Abstract
The complexity of boron species in aqueous solution becomes the bottleneck in development of boron resources from brine. The concentrations of different boron species and transformation mechanism among boron species are mainly affected with the total boron concentration, temperatures, pH of the solution, and cations in the solution. The change trends for concentration of total boron in the complicated aqueous solution can be obtained with the phase equilibrium results, but the accurate concentration of boron species in the solution cannot be obtained. The metastable zone width (MZW) of borates and H3BO3 changed with the concentrations of impurity ions, the stirring rate, cooling rate, and original temperature for the saturated solution. The Pitzer model is the effective method to calculate the concentration of boron species. More thermodynamic data at temperatures below and above 298.15 K are needed for model parameterization. The main problems existed in the systems containing boron species were summarized, and the future development direction is also discussed. The progresses on boron species in the aqueous solution can provide fundamental data in the comprehensive exploitation of the brine boron resource.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: U1507112
Award Identifier / Grant number: 21406104
Acknowledgments
This work was jointly funded by the National Natural Science Foundation of China (U1507112 and 21406104).
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was jointly funded by the National Natural Science Foundation of China (U1507112 and 21406104).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aguilera-Sáez, L. M.; Belmonte–Sánchez, J. R.; Romero–González, R.; Martínez Vidal, J. L.; Arrebola, F. J.; Garrido Frenich, A.; Fernández, I. Pushing the frontiers: boron-11 NMR as a method for quantitative boron analysis and its application to determine boric acid in commercial biocides. Analyst2018, 143, 4707–4714; https://doi.org/10.1039/c8an00505b.Search in Google Scholar
Cao, J. L.; Bai, P.; Wang, S. C. The phase equilibrium in the five-component system Na+, K+// Cl−, SO42−–B(OH)3–H2O (in Chinese). Sea-lake Salt Chem. Ind.1999, 28, 25–27. https://doi.org/10.16570/j.cnki.issn1673-6850.1999.04.009.Search in Google Scholar
Chang, L.; Dong, Y. P.; Meng, Q. F.; Feng, H. T.; Li, W. Study of the metastable zone of H3BO3 in the SrCl2–H3BO3–H2O system (in Chinese). J. Beijing Univ. Chem. Tech.2008, 35, 29–32. https://doi.org/10.13543/j.cnki.bhxbzr.2008.01.005.Search in Google Scholar
Chen, Q. L.; Fang, C. H.; Fang, Y.; Zhu, F. Y.; Ge, H. W.; Liu, H. Y. Physicochemical properties of aqueous magnesium borates solution (in Chinese). J. Salt Lake Res.2013, 21, 33–42.Search in Google Scholar
Chen, L.; Li, Y.; Du, Z. F.; Gu, Y. H.; Guo, J. J. Research on the quantitative analysis for in-situ detection of acid radical ions using laser Raman spectroscopy (in Chinese). Spectrosc. Spectr. Anal.2015, 35, 2548–2552. https://doi.org/10.3964/j.issn.1000-0539(2015)09-2548-05.Search in Google Scholar
Chen, S. Q; Wang, M.; Hu, J.; Guo, Y.; Deng, T. Phase equilibria in the aqueous ternary systems (NaCl + NaBO2 + H2O) and (Na2SO4 + NaBO2 + H2O) at 298.15K and 0.1 mPa. J. Chem. Eng. Data2018, 63, 4662–4668. https://doi.org/10.1021/acs.jced.8b00715.Search in Google Scholar
Chen, J.; Peng, J. Y.; Wang, X. P.; Dong, Y. P.; Li, W. Effects of CO32− and OH− on the solubility, metastable zone width and nucleation kinetics of borax decahydrate. R. Soc. Open Sci.2019a, 6, 181862; https://doi.org/10.1098/rsos.181862.Search in Google Scholar PubMed PubMed Central
Chen, J.; Peng, J. Y.; Wang, X. P.; Dong, Y. P.; Li, W. Effects of anion impurities on the solubility and nucleation of borax decahydrate crystals in carbonate-type brine. Crystals2019b, 9, 304; https://doi.org/10.3390/cryst9060304.Search in Google Scholar
Chen, L. L.; Li, D.; Guo, Y. F.; Deng, T. L.; Meng, L. Z. Experimental data and thermodynamic model in the salt–water ternary system (NaBO2 + Na2B4O7 + H2O) at t= 298.15 K and p= 0.1 mPa. J. Chem. Eng. Data2019c, 64, 5878–5885; https://doi.org/10.1021/acs.jced.9b00780.Search in Google Scholar
Chen, S. Q.; Guo, Y. F.; Li, L.; Zhang, S. S.; Lei, L. Y.; Li, M. L.; Duo, J.; Deng, T. L. Solid–liquid phase equilibria of the quinary system containing lithium, sodium, calcium, chloride, and borate ions at t =288.15 k and p = 101.325 kpa. J. Chem. Eng. Data2019d, 64, 3050–3057; https://doi.org/10.1021/acs.jced.9b00073.Search in Google Scholar
