.; Waldrip, M.; Pope, M.; Collins, B. Increased charge transfer state separation via reduced mixed phase interface in polymer solar cells. J. Mater. Chem.2019, 7; https://doi.org/10.1039/c8ta12336e.Search in Google Scholar

Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S. Application of carbon dots in dye‐sensitized solar cells: a review. J. Appl. Polym. Sci.2019, 48443; https://doi.org/10.1002/app.48443.Search in Google Scholar

Gholipour, S.; Saliba, M. From exceptional properties to stability challenges of perovskite solar cells. Small2018, 1802385; https://doi.org/10.1002/smll.201802385.Search in Google Scholar PubMed

Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sust. Energy Rev.2017, 68, 234–246; https://doi.org/10.1016/j.rser.2016.09.097.Search in Google Scholar

Gueymard, C. A. The SMARTS spectral irradiance model after 25 years: new developments and validation of reference spectra. Sol. Energy2019, 187, 233–253; https://doi.org/10.1016/j.solener.2019.05.048.Search in Google Scholar

Haedrich, I.; Eitner, U.; Wiese, M.; Wirth, H. Unified methodology for determining CTM ratios: Systematic prediction of module power. Sol. Energy Mater. Sol. Cells2014, 131, 14–23; https://doi.org/10.1016/j.solmat.2014.06.025.Search in Google Scholar

Hongsith, K.; Wongrerkdee, S.; Ngamjarurojana, A.; Choopun, S. Efficiency enhancement of perovskite solar cell by using pre-heat treatment in two-step deposition method. Thin Solid Films2019, 684, 9–14; https://doi.org/10.1016/j.tsf.2019.05.055.Search in Google Scholar

Hossain, M. S.; Rahman, K. S.; Karim, M. R.; Aijaz, M. O.; Dar, M. A.; Shar, M. A.; Misran, H.; Amin, N. Impact of CdTe thin film thickness in ZnxCd1−xS/CdTe solar cell by RF sputtering. J. Sol.2019, 180, 559–566; https://doi.org/10.1016/j.solener.2019.01.019.Search in Google Scholar

Huen, P.; Daoud, W. A. Advances in hybrid solar photovoltaic and thermoelectric generators. Renew Sust. Energ. Rev.2017, 72, 1295–1302; https://doi.org/10.1016/j.rser.2016.10.042.Search in Google Scholar

II Park, S.; Jae Baik, S.; Im, J.-S.; Fang, L.; Jeon, J.-W.; Su Lim, K. Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide. Appl. Phys. Lett.2011, 99, 063504; https://doi.org/10.1063/1.3624591.Search in Google Scholar

Jimenez Zambrano, R.; Rubinelli, F.; Rath, J.; Schropp, R. E. Improvement in the spectral response at long wavelength of a-SiGe:H solar cells by exponential band gap design of the i-layer. J. Non-Cryst. Solids2002, 299–302, 1131–1135; https://doi.org/10.1016/s0022-3093(01)01080-8.Search in Google Scholar

Kaelin, M.; Rudmann, D.; Tiwari, A. N. Low cost processing of CIGS thin film solar cells. J. Sol.2004, 77, 749–756; https://doi.org/10.1016/j.solener.2004.08.015.Search in Google Scholar

Kaushika, N. D.; Mishra, A.; Rai, A. K. Wafer-based solar cells: materials and fabrication technologies. In Solar photovoltaics. Springer, Cham, 2018, 43–54.10.1007/978-3-319-72404-1_4Search in Google Scholar

Kessler, F.; Rudmann, D. Technological aspects of flexible CIGS solar cells and modules. Sol. Energy2004, 77, 685–695; https://doi.org/10.1016/j.solener.2004.04.010.Search in Google Scholar

Kisslinger, R.; Hua, W.; Shankar, K. Bulk heterojunction solar cells based on blends of conjugated polymers with II–VI andIV–VI inorganic semiconductor quantum dots. Polym. J.2017, 9, 35; https://doi.org/10.3390/polym9020035.Search in Google Scholar PubMed PubMed Central

Kusuma, J.; Chandan, H. R.; Balakrishna, R. G. Conjugated molecular bridges: a new direction to escalate linker assisted QDSSC performance. J. Sol.2019, 194, 74–78; https://doi.org/10.1016/j.solener.2019.10.024.Search in Google Scholar

