Startseite Naturwissenschaften Techniques in the synthesis of organometallic compounds of tungsten
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Techniques in the synthesis of organometallic compounds of tungsten

  • Muhammad Sohail , Muhammad Zeshan Ashraf , Raziya Nadeem , Shamsa Bibi , Rabia Rehman , Amanullah und Muhammad Adnan Iqbal ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Dezember 2019

Abstract

Tungsten is an elegant substance, and its compounds have great significance because of their extensive range of applications in diverse fields such as in gas sensors, photocatalysis, lithium ion batteries, H2 production, electrochromic devices, dyed sensitized solar cells, microchip technology, and liquid crystal displays. Tungsten compounds exhibit a more efficient catalytic behavior, and tungsten-dependent enzymes generally catalyze the transfer of an oxygen atom to or from a physiological donor/acceptor with the metal center. Furthermore, tungsten has an n-type semiconductor band gap. Tungsten forms complexes by reacting with several elements such as H, C, N, O, and P as well as other numerous inorganic elements. Interestingly, all tungsten reactions occur at ambient temperature, usually with tetrahydrofuran and dichloromethane under vacuum. Tungsten has extraordinarily high-temperature properties, making it very useful for X-ray production and heating elements in furnaces. Tungsten coordinates with diverse nonmetallic elements and ligands and produces interesting compounds. This article describes an overview of the synthesis of various organometallic compounds of tungsten.


Dedicated to: This article is dedicated to the memory of Miss Saba Mushtaq (MPhil student at the corresponding author’s research laboratory), who died of colon cancer at a young age.


Acknowledgments

The authors are thankful to the University of Agriculture Faisalabad, Pakistan, for providing the necessary facilities to compile this review. Dr. MAI is thankful to the Higher Education Commission of Pakistan (HEC-Pak) for awarding research grants NRPU-8396 and funder id: http://dx.doi.org/10.13039/501100004681, NRPU-8198.

References

Ali, B.; Shakir, M.R.; Iqbal Muhammad, A. Techniques in the synthesis of mononuclear manganese complexes: a review. Rev. Inorg. Chem.2017, 37.10.1515/revic-2017-0004Suche in Google Scholar

Amanullah; Ali, U.; Ans, M.; Iqbal, J.; Iqbal, M.A.; Shoaib, M. Benchmark study of benzamide derivatives and four novel theoretically designed (L1, L2, L3, and L4) ligands and evaluation of their biological properties by DFT approaches. J. Mol. Model.2019, 25, 223.10.1007/s00894-019-4115-3Suche in Google Scholar PubMed

Amini, M.; Bagherzadeh, M.; Eftekhari-Sis, B.; Ellern, A.; Keith Woo, L. Catalytic efficacy of an oxido-peroxido tungsten(VI) complex: synthesis, X-ray structure and oxidation of sulfides and olefins. J. Coord. Chem.2013, 66, 1897.10.1080/00958972.2013.794383Suche in Google Scholar

Arifin, K.; Daud, W.R.W.; Kassim, M.B. Optical and photoelectrochemical properties of a TiO2 thin film doped with a ruthenium–tungsten bimetallic complex. Ceram. Int.2013, 39, 2699.10.1016/j.ceramint.2012.09.037Suche in Google Scholar

Arumuganathan, T.; Mayilmurugan, R.; Volpe, M.; Mösch-Zanetti, N.C. Faster oxygen atom transfer catalysis with a tungsten dioxo complex than with its molybdenum analog. Dalton Trans.2011, 40, 7850.10.1039/c1dt10248fSuche in Google Scholar PubMed

Axtell, J.C.; Schrock, R.R.; Müller, P.; Hoveyda, A.H. Synthesis of molybdenum and tungsten alkylidene complexes that contain the 2,6-bis(2,4,6-triisopropylphenyl)phenylimido (NHIPT) ligand. Organometallics2015, 34, 2110.10.1021/om501213xSuche in Google Scholar

Badetti, E.; Bonetto, A.; Romano, F.; Marchiò, L.; Zonta, C.; Licini, G. Synthesis, characterization and catalytic activity of a tungsten(VI) amino triphenolate complex. Catal. Lett.2017, 147, 2313.10.1007/s10562-017-2144-zSuche in Google Scholar