Cui, R.; Sang, S.; Wang, P. Liquid–solid equilibria in the quinary system Na+, K+//Br−, SO42−, B4O72−−H2O at 298 K. Russ. J. Inorg. Chem.2016, 61, 1325–1330; https://doi.org/10.1134/s0036023616100065.Search in Google Scholar
Cui, R.; Yang, L.; Sang, S.; Zhang, K. Liquid–solid equilibria in the quaternary system NaCl–Na2SO4–Na2B4O7–H2O and the quinary system NaCl–NaBr–Na2SO4–Na2B4O7–H2O at 348K. Russ. J. Inorg. Chem.2017, 62, 1529–1535; https://doi.org/10.1134/s0036023617110158.Search in Google Scholar
Cui, W.; Li, L.; Guo, Y.; Zhang, S.; Deng, T. Heat capacity and thermodynamic property of lithium pentaborate pentahydrate. J. Chem.2018, 7962739. https://doi.org/10.1155/2018/7962739.Search in Google Scholar
Deng, T. L. Phase equilibrium for the aqueous system containing lithium, sodium, potassium, chloride, and borate ions at 298.15 K. J. Chem. Eng. Data2004, 49, 1295–1299; https://doi.org/10.1021/je049975f.Search in Google Scholar
Deng, T. L.; Li, J.; Li, L.; Zhang, S. S.; Guo, Y. F. Application of calorimetry to the study of thermodynamic properties of borate systems (in Chinese). J. Tianjin Univ. Sci. Technol.2016, 31, 6–12. https://doi.org/10.13364/j.issn.1672-6510.20150098.Search in Google Scholar
Dong, N. J.; Dong, Y. P.; Peng, J. Y.; Wang, L. P. The effect of sodium chloride on the solubility, metastable zone width and nucleation kinetics of boric acid (in Chinese). J. Salt Lake Res.2015, 23, 29–36.Search in Google Scholar
Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Zhu, F.Y.; Yan, L. H.; Qian, Z. W. Recent progress on structure of aqueous polyborate solutions. J. Salt Lake Res.2019, 27, 11–39.Search in Google Scholar
Felmy, A. R.; Weare, J. H. The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. Geochem. Cosmochim. Acta1986, 50, 2771–2783; https://doi.org/10.1016/0016-7037(86)90226-7.Search in Google Scholar
Gao, S. Y.; Zhu, L. X.; Hao, Z. X.; Xia, S. P. Chemistry of borate in salt lake brine (XXXIV) – phase diagram of thermodynamic nonequilibrium state of MgO–B2O3–18%MgCl2 –H2O system at 20°C. Sci. China, Ser. B2002, 45, 541–550.10.1360/02yb9071Search in Google Scholar
Ge, H. W.; Fang, Y.; Fang, C. H.; Zhou, Y. Q.; Zhu, F. Y.; Liu, H. Y.; Yang, Z. X.; Tang, Y. L. Density, electrical conductivity, pH, and polyborate distribution of LiB(OH)4, Li2B4O5(OH)4, and LiB5O6(OH)4 solutions. J. Chem. Eng. Data2014, 59, 4039–4048; https://doi.org/10.1021/je500683z.Search in Google Scholar
Ge, H. W.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Liu, H. Y. Physical properties of aqueous LiB5O8 solution: density, viscosity, conductivity and pH (in Chinese). J. Salt Lake Res.2015a, 23, 44–50+66.Search in Google Scholar
Ge, H. W.; Fang, C. H.; Zhou, Y. Q.; Liu, H. Y.; Zhu, F. Y.; Fang, Y. Physicochemical properties and Raman spectrum of lithium tetraborate solution (in Chinese). Inorg. Chem. Ind.2015b, 47, 29–33.Search in Google Scholar
Ge, H. W.; Zhou, Y. Q.; Liu, H. Y.; Fang, Y.; Fang, C. H. Molecular interactions in aqueous solutions of polyborates at different acidity based on the Raman spectroscopy data at 25°C. Russ. J. Phys. Chem. A2017, 91, 1925–1931; https://doi.org/10.1134/s0036024417100119.Search in Google Scholar
Ge, H. W.; Wang, M.; Zhou, Y. Q.; Deng, T. L.; Yao, Y. Phase equilibrium in aqueous systems containing magnesium borate. Russ J. Phys. Chem. A.2019, 93, 1478–1483. https://doi.org/10.1134/S0036024419080090.Search in Google Scholar
Ge, H. W.; Wang, M.; Yao, Y.; Deng, T. L. Thermodynamic properties for aqueous MgB4O7 solution at 298.15 K. J. Chem. Eng. Data2020, 65, 26–33; https://doi.org/10.1021/acs.jced.9b00663.Search in Google Scholar
Guo, Y. F.; Zhao, K.; Li, L.; Cao, L.; Meng, L. Z.; Chen, S.; Deng, T. L. Volumetric properties of aqueous solution of lithium tetraborate from 283.15 to 363.15 K at 101.325 kPa. J. Chem. Thermodyn.2018, 120, 151–156; https://doi.org/10.1016/j.jct.2018.01.018.Search in Google Scholar
Gurbuz, H.; Ozdemir, B. Experimental determination of the metastable zone width of boraxdecahydrate by ultrasonic velocity measurement. J. Cryst. Growth2003, 252, 343–349; https://doi.org/10.1016/s0022-0248(02)02519-8.Search in Google Scholar
Harvie, C. E.; Weare, J. H. The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 25°C. Geochem. Cosmochim. Acta1980, 44, 981–997; https://doi.org/10.1016/0016-7037(80)90287-2.Search in Google Scholar