Lancaster, K.; Großer, S.; Feldmann, F.; Naumann, V.; Hagendorf, C. Study of pinhole conductivity at passivated carrier-selected contacts of silicon solar cells. Energy Procedia2016, 92, 116–121; https://doi.org/10.1016/j.egypro.2016.07.040.Search in Google Scholar

Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sust. Energ. Rev.2017, 70, 1286–1297; https://doi.org/10.1016/j.rser.2016.12.028.Search in Google Scholar

Lee, Y.; Gomez, E. D. Challenges and opportunities in the development of conjugated block copolymers for photovoltaics. Macromolecules2015, 48, 7385–7395; https://doi.org/10.1021/acs.macromol.5b00112.Search in Google Scholar

Lee, H.-S.; Suk, J.; Kim, H.; Kim, J.; Song, J.; Jeong, D. S.; Park, J. K.; Kim, W. M.; Lee, D. K.; Choi, K. J.; Ju, B. K. Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays. Sci. Rep.2018, 8; https://doi.org/10.1038/s41598-018-21381-2.Search in Google Scholar

Li, X.; Xiao, D.; Wu, L.; Wang, D.; Wang, G.; Wang, D. CdTe thin film solar cells with copper iodide as a back contact buffer layer. J. Sol.2019, 185, 324–332; https://doi.org/10.1016/j.solener.2019.04.082.Search in Google Scholar

Li, H.; Li, X.; Park, J.-H.; Tao, L.; Kim, K. K.; Lee, Y. H.; Xu, J.-B. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy2018; https://doi.org/10.1016/j.nanoen.2018.12.004.Search in Google Scholar

Li, F.; Yager, K. G.; Dawson, N. M.; Jiang, Y.-B.; Malloy, K. J.; Qin, Y. Stable and controllable polymer/fullerene composite nanofibers through cooperative noncovalent interactions for organic photovoltaics. Chem. Mat.2014, 26, 3747–3756; https://doi.org/10.1021/cm501251n.Search in Google Scholar

Liu, B.; Bai, L.; Zhang, X.; Zhang, D.; Wei, C.; Sun, J.; Huang, Q.; Chen, X.; Ni, J.; Wang, G.; Zhao, Y. Light management in hydrogenated amorphous silicon germanium solar cells. Sol. Energy Mater. Sol.2014, 128, 1–10; https://doi.org/10.1016/j.solmat.2014.05.008.Search in Google Scholar

Liu, F.; Zhou, Z.; Zhang, C.; Vergote, T.; Fan, H.; Liu, F.; Zhu, X. A Thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J. Am. Chem. Soc.2016, 138, 15523–15526; https://doi.org/10.1021/jacs.6b08523.Search in Google Scholar

Mali, S. S.; Kim, H.; Patil, P. S.; Hong, C. K. Chemically grown vertically aligned 1D ZnOnanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route. Dalton Trans.2019, 42, 16961–16967.10.1039/c3dt51287hSearch in Google Scholar

Malik, A. Q.; Damit, S. J. B. H. Outdoor testing of single crystal silicon solar cells. Renew. Energy2003, 28, 1433–1445; https://doi.org/10.1016/s0960-1481(02)00255-0.Search in Google Scholar

Metzger, W. K.; Grover, S.; Lu, D.; Colegrove, E.; Moseley, J.; Perkins, C. L.; Li, X.; Mallick, R.; Zhang, W.; Malik, R.; Kephart, J.; Jiang, C.-S.; Kuciauskas, D.; Albin, D. S.; Al-Jassim, M. M.; Xiong, G.; Gloeckler, M. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy2019, 4, 837–845.10.1038/s41560-019-0446-7Search in Google Scholar

Mitchell, K. W.; Fahrenbruch, A. L.; Bube, R. H. Evaluation of the CdS/CdTe heterojunction solar cell. J. Appl. Phys.1977, 48, 4365–4371; https://doi.org/10.1063/1.323429.Search in Google Scholar

Morales-Acevedo, A. Can we improve the record efficiency of CdS/CdTe solar cells? Sol. Energy Mat. Sol. Cells2006, 90, 2213–2220; https://doi.org/10.1016/j.solmat.2006.02.019.Search in Google Scholar

Nakada, T.; Ohbo, H.; Fukuda, M.; Kunioka, A. Improved compositional flexibility of Cu(In,Ga)Se2-based thin film solar cells by sodium control technique. Sol. Energy Mat. Sol. Cells1997, 49, 261–267; https://doi.org/10.1016/s0927-0248(97)00202-x.Search in Google Scholar

