Home Organodiphosphines in Pt{η2-P(X)nP}Cl2 (n = 9–15, 17, 18) derivatives – Structural aspects
Article
Licensed
Unlicensed Requires Authentication

Organodiphosphines in Pt{η2-P(X)nP}Cl2 (n = 9–15, 17, 18) derivatives – Structural aspects

  • Milan Melník EMAIL logo and Peter Mikuš
Published/Copyright: September 25, 2020

Abstract

This review covers over 20 monomeric platinum complexes of Pt{η2-P(X)nP}Cl2 (n = 9–15, 17, 19) type. The chelating P,P-donor ligands create wide varieties of the metallocyclic rings: 12-membered (PC9P, PC3NCNC3P), 13-membered (PC3NC2NC3P), 14-membered (PC11P, PO(SiO)5P, PC2OC2OC2OC2P), 15-membered (PC12P), 16-membered (PCOC9OCP), 17-membered (P(C2O)4C2P), 18-membered (PC2OC9OC2P, PC4NC2NC2NC4P), 20-membered (P(C2O)5C2P), and 21-membered (POC2NC10NC2OP). For these complexes the most common is a predominantly cis-arranged with 17 examples and only four examples with trans-configuration. The total mean values of Pt–L bond distances in the complexes with cis- versus trans-configuration are: 2.252 Å (P trans to Cl), 2.355 Å (Cl trans to P) vs 2.288 Å (P trans to P), and 2.304 Å (Cl trans to Cl). There are examples which exist in cis- and trans-isomeric forms and distortion isomers. A brief survey on the structural data of almost 180 examples of Pt{η2-P(X)nP}Cl2 (n = 1–8) type complexes is added and discussed.


Corresponding author: Milan Melník, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University in Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic, E-mail:

Funding source: APVV

Award Identifier / Grant number: 15-0585

Funding source: VEGA

Award Identifier / Grant number: 1/0463/18

Acknowledgments

This work was supported by the projects VEGA 1/0463/18, and APVV-15-0585.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the projects VEGA 1/0463/18, and APVV-15-0585.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bachechi, F.; Zambonelli, L. Structure of NiII, PdII and PtII complexes with the bidentate ligand 2,11-bis(diethylphosphinomethyl)benzo[c]phenanthrene. Acta Crystallogr. C, 1992, 48, 788–792; https://doi.org/10.1107/s0108270191011769.Search in Google Scholar

Bracher, G.; Grove, D. M.; Venanzi, L. M.; Bachechi, F.; Mura, P.; Zambonelli, L. Transition metal complexes with bidentate ligand 2, 11‐Bis (diphenylphosphinomethyl)benzo[c ]phenanthrene (1). X†. Preparation and spectroscopic properties of cis‐[PtCl2 (1)] trans‐ and cis . Preparation and spectroscopic properties of cis[PtH (PPh3) (1)] [BF4] and crystal and molecular structure of cis‐[PtCl2 (1)]·CHCl3. Helv. Chim. Acta1980, 63, 2519–2530; https://doi.org/10.1002/hlca.19800630847.Search in Google Scholar

Burger, S.; Therrien, B.; Suss-Fink, G. Cis-{trans-1,2-Bis [2-(diphenylphosphino)benzamido]cyclohexane-κ2P,P′}dichloroplatinum(II) chloroform trisolvate. Acta Crystallogr. E, Struct. Rep. Online2004, 60, m1163–m1165; https://doi.org/10.1107/s1600536804017209.Search in Google Scholar

Fild, M.; Thone, C.; Totos, S. Synthetic and structural studies of PdII and PtII complexes with quincorine and quincoridine derivatives. Eur. J. Inorg. Chem.2004, 2004, 749–761. https://doi.org/10.1002/ejic.200300557.Search in Google Scholar