Harvie, C. E.; Eugster, H. P.; Weare, J. H. Mineral equilibria in the six-component seawater system, Na–K–Mg–Ca–SO4–Cl–H2O at 25°C. II: compositions of the saturated solutions. Geochem. Cosmochim. Acta1982, 46, 1603–1618; https://doi.org/10.1016/0016-7037(82)90317-9.Search in Google Scholar
Hirao, T.; Kotaka, M.; Kakihana, H. Raman spectra of polyborate ions in aqueous solution. J. Inorg. Nucl. Chem.1979, 41, 1217–1220; https://doi.org/10.1016/0022-1902(79)80490-x.Search in Google Scholar
Howard, D.; Silcock, L. Solubilities of inorganic and organic compounds. Nature1979, 2, 339–348.Search in Google Scholar
Kong, F. Z.; Dong, Y. P.; Meng, Q. F.; Peng, J. Y.; Li, W. Study of the metastable zone property of H3BO3 in CaCl2–H3BO3–H2O system (in Chinese). J. Salt Lake Res.2011a, 19, 48–53.Search in Google Scholar
Kong, F. Z.; Dong, Y. P.; Meng, Q. F.; Peng, J. Y.; Li, W. Metastable zone properties of H3BO3 in different concentrations of KCl and NH4Cl solutions (in Chinese). Chem. J. Chin. Univ.2011b, 32, 2635–2639.Search in Google Scholar
Li, J. C.; Zhai, Z. X.; Zeng, Z. M.; Wang, L. Y. Enthalpies of dilution and relative apparent molal enthalpies of the major aqueous salts of salt lakes at 298.15K (in Chinese). Acta Phys. Chim. Sin.1994a, 10, 759–764.10.3866/PKU.WHXB19940819Search in Google Scholar
Li, J. C.; Zhai, Z. X.; Zeng, Z. M.; Wang, L. Y. Thermochemistry of salt lake solution MgO–B2O3–MgCl2–H2O system, study on dilution heat, heat capacity and relative apparent heat chowder at 298.15K (in Chinese). Chin. Sci. Bull.1994b, 39, 249–252.Search in Google Scholar
Li, J. C.; Wang, L. Y.; Zeng, Z. M.; Zhai, Z. X. Heats of dilution, heat capacities and apparent molal enthalpies of MgB4O7–MgSO4–MgCl2–H2O systems at 298.15 K (in Chinese). J. Inorg. Chem.1995, 11, 409–414.Search in Google Scholar
Li, J. C.; Wei, J. H.; Gao, S. Y. Heats of dilution, heat capacities and apparent molal enthalpies of Li2B4O7–Li2SO4–LiCl–H2O systems at 298.15 K. J. Therm. Anal. Calorim.1998, 52, 497–504; https://doi.org/10.1023/a:1010107320085.10.1023/A:1010107320085Search in Google Scholar
Li, L. J.; Yao, Y.; Song, P. S. Pitzer parameters of potassium tetraborate in aqueous solution at 298. 15K (in Chinese). J. Salt Lake Res.2002, 10, 38–43.Search in Google Scholar
Li, L. J.; Yao, Y.; Song, P. S. The Pitzer ion-interaction model for the K2B4O7–H2O system at 298 . 15 K (in Chinese). J. Salt Lake Res.2004, 12, 23–28.Search in Google Scholar
Li, L.; Zhang, S. S.; Liu, Y. H.; Guo, Y. F.; Deng, T. L. Heat capacities and ion-interaction of lithium tetraborate aqueous solution system (in Chinese). Chem. J. Chin. Univ.2016, 37, 349–353.Search in Google Scholar
Li, D.; Ma, Y.; Meng, L. Z.; Guo, Y. F.; Deng, T. L.; Yang, L. Effect of impurity ions on solubility and metastable zone width of lithium metaborate salts. Crystals2019a, 9, 182; https://doi.org/10.3390/cryst9040182.Search in Google Scholar
Li, D.; Liu, Y. H.; Meng, L. Z.; Guo, Y. F.; Deng, T. L.; Yang, L. Phase diagrams and thermodynamic modeling of solid–liquid equilibria in the system NaCl–KCl–SrCl2–H2O and its application in industry. J. Chem. Thermodyn.2019b, 136, 1–7; https://doi.org/10.1016/j.jct.2019.04.013.Search in Google Scholar
Li, D.; Meng, L. Z.; Guo, Y. F.; Deng, T. L.; Yang, L. Chemical engineering process simulation of brines using phase diagram and Pitzer model of the system CaCl2–SrCl2–H2O. Fluid Phase Equil.2019c, 484, 232–238; https://doi.org/10.1016/j.fluid.2018.11.034.Search in Google Scholar
Li, D.; Meng, L. Z.; Liu, X. L.; Guo, Y. F.; Deng, T. L.; Liu, Y. H.; Yang, L. Calculation of solubility of borate in the brine systems using Pitzer thermodynamic model. Russ. J. Phys. Chem. A2020a, 94, 570–575. https://doi.org/10.1134/S0036024420030073.Search in Google Scholar
Li, D.; Zhou, G. L.; Gu, S. S.; Zhang, T.; Meng, L. Z.; Yafei Guo, Y. F.; Deng, T. L. Thermodynamic and dynamic modeling of the boron species in aqueous potassium borate solution. ACS Omega2020b, 5, 15835–15842; https://doi.org/10.1021/acsomega.0c00773.Search in Google Scholar PubMed PubMed Central
Liu, W.; Dai, L. K. Raman spectral analysis of low-content benzene concentration in gasoline with partial least squares based on interference peak subtraction. Anal. Sci.2016, 32, 861–866; https://doi.org/10.2116/analsci.32.861.Search in Google Scholar PubMed
Maya, L Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. Inorg. Chem.1976, 15, 2179–2184; https://doi.org/10.1021/ic50163a036.Search in Google Scholar
Meng, Q. F.; Kong, F. Z.; Feng, H. T.; Li, W. Study on the metastable zone property of boric acid in different concentrations of MgCl2 and NaCl solutions. Acta Chim Sin.2010, 68, 1699–1706.Search in Google Scholar