Pandey, A. K.; Ahmad, M. S.; Rahim, N. A.; Tyagi, V. V.; Saidur, R. Natural sensitizers and their applications in dye-sensitized solar cell. In Environmental biotechnology: for sustainable future. Springer: Singapore, 2018.10.1007/978-981-10-7284-0_15Search in Google Scholar

Park, H. J.; Bae, S.; Park, S. J.; Hyun, J. Y.; Lee, C. H.; Choi, D.; Kang, D.; Han, H.; Kang, Y.; Lee, H.; Kim, D. Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells. RCS Adv.2019, 9, 23261–23266.10.1039/D0RA90049DSearch in Google Scholar

Perkins, C. L.; McGott, D.; Reese, M. O.; Metzger, W. K. SnO2-catalyzed oxidation in high efficiency CdTe solar cells. ACS Appl. Mater. Inter.2019, 11, 13003–13010; https://doi.org/10.1021/acsami.9b00835.Search in Google Scholar PubMed

Qadir, K. W.; Zafar, Q.; Ebrahim, N. A.; Ahmad, Z.; Sulaiman, K.; Akram, R.; Nazeeruddin, M. K. A methodical review of the literature referred to the dye-sensitized solar cells (DSSCs): bibliometrics analysis and road mapping. Chin. Phys. B.2019, 28; https://doi.org/10.1088/1674-1056/ab4577.Search in Google Scholar

Qian, S.; Misra, S.; Lu, J.; Yu, Z.; Yu, L.; Xu, J.; Wang, J.; Xu, L.; Shi, Y.; Chen, K.; Roca i Cabarrocas, P. Full potential of radial junction Si thin film solar cells with advanced junction materials and design. Appl. Phys. Lett.2015, 107, 043902; https://doi.org/10.1063/1.4926991.Search in Google Scholar

Rahman, S. A.; Vanderheide, T.; Varma, R. K. Generalised model of a photovoltaic panel. IET Renew. Power Gener.2014, 8, 217–229; https://doi.org/10.1049/iet-rpg.2013.0094.Search in Google Scholar

Rathore, N.; Panwar, N. L.; Yettou, F.; Gama, A. A Comprehensive review on different types of solar photovoltaic cells and their applications. Int. J. Ambient Energy2019, 1–48; https://doi.org/10.1080/01430750.2019.1592774.Search in Google Scholar

Reese, M. O.; Perkins, C. L.; Burst, J. M.; Farrell, S.; Barnes, T. M.; Johnston, S. W.; Kuciauskas, D.; Gessert, T. A.; Metzger, W. K. Intrinsic surface passivation of CdTe. J. Appl. Phys.2015, 118, 155–305; https://doi.org/10.1063/1.4933186.Search in Google Scholar

Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural dyes for dye sensitized solar cell: A review. Renew. Sust. Energ. Rev.2017, 69, 705–718; https://doi.org/10.1016/j.rser.2016.11.198.Search in Google Scholar

Ritzau, K.-U.; Bivour, M.; Schröer, S.; Steinkemper, H.; Reinecke, P.; Wagner, F.; Hermle, M. TCO work function related transport losses at the a-Si:H/TCO-contact in SHJ solar cells. Sol. Energy Mat. Sol. Cells2014, 131, 9–13; https://doi.org/10.1016/j.solmat.2014.06.026.Search in Google Scholar

Rohatgi, A.; Rounsaville, B.; Ok, Y.-W.; Tam, A. M.; Zimbardi, F.; Upadhyaya, A. D.; Tao, Y.; Madani, K.; Richter, A.; Benick, J.; Hermle, M. Fabrication and modeling of high-efficiency front junction n-type silicon solar cells with tunnel oxide passivating back contact. IEEE J. Photovolt.2017, 7, 1236–1243; https://doi.org/10.1109/jphotov.2017.2715720.Search in Google Scholar

Saura, J. M.; Fernández, E. F.; Almonacid, F. M.; Chemisana, D. Characterisation and impact of non-uniformity on multi-junction solar cells (MJSC) caused by concentrator optics. In 15th International Conference on Concentrator Photovoltaic Systems (CPV-15). AIP Publishing LLC: United States, 2019.10.1063/1.5124174Search in Google Scholar