Bezuidenhout, D.I.; Fernández, I.; van der Westhuizen, B.; Swarts, P.J.; Swarts, J.C. Electrochemical and computational study of tungsten (0) ferrocene complexes: observation of the mono-oxidized tungsten (0) ferrocenium species and intramolecular electronic interactions. Organometallics2013, 32, 7334.10.1021/om400865mSuche in Google Scholar

Buchmeiser, M.R.; Sen, S.; Lienert, C.; Widmann, L.; Schowner, R.; Herz, K.; Hauser, P.; Frey, W.; Wang, D. Molybdenum imido alkylidene N-heterocyclic carbene complexes: structure–productivity correlations and mechanistic insights. ChemCatChem2016, 8, 2710–2723.10.1002/cctc.201600624Suche in Google Scholar

Carden Jr, R.G.; Ohane, J.J.; Pike, R.D.; Graham, P.M. Synthesis of tungsten and molybdenum carbon dioxide complexes. Organometallics2013, 32, 2505.10.1021/om4002022Suche in Google Scholar

Crabtree, R.H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons, 2009.Suche in Google Scholar

Curran, T.P.; McTeague, T.A.; Nguyen, V.D.; Yennie, C.J.; Handali, P.R.; Sanderson-Brown, J.P.; Dworsky, Z.D. Synthesis and conformational behavior of metallacyclicdipeptides derived from coordination of side chain alkynylamino acids to tungsten. J. Organomet. Chem.2016, 806, 12.10.1016/j.jorganchem.2016.01.023Suche in Google Scholar

Dai, Q.X.; Seino, H.; Mizobe, Y. Preparation and reactions of molybdenum and tungsten hydride complexes containing the tetraphosphane ligand meso-o-C6H4(PPhCH2CH2PPh2)2. Eur. J. Inorg. Chem.2011, 2011, 141.10.1002/ejic.201000855Suche in Google Scholar

De, S.; Udvardy, A.; Czégéni, C.E.; Joó, F. Poly-N-heterocyclic carbene complexes with applications in aqueous media. Coord. Chem. Rev.2019, 400, 213038.10.1016/j.ccr.2019.213038Suche in Google Scholar

Domínguez-Meister, S.; Conte, M.; Igartua, A.; Rojas, T.C.; Sánchez-López, J. Self-lubricity of WSe x nanocomposite coatings. ACS Appl. Mater. Interfaces2015, 7, 7979.10.1021/am508939sSuche in Google Scholar PubMed

Dupe, A.; Hossain, M.; Schachner, J.A.; Belaj, F.; Lehtonen, A.; Nordlander, E.; Mösch-Zanetti, N.C. Dioxomolybdenum(VI) and -tungsten(VI) complexes with multidentate aminobisphenol ligands as catalysts for olefin epoxidation. Eur. J. Inorg. Chem.2015, 2015, 3572.10.1002/ejic.201500055Suche in Google Scholar

Forrest, W.P.; Axtell, J.C.; Schrock, R.R. Tungsten oxo alkylidene complexes as initiators for the stereoregular polymerization of 2,3-dicarbomethoxynorbornadiene. Organometallics2014, 33, 2313.10.1021/om5002364Suche in Google Scholar

Fukuda, T.; Yoshimoto, T.; Hashimoto, H.; Tobita, H. Synthesis of a tungsten–silylyne complex via stepwise proton and hydride abstraction from a hydrido hydrosilylene complex. Organometallics2016, 35, 921.10.1021/acs.organomet.6b00095Suche in Google Scholar

Gerber, L.C.; Schrock, R.R.; Müller, P. Molybdenum and tungsten monoalkoxide pyrrolide (MAP) alkylidene complexes that contain a 2,6-dimesitylphenylimido ligand. Organometallics2013, 32, 2373.10.1021/om4000693Suche in Google Scholar

Habashi, F. Tungsten and the mining industry. J. Powder Metall. Min.2017, 6, 2.Suche in Google Scholar

Habib, A.; Iqbal, M.A.; Bhatti, H.N.; Shahid, M. Effect of ring substitution on synthesis of benzimidazolium salts and their silver(I) complexes: characterization, electrochemical studies and evaluation of anticancer potential. Transit. Metal Chem.2019a, 44, 431.10.1007/s11243-019-00321-7Suche in Google Scholar