Meng, L. Z.; Gruszkiewicz, M. S.; Deng, T. L.; Guo, Y. F.; Li, D. Isothermal evaporation process simulation using the Pitzer model for the quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 k. Ind. Eng. Chem. Res.2015, 54, 8311–8318; https://doi.org/10.1021/acs.iecr.5b01897.Search in Google Scholar
Meng, L. Z.; Guo, Y. F.; Li, D.; Deng, T. L. Solid and liquid metastable phase equilibria in the aqueous quaternary system Li+, Mg2+//SO42–, borate–H2O at 273.15 K. Chem. Res. Chin. Univ.2017, 33, 655–659; https://doi.org/10.1007/s40242-017-6404-7.Search in Google Scholar
Mesmer, R. E.; Baes, C. F.; Sweeton, F. H. Acidity measurements at elevated temperatures. VI. Boricacid equilibria. Inorg. Chem.1972, 11, 537–543; https://doi.org/10.1021/ic50109a023.Search in Google Scholar
Miao, J. T.; Fang, Y.; Fang, C. H.; Zhu, F. Y.; Liu, H. Y.; Zhou, Y. Q.; Ge, H. W.; Sun, P. C.; Zhao, X. C. Physicochemical properties and species distribution of aqueous rubidium pentaborate solutions (in Chinese). J. Salt Lake Res.2017, 25, 30–36.Search in Google Scholar
Peng, J.; Dong, Y.; Nie, Z.; Kong, F.; Meng, Q.; Li, W. Solubility and metastable zone width measurement of borax decahydrate in potassium chloride solution. J. Chem. Eng. Data2012, 57, 890–895; https://doi.org/10.1021/je201073e.Search in Google Scholar
Peng, J.; Nie, Z.; Li, L.; Wang, L.; Dong, Y.; Li, W. Solubility and metastable zone width of sodium tetraborate decahydrate in a solution containing lithium chloride. J. Chem. Eng. Data2013, 58, 1288–1293; https://doi.org/10.1021/je400070j.Search in Google Scholar
Peng, J.; Dong, Y.; Wang, L.; Li, L.; Li, W.; Feng, H. Effect of impurities on the solubility, metastable zone width, and nucleation kinetics of borax decahydrate. Ind. Eng. Chem. Res.2014, 53, 12170–12178; https://doi.org/10.1021/ie404048m.Search in Google Scholar
Peng, J. Y.; Chen, J.; Dong, Y.P.; Li, W. Investigations on mg–borate kinetics and mechanisms during evaporation, dilution and crystallization by Raman spectroscopy. Spectrochim. Acta2018, 199, 367–375.10.1016/j.saa.2018.03.063Search in Google Scholar PubMed
Pitzer, K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.1973, 77, 268–277; https://doi.org/10.1021/j100621a026.Search in Google Scholar
Pitzer, K. S., Activity Coefficients in Electrolyte Solutions, 2nd ed.; Boca Raton, FL: CRC Press, 1993.Search in Google Scholar
Şahin, Ö. Effect of borax on the crystallization kinetics of boric acid. J. Cryst. Growth2002, 236, 393–399.10.1016/S0022-0248(01)02170-4Search in Google Scholar
Sahin, O.; Dolas, H.; Demir, H. Determination of nucleation kinetics of potassium tetraborate tetrahydrate. Cryst. Res. Technol.2007, 42, 766–772; https://doi.org/10.1002/crat.200710904.Search in Google Scholar
Sahin, O.; İzgi, M. S.; Ozdemir, M.; Demir, H.; Ceyhan, A. A. Determination of nucleation kinetics of ammonium biborate tetrahydrate. Rev. Chim. Bucharest.2014, 65, 1462–1466.Search in Google Scholar
Salentine, C. G. High-field boron-11 NMR of alkali borates. Aqueous polyborate equilibria. Inorg. Chem.1983, 22, 3920–3924; https://doi.org/10.1021/ic00168a019.Search in Google Scholar
Sang, S. H.; Yin, H. A.; Tang, M. L.; Zhang, Y. X. (Liquid+solid) metastable equilibria in quinary system Li2CO3+Na2CO3+K2CO3+Li2B4O7+Na2B4O7+K2B4O7+H2O at T=288 K for zhabuye salt lake. J. Chem. Thermodyn.2003, 35, 1513–1520; https://doi.org/10.1016/s0021-9614(03)00122-8.Search in Google Scholar
Sang, S. H. (Liquid + solid) phase equilibria in the quinary system Li++Na++ K++ CO32–+ B4O72–+ H2O at 288 K. J. Chem. Eng. Data2005, 50, 1557–1559; https://doi.org/10.1021/je049547+.10.1021/je049547+Search in Google Scholar
Sang, S. H.; Ni, S. J.; Yin, H. A. A study on the metastable equilibria of the quinary system Li+, K+//CO32–, SO42–, B4O72––H2O at 273 K (in Chinese). Chin. J. Inorg. Chem.2010a, 26, 1095–1099.Search in Google Scholar
Sang, S. H.; Zhang, X.; Zhao, X. P.; Xiao, L. J. Metastable equilibria in the quinary system of Li+, K+//CO32–, SO42–, B4O72––H2O at 288 K (in Chinese). Acta Chim. Sin.2010b, 68, 476–480.Search in Google Scholar
Sang, S. H.; Peng, J. (Solid + liquid) equilibria in the quinary system Na+, Mg2+, K+//SO42–, B4O72––H2O at 288 K. Calphad2010c, 34, 64–67; https://doi.org/10.1016/j.calphad.2009.12.001.Search in Google Scholar
Sang, S. H.; Zhang, X.; Zhang, J. J. Solid–liquid equilibria in the quinary system Na+, K+//Cl–, SO42–, B4O72––H2O at 323 K. J. Chem. Eng. Data2012, 57, 907–910. https://doi.org/10.1021/je201138z.Search in Google Scholar