Schindler, F.; Forster, M.; Broisch, J.; Schön, J.; Giesecke, J.; Rein, S.; Warta, W.; Schubert, M. C. Towards a unified low-field model for carrier mobilities in crystalline silicon. Sol. Energy Mat. Sol. Cells. 2014, 131, 92–99; https://doi.org/10.1016/j.solmat.2014.05.047.Search in Google Scholar

Sharma, K.; Sharma, V.; Sharma, S. S. Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett.2018, 13; https://doi.org/10.1186/s11671-018-2760-6.Search in Google Scholar PubMed PubMed Central

Simon, D. K.; Jordan, P. M.; Dirnstorfer, I.; Benner, F.; Richter, C.; Mikolajick, T. Symmetrical Al2O3-based passivation layers for p- and n-type silicon. Sol. Energy Mat. Sol. Cells2014, 131, 72–76; https://doi.org/10.1016/j.solmat.2014.06.005.Search in Google Scholar

Onge, P. B.; Ocheje, M. U.; Selivanova, M.; Rondeau-Gagné, S. Recent advances in mechanically robust and stretchable bulk heterojunction polymer solar cells. Chem Rec.2018, 19; https://doi.org/10.1002/tcr.201800163.Search in Google Scholar PubMed

Steinkemper, H.; Feldmann, F.; Bivour, M.; Hermle, M. Numerical simulation of carrier-selective electron contacts featuring tunnel oxides. IEEE J. Photovolt.2015, 5, 1348–1356; https://doi.org/10.1109/jphotov.2015.2455346.Search in Google Scholar

Stuckelberger, M.; Biron, R.; Wyrsch, N.; Haug, F.-J.; Ballif, C. Review: progress in solar cells from hydrogenated amorphous silicon. Renew. Sust. Energ. Rev.2017, 76, 1497–1523; https://doi.org/10.1016/j.rser.2016.11.190.Search in Google Scholar

Swick, S. M.; Gebraad, T.; Jones, L.; Fu, B.; Aldrich, T. J.; Kohlstedt, K. L.; Marks, T. J. Building Blocks for high efficiency organic photovoltaics. interplay of molecular, crystal, and electronic properties of post fullerene ITIC ensembles. Chem. Phys. Chem.2019, 20; https://doi.org/10.1002/cphc.201900793.Search in Google Scholar

Thakur, S.; Rarotra, S.; Bhattacharjee, M.; Mitra, S.; Natu, G.; Mandal, T. K.; Bandyopadhyay, D. Self-Organized large-scale integration of mesoscale-ordered heterojunctions for process-intensified photovoltaics. Phys. Rev. Appl.2018, 10; https://doi.org/10.1103/physrevapplied.10.064012.Search in Google Scholar

Truong, T. N.; Yan, D.; Samundsett, C.; Basnet, R.; Tebyetekerwa, M.; Li, L.; Kremer, F.; Cuevas, A.; Macdonald, D.; Nguyen, H. Hydrogenation of phosphorus-doped polycrystalline silicon films for passivating contact solar cells. ACS Appl. Mater. Inter.2019, 11, 5554–5560; https://doi.org/10.1021/acsami.8b19989.Search in Google Scholar

Victoria, M.; Herrero, R.; Domínguez, C.; Antón, I.; Askins, S.; Sala, G. Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells. Prog. Photovolt.2011, 21, 308–318; https://doi.org/10.1002/pip.1183.Search in Google Scholar

Wada, T.; Hashimoto, Y.; Nishiwaki, S.; Satoh, T.; Hayashi, S.; Negami, T.; Miyake, H. High-efficiency CIGS solar cells with modified CIGS surface. Sol. Energy Mater. Sol. C.2001, 67, 305–310; https://doi.org/10.1016/s0927-0248(00)00296-8.Search in Google Scholar

Wakisaka, K.; Kuwano, Y. Terrestrial applications of amorphous silicon solar cells. Prog. Photovolt.1998, 6, 207–217; https://doi.org/10.1002/(sici)1099-159x(199805/06)6:3<207::aid-pip221>3.0.co;2-v.10.1002/(SICI)1099-159X(199805/06)6:3<207::AID-PIP221>3.0.CO;2-VSearch in Google Scholar

Wan, Y.; Bullock, J.; Cuevas, A. Passivation of c-Si surfaces by ALD tantalum oxide capped with PECVD silicon nitride. Sol. Energy Mater. Sol.2015, 142, 42–46; https://doi.org/10.1016/j.solmat.2015.05.032.Search in Google Scholar