Jarvis, A. G.; Sehnal, P. E.; Bajwa, S. E.; Whitwood, A. C.; Zhang, X.; Cheung, M. S.; Lin, Z.; Fairlamb, I. J. S. A remarkable cis‐ and trans ‐spanning dibenzylidene acetone diphosphine chelating ligand (dbaphos). Chem. Eur J.2013, 19, 6034–6043; https://doi.org/10.1002/chem.201203691.Search in Google Scholar PubMed

Kim, S.; Kim, J. S.; Shon, O. J.; Lee, S. S.; Park, K. M.; Kang, S. O.; Ko, J. Metallic macrocycle with a 1,3-alternate calix[4]arene phosphorus ligand. Inorg. Chem.2004, 43, 2906–2913; https://doi.org/10.1021/ic030221g.Search in Google Scholar PubMed

Lejeune, M.; Jeunesse, C.; Matt, D.; Kyritsakas, N.; Welter, R.; Kintzinger, J. P. Positioning of transition metal centres at the upper rim of cone-shaped calix[4]arenes. Filling the basket with an organometallic ruthenium unit. J. Chem. Soc., Dalton Trans.2002, 1642–1650; https://doi.org/10.1039/b110884k.Search in Google Scholar

Loeber, C.; Wieser, C.; Matt, D.; De Cian, A.; Fischer, J.; Toupet, L. Cavity-shaped phosphane ligands. Phosphane-amide hybrids based on a calix(4)arene matrix and their chelating behavior towards platinum and rhodium. Bull. Soc. Chim. Fr.1995, 132, 166–177.Search in Google Scholar

March, F. C.; Mason, D.; Thomas, K. M. Structural chemistries and X-ray crystal structures of some macrocyclic tertiary phosphine complexes of d8 metal ions: [IrCl(CO){Bu2tP(CH2)10PBu2t}], [PtCl2{Bu2tP(CH2)12PBu2t}], and [RhCl(CO){Bu2tP(CH2)10PBu2t}]2. J. Chem. Soc., Chem. Commun.1975, 584–585; https://doi.org/10.1039/c39750000584.Search in Google Scholar

Melník, M.; Forgacsova, A.; Mikuš, P. New development in oncology research. In Chapter 4, Organodiphosphines in cis-Pt(η2-PXP)(Cl2) and cis-Pt(η2-PXXP(Cl2) Derivatives Structural Aspects. Nova Science Publishers, 2019a; pp 153–176. ISBN: 978-1-53615-365-1.Search in Google Scholar

Melník, M.; Forgacsova, A.; Mikuš, P. New development in oncology research. In Chapter 5, Organodiphosphines in cis-Pt(η2-PXXXP)(Cl2) Derivatives Structural Aspects. Nova Science Publishers, 2019b; pp 177–192. ISBN: 978-1-53615-365-1.Search in Google Scholar

Melník, M.; Forgacsova, A.; Mikuš, P. New development in oncology research. In Chapter 6, Organodiphosphines in cis-Pt(η2-PXXXXP)(Cl2) Derivatives Structural Aspects. Nova Science Publishers, 2019c; pp 193–203. ISBN: 978-1-53615-365-1.Search in Google Scholar

Melník, M.; Bognar Mikulova, M.; Mikuš, P. New development in oncology research. In Chapter 3, Organodiphosphines in cis-Pt(η2-P(X)nP)(Cl2) (n= 5,6,7,8) Derivatives Structural Aspects. Nova Science Publishers, 2019d; pp 135–152. ISBN: 978-1-53615-365-1.Search in Google Scholar

Melník, M.; Holloway, C.E. Stereochemistry of platinum coordination compounds. Coord. Chem. Rev.2006, 250, 2261–2270; https://doi.org/10.1016/j.ccr.2006.02.020.Search in Google Scholar

Melník, M.; Mikus, P. Organomonophosphines in PtP2Cl2 derivatives: structural aspects. Rev. Inorg. Chem.2015, 35, 179–189; https://doi.org/10.1515/revic-2015-0004.Search in Google Scholar