Habib, A.; Nazari, M.; Iqbal, M.A.; Bhatti, H.N.; Ahmed, M.K.; Majid, A.A. Unsymmetrically substituted benzimidazolium based silver(I)-N-heterocyclic carbene complexes: synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. J. Saudi Chem. Soc.2019b, 23, 795–808.10.1016/j.jscs.2019.03.002Suche in Google Scholar

Habib, A., Iqbal, M.A.; Bhatti, H.N.; Kamal, A.; Kamal, S. Synthesis of alkyl/aryl linked binuclear silver(I)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg. Chem. Commun.2020, 111, 107670.10.1016/j.inoche.2019.107670Suche in Google Scholar

Harder, S.; Piers, W.E. Organometallic and coordination chemistry of the s-block metals. Dalton Trans.2018, 47, 12491.10.1039/C8DT90148ASuche in Google Scholar

Hsiao, C.-S.; Chen, H.-S.; Hsu, S.-Y.; Wang, T.-Y.; Datta, A.; Lin, C.-H.; Huang, J.-H. Synthesis and characterization of tungsten bis-imido complexes containing bi-dentate pyrrole-amine, pyrrole-imine or ketiminate ligands. Inorg. Chim. Acta2014, 413, 1.10.1016/j.ica.2013.12.030Suche in Google Scholar

Huda Noor, U.; Islam, S.; Zia, M.; William, K.; Abbas Fakhar, I.; Umar Muhammad, I.; Iqbal Muhammad, A.; Mannan, A. Anticancer, antimicrobial and antioxidant potential of sterically tuned bis-N-heterocyclic salts. Z. Naturforsch. C J Biosci.2018, 74, 17–23.10.1515/znc-2018-0095Suche in Google Scholar PubMed

Imbrich, D.; Elser, I.; Frey, W.; Buchmeiser, M.R. First neutral and cationic tungsten imido alkylidene N-heterocyclic carbene complexes. ChemCatChem2017, 9, 2996.10.1002/cctc.201700189Suche in Google Scholar

Jeong, H.; Schrock, R.R.; Müller, P. Synthesis of molybdenum and tungsten alkylidene complexes that contain a tert-butylimido ligand. Organometallics2015, 34, 4408.10.1021/acs.organomet.5b00633Suche in Google Scholar

Kamal, A.; Nazari, M.; Yaseen, M.; Iqbal, M.A.; Khadeer, M.B.A.; Majid, A.S.A.; Bhatti, H.N. Green synthesis of selenium-N-heterocyclic carbene compounds: evaluation of antimicrobial and anticancer potential. Bioorg. Chem.2019, 90, 103042.10.1016/j.bioorg.2019.103042Suche in Google Scholar PubMed

Khosla, C.; Jackson, A.B.; White, P.S.; Templeton, J.L. Bis(acetylacetonate) tungsten (IV) complexes containing a π-basic diazoalkane or oxo ligand. Organometallics2012, 31, 987.10.1021/om201050jSuche in Google Scholar

Lam, J.K.; Zhu, C.; Bukhryakov, K.V.; Muller, P.; Hoveyda, A.; Schrock, R.R. Synthesis and evaluation of molybdenum and tungsten monoaryloxide halide alkylidene complexes for Z-selective cross-metathesis of cyclooctene and Z-1,2-dichloroethylene. J. Am. Chem. Soc.2016, 138, 15774.10.1021/jacs.6b10499Suche in Google Scholar PubMed

Landman, M.; Pretorius, R.; Buitendach, B.E.; van Rooyen, P.H.; Conradie, J. Synthesis, structure, and electrochemistry of Fischer alkoxy-and aminocarbene complexes of tungsten: the use of DFT to predict and understand oxidation and reduction potentials. Organometallics2013, 32, 5491.10.1021/om400778zSuche in Google Scholar

Landman, M.; Pretorius, R.; Fraser, R.; Buitendach, B.E.; Conradie, M.M.; van Rooyen, P.H.; Conradie, J. Electrochemical behaviour and structure of novel phosphine- and phosphite-substituted tungsten(0) Fischer carbene complexes. Electrochim. Acta2014, 130, 104.10.1016/j.electacta.2014.02.127Suche in Google Scholar