Wang, X.; Allen, V.; Vais, V.; Zhao, Y.; Tjahjono, B.; Yao, Y.; Wenham, S.; Lennon, A. Laser-doped metal-plated bifacial silicon solar cells. Sol. Energy. Mater. Sol.2014, 131, 37–45; https://doi.org/10.1016/j.solmat.2014.06.020.Search in Google Scholar

Wen, C.; Yang, Y. J.; Ma, Y. J.; Shi, Z. Q.; Wang, Z. J.; Mo, J.; Li, T. C.; Li, X. H.; Hu, S. F. Yang, W. B. Sulfur-hyperdoped silicon nanocrystalline layer prepared on polycrystalline silicon solar cell substrate by thin film deposition and nanosecond-pulsed laser irradiation. Appl. Surf. Sci.2019, 476, 49–60; https://doi.org/10.1016/j.apsusc.2019.01.074.Search in Google Scholar

Wu, Q.; Zhao, D.; Goldey, M. B.; Filatov, A. S.; Sharapov, V.; Colón, Y. J.; Cai, Z.; Chen, W.; Pablo, J. D.; Galli, G.; Yu, L. Intra-molecular charge transfer and electron delocalization in non-fullerene organic solar cells. ACS Appl. Mater. Inter2018, 10, 10043–10052; https://doi.org/10.1021/acsami.7b18717.Search in Google Scholar

Xu, Y.; Liu, J.; Cui, Y.; Yin, R.; Wang, X.; Wu, S.; Yu, X. Efficient polycrystalline silicon solar cells with double metal oxide layers. Dalton Trans.2019, 48, 3687–3694; https://doi.org/10.1039/C8DT04233K.Search in Google Scholar PubMed

Yamaguchi, M.; Takamoto, T.; Araki, K.; Ekins-Daukes, N. Multi-junction III–V solar cells: current status and future potential. Sol. Energy2005, 79, 78–85; https://doi.org/10.1016/j.solener.2004.09.018.Search in Google Scholar

Yan, J.; Saunders, B. R. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv.2014, 4, 43286–43314; https://doi.org/10.1039/c4ra07064j.Search in Google Scholar

Yeh, M.-H.; Lee, C.-P.; Chou, C.-Y.; Lin, L.-Y.; Wei, H.-Y.; Chu, C.-W.; Vittal, R.; Ho, K.-C. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochim. Acta.2011, 57, 277–284; https://doi.org/10.1016/j.electacta.2011.03.097.Search in Google Scholar

Younas, R.; Imran, H.; Shah, S. I. H.; Abdolkader, T. M.; Butt, N. Z. Computational modeling of polycrystalline silicon on oxide passivating contact for silicon solar cells. IEEE Trans. Electron. Dev.2019, 66, 1–8; https://doi.org/10.1109/ted.2019.2900691.Search in Google Scholar

Yu, Z.; Zhang, X.; Zhang, H.; Huang, Y.; Li, Y.; Zhang, X.; Gan, Z. Improved power conversion efficiency in radial junction thin film solar cells based on amorphous silicon germanium alloys. J. Alloys Compd.2019, 803, 260–264; https://doi.org/10.1016/j.jallcom.2019.06.276.Search in Google Scholar

Yu, X.; Yang, L.; Lv, Q.; Xu, M.; Chen, H.; Yang, D. The enhanced efficiency of graphene–silicon solar cells by electric field doping. Nanoscale2015, 7, 7072–7077; https://doi.org/10.1039/c4nr06677d.Search in Google Scholar PubMed

Zarrabi, N.; Stoltzfus, D. M.; Burn, P. L.; Shaw, P. E. Charge generation in non-fullerene donor–acceptor blends for organic solar cells. J. Phys. Chem. C.2017, 121, 18412–18422; https://doi.org/10.1021/acs.jpcc.7b05862.Search in Google Scholar

Zheng, C.; Penmetcha, A. R.; Cona, B.; Spencer, S. D.; Zhu, B.; Heaphy, P.; Cody, J. A.; Collison, C. J. Contribution of aggregate states and energetic disorder to a squaraine system targeted for organic photovoltaic devices. Langmuir2015, 31, 7717–7726; https://doi.org/10.1021/acs.langmuir.5b01045.Search in Google Scholar PubMed

Received: 2020-05-21
Accepted: 2020-06-09
Published Online: 2020-07-27
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0009/html?lang=en
Scroll to top button