Sang, S. H.; Lei, N. F.; Cui, R. Z.; Qu, S. D. A study on the metastable equilibria of the quinary system Li+, K+//CO32–, SO42–, B4O72––H2O at 273 K (in Chinese). J. Chem. Eng. Chin. Univ.2014, 28, 21–26.Search in Google Scholar
Sayan, P.; Ulrich, J. Effect of various impurities on the metastable zone width of boric acid. Cryst. Res. Technol.2001, 36, 411–417; https://doi.org/10.1002/1521-4079(200106)36:4/5%3c;411::aid-crat411%3e;3.0.co;2-l.10.1002/1521-4079(200106)36:4/5<411::AID-CRAT411>3.0.CO;2-LSearch in Google Scholar
Song, P. S. Comprehensive utilization of salt lake and related resources (in Chinese). J. Salt Lake Res.2000a, 8, 1–16.Search in Google Scholar
Song, P. S. Comprehensive utilization of salt lake and related resources (continuation l) (in Chinese). J. Salt Lake Res.2000b, 8, 33–58.Search in Google Scholar
Song, P. S.; Li, W.; Sun, B.; Ni, Z.; Bu, L. Z.; Wang, Y. S. Recent development on comprehensive utilization of salt lake resources (in Chinese). Chin. J. Inorg. Chem.2011, 27, 801–815.Search in Google Scholar
Song, P. S.; Sun, B.; Zeng, D. W. Solubility phenomena studies concerning brines in China. Pure Appl. Chem.2013, 85, 2097–2116; https://doi.org/10.1351/pac-con-13-04-05.Search in Google Scholar
Song, J.; Yuan, F.; Li, L.; Guo, Y. F.; Deng, T. L. Heat capacities and thermodynamic properties of hungchaoite and mcallisterite. Molecules2019, 24, 4470; https://doi.org/10.3390/molecules24244470.Search in Google Scholar
Spessard, J. E. Investigations of borate equilibria in neutral salt solutions. J. Inorg. Nucl. Chem.1970, 32, 2607–2613; https://doi.org/10.1016/0022-1902(70)80308-6.Search in Google Scholar
Sun, B.; Song, P. S. Study on the equilibrium in the quinary system Li+, Mg2+//Cl–, SO42–, B6O102––H2O at 25°C. In 15th International Symposium on Solubility Phenomena and Related Equilibrium Processes, 2012.Search in Google Scholar
Sun, P. C.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Zhu, F. Y.; Ge, H. W.; Liu, H. Y.; Miao, J. T.; Zhao, X. C. Physicochemical properties and Raman spectra of cesium tetraborate solution (in Chinese). J. Salt Lake Res.2016, 24, 29–37.Search in Google Scholar
Sun, K.; Zhao, K.; Li, L.; Guo, Y. F.; Deng, T. L. Heat capacity and thermodynamic property of cesium tetraborate pentahydrate. J. Chem.2019, 9371328. https://doi.org/10.1155/2019/9371328.Search in Google Scholar
Sun, K.; Li, P.; Li, L.; Guo, Y. F.; Deng, T. L. Heat capacity and thermodynamic properties of cesium pentaborate tetrahydrate. J. Chem.2020a, 5198374. https://doi.org/10.1155/2020/5198374.Search in Google Scholar
Sun, K. R.; Li, P.; Li, L.; Guo, Y. F.; Meng, L. Z.; Deng, T. L. Apparent molar volumes for Cs2B4O7 aqueous solution at temperatures from (283.15 to 363.15) K and 101 kPa. J. Chem. Thermodyn.2020b, 140, 105895; https://doi.org/10.1016/j.jct.2019.105895.Search in Google Scholar
Sun, K. R.; Zheng, H. Y.; Guo, Y. F.; Meng, L. Z.; Deng, T. L. Volumetric properties and the ion-interaction parameters of the binary system (CsB5O8 + H2O) at temperatures from (283.15 to 363.15) K and 101 kPa. J. Chem. Thermodyn.2020c, 144, 105976; https://doi.org/10.1016/j.jct.2019.105976.Search in Google Scholar
Tursunbadalov, S. Elucidation of phase equilibria in quinary Na+, K+, Mg2+//SO42–, B4O2––H2O system at 15 °C. Russ. J. Inorg. Chem.2020, 65, 412–419; https://doi.org/10.1134/s0036023620030195.Search in Google Scholar
Tursunbadalov, S.; Soliev, L. Determination of phase equilibria and construction of comprehensive phase diagram for the quinary Na+, K+//Cl–, SO42–, B4O72––H2O system at 25°C. J. Chem. Eng. Data2017, 62, 698–703; https://doi.org/10.1021/acs.jced.6b00739.Search in Google Scholar
Wang, Z. C.; Guo, X. X.; Li, X.; Xu, B. K.; Zhao, M. Y. Nucleation characteristic of the aqueous Na2B4O7 solution (in Chinese). Jilin Univ. Natura Sci. Acta1992a, 1, 103–107.Search in Google Scholar
Wang, Z. C.; Guo, X. X.; Zhang, L. H.; Li, X.; Xu, B. K. The study on the induction period of nucleation for the aqueous Na2B4O7 solution (in Chinese). Jilin Univ. Natura Sci. Acta1992b, 2, 80–82.Search in Google Scholar
Wang, Z. J.; Zeng, Y.; Tang, M. L.; Yin, H. A. An experimental study on phase equilibrium Li+, K+//Cl–, CO32–, B4O72––H2O system at 298 K (in Chinese). J. Chendu Univ. Tech.2001, 28, 204–208.Search in Google Scholar