Leffler, P.E.; Kazantzis, G. In Handbook on the Toxicology of Metals; 3rd Edition. Nordberg, G.F.; Fowler, B.A.; Nordberg, M., Eds. Academic Press: San Diego, 2015, DOI: https://doi.org/10.1016/B978-0-444-59453-2.00058-5.10.1016/B978-0-444-59453-2.00058-5Suche in Google Scholar

Lemus, R.; Venezia, C.F. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit. Rev. Toxicol.2015, 45, 388.10.3109/10408444.2014.1003422Suche in Google Scholar PubMed PubMed Central

Ma, X.; Schulzke, C. Molybdenum and tungsten complexes of bis(phenolate) ligands, O,X,O (X=S or Se): synthesis, characterization and catalytic oxygen atom transfer properties. Inorg. Chim. Acta2013, 395, 218.10.1016/j.ica.2012.11.017Suche in Google Scholar

Madeira, F.; Barroso, S.; Namorado, S.; Reis, P.M.; Royo, B.; Martins, A.M. Epoxidation of cis-cyclooctene using diamine bis(phenolate) vanadium, molybdenum and tungsten complexes as catalysts. Inorg. Chim. Acta2012, 383, 152.10.1016/j.ica.2011.10.071Suche in Google Scholar

Majid Sheikh, A.; Mir Jan, M.; Paul, S.; Akhter, M.; Parray, H.; Ayoub, R.; Shalla Aabid, H. Experimental and molecular topology-based biological implications of Schiff base complexes: a concise review. Rev. Inorg. Chem.2019, 39.10.1515/revic-2018-0023Suche in Google Scholar

McClain, K.R.; O’Donohue, C.; Koley, A.; Bonsu, R.O.; Abboud, K.A.; Revelli, J.C.; Anderson, T.J.; McElwee-White, L. Tungsten nitrido complexes as precursors for low temperature chemical vapor deposition of WN(x)C(y) films as diffusion barriers for Cu metallization. J. Am. Chem. Soc.2014, 136, 1650.10.1021/ja4117582Suche in Google Scholar PubMed

Melník, M.; Mikuš, P. Stereochemistry of heterobinuclear Pt-M complexes. Rev. Inorg. Chem.2017, 37, 131–146.10.1515/revic-2017-0009Suche in Google Scholar

Meyer, K.; Braunschweig, H.; ACS Publications, 2018.Suche in Google Scholar

Mück, F.M.; Kloß, D.; Baus, J.A.; Burschka, C.; Tacke, R. Novel transition-metal (M=Cr, Mo, W, Fe) carbonyl complexes with bis(guanidinato)silicon(II) ligands. Chem.-A Eur. J.2014, 20, 9620.10.1002/chem.201402889Suche in Google Scholar PubMed

Muhammad Adnan, I.; Haq Nawaz, B. Organometallic Chemistry (Basic Concepts in Organo-Transition Metal Chemistry); Caravan Book House: Pakistan, 2017.Suche in Google Scholar

Muraoka, T.; Abe, K.; Haga, Y.; Nakamura, T.; Ueno, K. Synthesis of a base-stabilized silanone-coordinated complex by oxygenation of a (silyl)(silylene) tungsten complex. J. Am. Chem. Soc.2011, 133, 15365.10.1021/ja207395wSuche in Google Scholar PubMed

Nayab, S.; Park, W.; Woo, H.Y.; Sung, I.K.; Hwang, W.S.; Lee, H. Synthesis and characterization of novel tungsten complexes and their activity in the ROMP of cyclic olefins. Polyhedron2012, 42, 102.10.1016/j.poly.2012.05.008Suche in Google Scholar

O’Reilly, M.E.; Nadif, S.S.; Ghiviriga, I.; Abboud, K.A.; Veige, A.S. Synthesis and characterization of tungsten alkylidene and alkylidyne complexes supported by a new pyrrolide-centered trianionic ONO3–pincer-type ligand. Organometallics2013, 33, 836.10.1021/om4009422Suche in Google Scholar

Öztopcu, O.Z.R.; Holzhacker, C.; Puchberger, M.; Weil, M.; Mereiter, K.; Veiros, L.F.; Kirchner, K. Synthesis and characterization of hydrido carbonyl molybdenum and tungsten PNP pincer complexes. Organometallics2013, 32, 3042.10.1021/om400254kSuche in Google Scholar PubMed PubMed Central