Newman, P. D.; Cavell, K. J.; Kariuki, B. M. Variable coordination of a chiral diphosphine containing an amidinium/NHC group within its backbone: μ-P,P′, κ2-P,P′ and κ3-P,C,P′ coordination modes. Dalton Trans. 2012, 41, 12395–12407; https://doi.org/10.1039/c2dt31475d.Search in Google Scholar

Owens Junior, S. B.; Smith Junior, D. S.; Lake, C. H.; Gray, G.M. Synthesis characterization, and cis–trans isomerization studies of cis‐[PdCl2{Ph2P(CH2CH2O)3CH2CH2PPh2‐P,P′}] and trans‐[PtCl2{Ph2P(CH2CH2O)3CH2CH2PPh2‐P,P′}] metallacrown ethers. Eur. J. Inorg. Chem.2008, 2008, 4710–4718; https://doi.org/10.1002/ejic.200800436.Search in Google Scholar

Pacui, A. E.; van Rees, K.; Zant, D. W.; Broere, D. L. J.; Siegler, M. A.; van der Vlugt, J. J. Macrocyclic platinum(II) complexes with a bifunctional diphosphine ligand. Eur. J. Inorg. Chem.2015, 5687–5693; https://doi.org/10.1002/ejic.201501055.Search in Google Scholar

Swanson, R. A.; Haywood, R. S.; Gibbons, J. B.; Cordova, K. E.; Patrick, B. O.; Moore, C.; Rheingold, A. L.; Daley, C. J. A. Diamidato-bis(diphenylphosphino) platinum(II) complexes: synthesis, characterization, and reactivity in the presence of acid. Inorg. Chim. Acta.2011, 368, 74–83; https://doi.org/10.1016/j.ica.2010.12.056.Search in Google Scholar

Takenaka, K.; Obora, Y.; Jiang, L. H.; Tsuji, Y. Platinum(II) and palladium(II) complexes of bis(diphenylphosphino)calix[4]arene tetrabenzyl Ether:  fluxional behavior caused by two motions. Organometallics2002, 21, 1158–1166; https://doi.org/10.1021/om010882q.Search in Google Scholar

van der Beuken, E. K.; Meetsma, A.; Kooijma, H.; Spek, M. L.; Feringa, R. L. New palladium, platinum and nickel complexes based on rigid phosphorus and nitrogen containing ligands. Inorg. Chim. Acta.1997, 264, 171–183.10.1016/S0020-1693(97)05605-3Search in Google Scholar

van der Vlugt, J. I.; Fioroni, M.; Ackerstaff, J.; Hanssen, R. W. J. M.; Mills, J. M.; Spek, A. L.; Miestma, A.; Abbenhuis, H. C. L.; Vogt, D. A silsesquioxane-based diphosphinite ligand: synthesis, DFT study, and coordination chemistry. Organometallics2003, 22, 5297–5306; https://doi.org/10.1021/om030522y.Search in Google Scholar

Varshney, A.; Webster, M. L.; Gray, G. M. Syntheses and reactions of the cis-PtCl2{Ph2P(CH2CH2O)nCH2CH2PPh2-P,P′} (n = 3–5) metallacrown ether complexes. The x-ray crystal structures of the n = 4 and 5 complexes and of [cis-Pt{Ph2P(CH2CH2O)4CH2CH2PPh2-P,,O}(H2O)](BF4)2. Inorg. Chem. 1992, 31, 2580-P′,O}(H2O)](BF4)2. Inorg. Chem.1992, 31, 2580–2587; https://doi.org/10.1021/ic00038a050.Search in Google Scholar

Yang, L.; Powell, D. R.; Housed, R. P. Structural variation in copper(I) complexes with pyridyl-methylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964; https://doi.org/10.1039/b617136b.Search in Google Scholar PubMed

Received: 2020-06-17
Accepted: 2020-08-20
Published Online: 2020-09-25
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0010/html
Scroll to top button