Wang, J.; Zhu, L. X.; Li, S. N.; Xia, S. P.; Gao, S. Y. FT-IR differential and Raman spectroscopic study of an aqueous solution of potassium pentaborate tetrahydrate (in Chinese). J. Salt Lake Res.2004, 12, 19–22.Search in Google Scholar
Wang, P.; Kosinski, J. J.; Lencka, M. M.; Anderko, A.; Springer, R. D. Thermodynamic modeling of boric acid and selected metal borate systems. Pure Appl. Chem.2013, 85, 2117–2144; https://doi.org/10.1351/pac-con-12-07-09.Search in Google Scholar
Wang, R.; Zeng, Y. Metastable phase equilibrium of the quinary aqueous system Li+ + K+ + Cl– + CO32– + B4O72– + H2O at 273.15 K. J. Chem. Eng. Data2014, 59, 903–911; https://doi.org/10.1021/je4010867.Search in Google Scholar
Wang, H.; Li, L.; Wang, M.; Lei, X.; Guo, Y.; Deng, T. Solid–liquid phase equilibria of the aqueous ternary system (MgSO4 + Mg2B6O11 + H2O) at (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data2017, 62, 3334–3340; https://doi.org/10.1021/acs.jced.7b00378.Search in Google Scholar
Wang, X. P.; Peng, J. Y.; Chen, J.; Dong, Y. P.; Li, W. Study on the metastable zone property of boric acid in NH4Cl–CaCl2–H3BO3–H2O system (in Chinese). J. Salt Lake Res.2019, 27, 44–51.Search in Google Scholar
Xu, S.; Fang, Y.; Fang, C. H.; Zhou, Y. Q.; Zhu, F. Y.; Tao, S. Chemical species distribution and physicochemical properties in aqueous lithium metaborate (in Chinese). J. Salt Lake Res.2012, 20, 37–42.Search in Google Scholar
Yang, J. M.; Yao, Y.; Zhang, A. Y.; Song, P. S. Isopiestic studies on thermodynamic properties for LiCl–Li2B4O7–H2O system at 298.15 K (in Chinese). J. Salt Lake Res.2004, 12, 31–38.Search in Google Scholar
Yang, J. M.; Yao, Y.; Zhang, A. Y.; Song, P. S. Isopiestic studies on thermodynamic properties for LiCl–Li2B4O7–H2O system at 273.15 K (in Chinese). J. Salt Lake Res.2005, 13, 19–24.Search in Google Scholar
Yang, J. M.; Yao, Y.; Zhang, A. Y.; Song, P. S. Isopiestic studies on thermodynamic properties for LiCl–Li2B4O7–H2O system at 298.15 K (in Chinese). Chem. J. Chin. Univ.2006, 27, 735–738.Search in Google Scholar
Yang, J. M.; Yao, Y. Isopiestic studies on thermodynamic properties and representation with ion–interaction model for the Li2B4O7–LiCl–H2O system at 273.15 K(in Chinese). Acta Chim. Sin.2007, 65, 1089–1093.Search in Google Scholar
Yang, J. M.; Yao, Y.; Xia, Q. Y.; Li, B. H.; Xu, S. Y.; Yang, J. Isopiestic determination of the osmotic coefficients and Pitzer model representation for the Li2B4O7 + LiCl + H2O system at t=298.15 K. J. Solut. Chem.2008, 37, 377–389; https://doi.org/10.1007/s10953-007-9244-0.Search in Google Scholar
Yang, J. M.; Yao, Y.; Zhang, R. Z.; Sun, A. D.; Li, B. H.; Lu, H. Z.; Xia, Q. Y. Osmotic coefficients of the Li2B4O7 + LiCl + H2O system at t=273.15 K. J. Solut. Chem.2009, 38, 429–439; https://doi.org/10.1007/s10953-009-9386-3.Search in Google Scholar
Yang, L.; Meng, L. Z.; Ge, T. J.; Li, D.; Deng, T. L.; Guo, Y. F. Solubility measurement and thermodynamic modeling of solid–liquid equilibria in the MCl–M2B4O7–H2O (M = Li, Na) systems. J. Chem. Eng. Data2019, 64, 4510–4517; https://doi.org/10.1021/acs.jced.9b00561.Search in Google Scholar
Yang, L.; Li, D.; Zhang, T.; Meng, L. Z.; Deng, T. L.; Guo, Y. F. Thermodynamic phase equilibria in the aqueous ternary system NaCl–NaBO2–H2O: experimental data and solubility calculation using the Pitzer model. J. Chem. Thermodyn.2020, 142, 106021; https://doi.org/10.1016/j.jct.2019.106021.Search in Google Scholar
Ye, L. Y.; Li, D. D.; Dong, Y. P.; Xu, B. M.; Zeng, D. W. Measurement of specific heat capacity of NaBO2 (aq) solution and thermodynamic modeling of NaBO2 + H2O, NaBO2 + NaCl + H2O, and NaBO2 + Na2SO4 + H2O systems. J. Chem. Eng. Data2020, 65, 2548–2557; https://doi.org/10.1021/acs.jced.9b01182.Search in Google Scholar
Yin, H. A.; Hao, L. F.; Zeng, Y.; Tang, M. L. Studies on the phase equilibrium and physicochemical properties of solutions for the quinary system Li+, Na+//CO32−, B4O72−, Cl−–H2O at 298 K (in Chinese). J. Chem. Eng. Chin. Univ.2003, 17, 1–5.Search in Google Scholar
Yin, G. Y. Studies on the Thermodynamics of the Systems Containing Born and Lithium Li2B4O7–H2O, LiCl–Li2B4O7–H2O by Calorimetry (in Chinese). Doctoral dissertation, 2005.Search in Google Scholar
Yin, S. T.; Yao, Y.; Li, B.; Tian, H.; Song, P. S. Isopiestic studies of aqueous MgB4O7 and MgSO4 + MgB4O7 at 298.15 K and representation with Pitzer’s ion-interaction model. J. Solut. Chem.2007, 36, 1745–1761; https://doi.org/10.1007/s10953-007-9211-9.Search in Google Scholar