Peryshkov, D.V.; Schrock, R.R. Synthesis of tungsten oxo alkylidene complexes. Organometallics2012, 31, 7278.10.1021/om3008579Suche in Google Scholar

Peryshkov, D.V.; Forrest, W.P.; Schrock, R.R.; Smith, S.J.; Müller, P. B(C6F5)3 activation of oxo tungsten complexes that are relevant to olefin metathesis. Organometallics2013, 32, 5256.10.1021/om4007906Suche in Google Scholar

Qureshi, Z.S.; Hamieh, A.; Barman, S.; Maity, N.; Samantaray, M.K.; Ould-Chikh, S.; Abou-Hamad, E.; Falivene, L.; D’Elia, V.; Rothenberger, A. SOMC-designed silica supported tungsten oxo imidazolin-2-iminato methyl precatalyst for olefin metathesis reactions. Inorg. Chem.2017, 56, 861.10.1021/acs.inorgchem.6b02424Suche in Google Scholar PubMed

Rabiee, N.; Safarkhani, M.; Amini Mostafa, M. Investigating the structural chemistry of organotin(IV) compounds: recent advances. Rev. Inorg. Chem.2019, 39, 13–45.10.1515/revic-2018-0014Suche in Google Scholar

Riddlestone, I.M.; Edmonds, S.N.; Kaufman, P.A.; Urbano, J.; Bates, J.I.; Kelly, M.J.; Thompson, A.L.; Taylor, R.; Aldridge, S. σ-Alane complexes of chromium, tungsten, and manganese. J. Am. Chem. Soc.2012, 134, 2551.10.1021/ja2119892Suche in Google Scholar PubMed

Rieck, G.D. Tungsten and its Compounds; Elsevier, 2013.Suche in Google Scholar

Roberts, J.A.; Franz, J.A.; Van Der Eide, E.F.; Walter, E.D.; Petersen, J.L.; DuBois, D.L.; Bullock, R.M. Comproportionation of cationic and anionic tungsten complexes having an N-heterocyclic carbene ligand to give the isolable 17-electron tungsten radical CpW(CO)2(IMes)•. J. Am. Chem. Soc.2011, 133, 14593.10.1021/ja202754eSuche in Google Scholar PubMed

Ruiz Bilbao, E. Study of Monodimensional Compounds Based on Group 6 Tetraoxometalates with Cu (cyclam) Complexes. Universidad del Pais vasco, 2017. https://pdfs.semanticscholar.org/278a/b9dde162f62a8a0b6754b72d13386d339f06.pdf.Suche in Google Scholar

Sakaba, H.; Oike, H.; Kawai, M.; Takami, M.; Kabuto, C.; Ray, M.; Nakao, Y.; Sato, H.; Sakaki, S. Synthesis, structure, and bonding nature of ethynediyl-bridged bis(silylene) dinuclear complexes of tungsten and molybdenum. Organometallics2011, 30, 4515.10.1021/om200096zSuche in Google Scholar

Schowner, R.; Frey, W.; Buchmeiser, M.R. Cationic tungsten- oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts. J. Am. Chem. Soc.2015, 137, 6188.10.1021/jacs.5b03788Suche in Google Scholar PubMed

Shaffer, D.W.; Szigethy, G.z.; Ziller, J.W.; Heyduk, A.F. Synthesis and characterization of a redox-active bis(thiophenolato)amide ligand, [SNS]3–, and the homoleptic tungsten complexes, W[SNS]2 and W[ONO]2. Inorg. Chem.2013, 52, 2110.10.1021/ic302506eSuche in Google Scholar PubMed

Shupp, J.P.; Kinne, A.S.; Arman, H.D.; Tonzetich, Z.J. Synthesis and characterization of molybdenum(0) and tungsten(0) complexes of tetramethylthiourea: single-source precursors for MoS2 and WS2. Organometallics2014, 33, 5238.10.1021/om500567ySuche in Google Scholar

Sun, J.-P.; Zhao, D.-W.; Song, H.-B.; Tang, L.-F. (Pyrazol-1-yl)carbonyl and ester-functionalized bis(pyrazol-1-yl)methide carbonyl tungsten complexes. Organometallics2014, 33, 4425.10.1021/om500639fSuche in Google Scholar

Suzuki, E.; Komuro, T.; Kanno, Y.; Tobita, H. (η3-α-Silabenzyl) tungsten complexes: an isolable intermediate for interconversion between a silylene complex and a silyl complex through 1, 2-aryl migration. Organometallics2013, 32, 748.10.1021/om4000105Suche in Google Scholar

Timofeev, S.V.; Zakharova, M.V.; Mosolova, E.M.; Godovikov, I.A.; Ananyev, I.V.; Sivaev, I.B.; Bregadze, V.I. Tungsten carbonyl σ-complexes of nido-carborane thioethers. J. Organomet. Chem.2012, 721, 92.10.1016/j.jorganchem.2012.06.002Suche in Google Scholar

Tolman, W.B.; Miller, S.J.; Chirik, P.J.; Smith, A.B. Straddling the rooftop: finding a balance between traditional and modern views of chemistry. Organometallics2018, 37, 2825–2831.10.1021/acs.organomet.8b00592Suche in Google Scholar

Umar, M.I.; Iqbal, M.A.; Khadeer Ahamed, M.B.; Altaf, R.; Hassan, L.E.A.; Haque, R.A.; Abdul Majeed, A.M.S.; Asmawi, M.Z. Cytotoxic and pro-apoptotic properties of ethyl-p-methoxycinnamate and its hydrophilic derivative potassium-p-methoxycinnamate. Chem. Afr.2018, 1, 87.10.1007/s42250-018-0010-zSuche in Google Scholar

Van der Westhuizen, B.; Swarts, P.J.; Strydom, I.; Liles, D.C.; Fernández, I.; Swarts, J.C.; Bezuidenhout, D.I. Electrochemical illumination of thienyl and ferrocenyl chromium (0) Fischer carbene complexes. Dalton Trans.2013, 42, 5367.10.1039/c3dt32913eSuche in Google Scholar PubMed

Wei, W.-F.; Hu, R.-Z.; Bi, X.-W.; Jiang, G.-H.; Yan, B.; Yin, R.-S.; Yang, J.-H. Mantle-derived and crustal He and Ar in the ore-forming fluids of the Xihuashan granite-associated tungsten ore deposit, South China. Ore Geol. Rev.2019, 105, 605.10.1016/j.oregeorev.2019.01.014Suche in Google Scholar

Yabe-Yoshida, M.; Kabuto, C.; Kabuto, K.; Kwon, E.; Sakaba, H. η3-Silapropargyl/alkynylsilyl molybdenum complexes: synthesis, structure, and reactivity toward methanol. J. Am. Chem. Soc.2009, 131, 9138.10.1021/ja9005833Suche in Google Scholar PubMed

Yan, Y.; Keating, C.; Chandrasekaran, P.; Jayarathne, U.; Mague, J.T.; DeBeer, S.; Lancaster, K.M.; Sproules, S.; Rubtsov, I.V.; Donahue, J.P. Ancillary ligand effects upon dithiolene redox noninnocence in tungsten bis(dithiolene) complexes. Inorg. Chem.2013, 52, 6743.10.1021/ic4009174Suche in Google Scholar PubMed

Yoshimoto, T.; Hashimoto, H.; Hayakawa, N.; Matsuo, T.; Tobita, H. A silylyne tungsten complex having an Eind group on silicon: its dimer–monomer equilibrium and cycloaddition reactions with carbodiimide and diaryl ketones. Organometallics2016, 35, 3444.10.1021/acs.organomet.6b00670Suche in Google Scholar

Yuan, X.; Bi, S.; Liu, L.; Sun, M.; Wang, J. Theoretical study on ligand exchange reaction mechanisms of iron(IV) complexes with two different group 14 element ligands, Cp(CO)FeH(EEt3)(E′Et3) with (HEEt3)(E, E′=Si, Ge, Sn). J. Organomet. Chem.2010, 695, 1682.10.1016/j.jorganchem.2010.03.028Suche in Google Scholar

Yuan, J.; Schrock, R.R.; Müller, P.; Axtell, J.C.; Dobereiner, G.E. Pentafluorophenylimido alkylidene complexes of molybdenum and tungsten. Organometallics2012, 31, 4650.10.1021/om300408nSuche in Google Scholar

Received: 2019-08-23
Accepted: 2019-11-04
Published Online: 2019-12-19
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revic-2019-0013/pdf
Button zum nach oben scrollen