Yin, G.; Yao, Y.; Liu, Z. Enthalpies of dilution of aqueous mixed solutions of LiCl and Li2B4O7 at 298.15 K. J. Therm. Anal. Calorim.2009, 95, 377–380; https://doi.org/10.1007/s10973-008-9239-0.Search in Google Scholar
Yu, X.; Zeng, Y.; Guo, S.; Zhang, Y. Stable phase equilibrium and phase diagram of the quinary system Li+, K+, Rb+, Mg2+//Borate–H2O at t = 348.15K. J. Chem. Eng. Data2016, 61, 1246–1253; https://doi.org/10.1021/acs.jced.5b00888.Search in Google Scholar
Yu, X. D.; Zheng, M. P.; Zeng, Y.; Wang, L. Solid–liquid equilibrium of quinary aqueous solution composed of lithium, potassium, rubidium, magnesium, and borate at 323.15 K. J. Chem. Eng. Data2019, 64, 5681–5687; https://doi.org/10.1021/acs.jced.9b00700.Search in Google Scholar
Yuan, W. P.; Yao, Y.; Song, P. S. Isopiestic studies on thermodynamic properties for Li2B4O7–Li2SO4–H2O system at 298. 15 K (in Chinese). J. Salt Lake Res.2005, 13, 29–34.Search in Google Scholar
Yuan, F.; Li, L.; Guo, Y. F.; Deng, T. L. Dilution enthalpies of LiBO2 and LiB5O8 aqueous solutions at 298.15 K and the application of ion-interaction model. Thermochim. Acta2020, 685, 178506; https://doi.org/10.1016/j.tca.2019.178506.Search in Google Scholar
Zeng, Y.; Yang, H.; Yin, H.; Tang, M. Study of the phase equilibrium and solution properties of the quinary system Na+ + K+ + Cl− + CO32− + B4O72− + H2O at t = 298.15 K. J. Chem. Eng. Data2004a, 49, 1648–1651; https://doi.org/10.1021/je049934j.Search in Google Scholar
Zeng, Y.; He, X. T.; Yin, H. A. An experimental study on phase equilibrium of quinary system Li+/Cl–, SO42–, CO32–, B4O72––H2O at 298 K (in Chinese). Chin. J. Inorg. Chem.2004b, 20, 946–950.Search in Google Scholar
Zeng, Y.; Shao, M. Liquid−solid metastable equilibria in the quinary system Li+ + K+ + Cl− + CO32− + B4O72− + H2O at t = 288 K. J. Chem. Eng. Data2006, 51, 219–222; https://doi.org/10.1021/je050337m.Search in Google Scholar
Zeng, Y.; Ling, X. F.; Ni, S. J.; Zhang, C. J. Study on the metastable equilibria of the salt lake brine system Li2SO4 + Na2SO4 + K2SO4 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O at 288 K. J. Chem. Eng. Data2007, 52, 164–167; https://doi.org/10.1021/je060334p.Search in Google Scholar
Zeng, Y.; Lin, X. Solubility and density measurements of concentrated Li2B4O7 + Na2B4O7 + K2B4O7 + Li2SO4 + Na2SO4 + K2SO4 + H2O solution at 273.15 K. J. Chem. Eng. Data2009, 54, 2054–2059; https://doi.org/10.1021/je8009013.Search in Google Scholar
Zeng, Y.; Feng, S.; Zheng, Z. Y. Metastable equilibrium of the salt lake brine system Na+ + K+ + CO32− + SO42− + B4O72− + H2O at 273.15 K. J. Chem. Eng. Data2010, 55, 5834–5838; https://doi.org/10.1021/je100791a.Search in Google Scholar
Zhang, A. Y.; Yao, Y.; Song, P. S. Isopiestic determination of vapor pressures and osmotic coefficients and the ion-interaction model for Li2B4O7–H2O system at 298.15 K (in Chinese). Chem. J. Chin. Univ.2004a, 25, 1934–1936.Search in Google Scholar
Zhang, A. Y.; Yao, Y.; Yang, J. M.; Song, P. S. Isopiestic studies of thermodynamic properties and representation with ion-interaction model for Li2B4O7–MgCl2(B)–H2O system at 298.15 K. Acta Chim. Sin.2004b, 12, 1089–1094.Search in Google Scholar
Zhang, A. Y.; Yao, Y.; Li, L. J.; Song, P. S. Isopiestic determination of the osmotic coefficients and Pitzer model representation for Li2B4O7(aq) at t=298.15 K. J. Chem. Thermodyn.2005, 37, 101–109; https://doi.org/10.1016/j.jct.2004.07.028.Search in Google Scholar
Zhang, A. Y.; Yao, Y. Thermodynamic studies by electromotive force method and ion interaction model for Li2B4O7–MgCl2–H2O system at 298.15 K (in Chinese). Acta Chim. Sin.2006, 64, 501–507.Search in Google Scholar
Zhang, Z. H.; Yin, G. Y.; Tan, Z. C.; Yao, Y.; Sun, L. X. Heat capacities and thermodynamic properties of a H2O + Li2B4O7 solution in the temperature range from 80 to 356 K. J. Solut. Chem.2006, 35, 1347–1355; https://doi.org/10.1007/s10953-006-9065-6.Search in Google Scholar
Zhang, Z.; Tan, Z.; Yin, G.; Yao, Y.; Sun, L.; Li, Y. Heat capacities and thermodynamic functions of the aqueous Li2B4O7 solution in the temperature range from 80 K to 355 K. J. Chem. Eng. Data2007, 52, 866–870; https://doi.org/10.1021/je060462d.Search in Google Scholar
Zhang, A. Y.; Yao, Y. The polyborate present in aqueous solutions containing boron and the affection factors (in Chinese). J. Salt Lake Res.2007, 2, 50–56.Search in Google Scholar
Zhang, N.; Guo, Y.; Yuan, Y.; Wang, S.; Deng, T. Thermodynamic phase equilibria of the aqueous ternary system (LiCl+LiBO2+H2O) at 308 K: experimental data and predictions using the Pitzer model. J. Chem. Eng. Jpn.2016, 49, 324–331; https://doi.org/10.1252/jcej.15we045.Search in Google Scholar
Zhao, W.; Guo, Y. F.; Gao, J.; Deng, T. L. Survey of boron mineral resources and research progress of boron recovery in China (in Chinese). World Sci-Tech R&D2011, 33, 29–32.Search in Google Scholar
Zhao, K. Y.; Li, L.; Li, J.; Guo, Y. F.; Liu, Y. H.; Deng, T. L. Apparent molar volumes of aqueous solutions of magnesium tetraborate from 283.15 to 363.15 K and 0.1 MPa. J. Solut. Chem.2018, 47, 827–837; https://doi.org/10.1007/s10953-018-0761-9.Search in Google Scholar
Zhao, K. Y.; Li, L.; Guo, Y. F.; Meng, L. Z.; Li, M. L.; Duo, J.; Deng, T. L. Apparent molar volumes of aqueous solutions of lithium pentaborate from 283.15 to 363.15 K and 101.325 kPa: an experimental and theoretical study. J. Chem. Eng. Data2019, 64, 944–951; https://doi.org/10.1021/acs.jced.8b00814.Search in Google Scholar
Zheng, H. Y.; Sun, K. R.; Li, L.; Guo, Y. F.; Deng, T. L. Heat capacities and thermodynamic properties of pinnoite and inderite. J. Chem.2020, 6181356. https://doi.org/10.1155/2020/6181356.Search in Google Scholar
Zhou, Y. Q.; Fang, C. H.; Fang, Y. Structure of supersaturated aqueous sodium pentaborate solution (in Chinese). Acta Phys. Chim. Sin.2010, 26, 2323–2330; https://doi.org/10.1007/s10114-010-8283-4.Search in Google Scholar
Zhou, Y. Q.; Fang, Y.; Cao, L. D.; Zhu, F. Y.; Fang, C. H. Amorphous structure of diboron trioxide and sodium pentaborate hydrate (in Chinese). Acta Chim. Sin.2011a, 69, 46–52.Search in Google Scholar
Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y. Polyborates in aqueous borate solution: a Raman and DFT theory investigation. Spectrochim. Acta2011b, 83, 82–87; https://doi.org/10.1016/j.saa.2011.07.081.Search in Google Scholar
Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y.; Tao, S.; Xu, S. Structure of aqueous sodium metaborate solutions: X-ray diffraction study. Russ. J. Phys. Chem. A2012a, 86, 1236–1244. https://doi.org/10.1134/S0036024412060349.Search in Google Scholar
Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y.; Cao, L. D. Polyborates in aqueous sodium borate solution at 298.15 K. Asian J. Chem.2012b, 24, 29–32.Search in Google Scholar
Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y. Volumetric and transport properties of aqueous NaB(OH)4 solutions. Chin. J. Chem. Eng.2013, 21, 1048–1056; https://doi.org/10.1016/s1004-9541(13)60561-3.Search in Google Scholar
Zhou, Y. Q.; Higa, S.; Fang, C. H.; Fang, Y.; Zhang, W. Q.; Yamaguchi, T. B(OH) 4(-) hydration and association in sodium metaborate solutions by X-ray diffraction and empirical potential structure refinement. Phys. Chem. Chem. Phys.2017, 19, 27878–27887; https://doi.org/10.1039/c7cp05107g.Search in Google Scholar PubMed
Zhu, F. Y.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Cao, L. D. Ranman spectroscopic and pH investigation of aqueous K2B4O7 and KBO2 solutions (in Chinese). J. Salt Lake Res.2011, 19, 40–47; https://doi.org/10.11569/wcjd.v19.i21.2201.Search in Google Scholar
Zhu, F. Y.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Xu, S.; Tao, S.; Cao, L. D. Structure of aqueous potassium tetraborate solutions (in Chinese). Acta Chim. Sin.2012, 70, 445–452; https://doi.org/10.6023/a1105313.Search in Google Scholar
Zhu, F. Y.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Ge, H. W.; Liu, H. Y. Borate species, densities and conductivities for aqueous KB5O8, KBO2 and K2B4O7 solutions. J. Salt Lake Res.2015, 23, 51–61.Search in Google Scholar
Zhu, F. Y.; Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Ge, H. W.; Liu, H. Y. Ion association in lithium metaborate solution: a Raman and ab initio insight. Phys. Chem. Liq.2016, 55, 186–195; https://doi.org/10.1080/00319104.2016.1183003.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review
- Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration
- Organodiphosphines in Pt{η2-P(X)nP}Cl2 (n = 9–15, 17, 18) derivatives – Structural aspects
- Recent progresses on the boron species in aqueous solution: structure, phase equilibria, metastable zone width (MZW) and thermodynamic model
Articles in the same Issue
- Frontmatter
- The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review
- Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration
- Organodiphosphines in Pt{η2-P(X)nP}Cl2 (n = 9–15, 17, 18) derivatives – Structural aspects
- Recent progresses on the boron species in aqueous solution: structure, phase equilibria, metastable zone width (MZW) and thermodynamic model