Home Physical Sciences Magnesium oxide as a heterogeneous catalyst support
Article
Licensed
Unlicensed Requires Authentication

Magnesium oxide as a heterogeneous catalyst support

  • Nurhidayatullaili Muhd Julkapli

    Nurhidayatullaili Muhd Julkapli is a senior lecturer in the Nanotechnology and Catalysis Research Centre, University of Malaya. She received her PhD (Biopolymers) from Universiti Sains MALAYSIA (USM), Malaysia. Currently, she is looking for the new research opportunities to functionalize the nano based materials (metal oxide based, carbon based, metal, etc.) with polymer materials in order to increase the functionality, dispersion ability, homogeneity and resistancy of the nano materials. She has initiated a research project on the band gap re-engineering approach of nano-particle TiO2 with various organic dopants (carbon, nitrogen, sulfur) and chitosan as a support for photocatalyst system on the application of the degradation of organic pollutants.

    and Samira Bagheri

    Samira Bagheri is a senior lecturer in the Nanotechnology and Catalysis Research Centre, University of Malaya. She received her PhD (2013) from the Nanotechnology and Catalysis Research Centre, University of Malaya. Samira’s main research interests are in the areas of carbon nanomaterials, such as carbon nanotubes, graphene oxide and graphene nanosheets, metal oxide nanocomposites advance smart nanohybrids, especially where they apply in electrochemical sensors, supercapacitors, fuel cells and environmental pollution management.

    EMAIL logo
Published/Copyright: September 29, 2015

Abstract

Researchers normally consider MgO as a promising high-surface-area heterogeneous catalyst support, additive, and promoter for many kinds of chemical reactions due to its certain properties, including stoichiometry and composition, cation valence, redox properties, acid-base character, and crystal and electronic structure. The presence of MgO as a support catalyst also modifies the electronic state of the overall catalytic performance by electron transfer between the native catalyst and MgO as support. The influence is clarified by alteration of acid-base properties of the catalyst-supported MgO. Meanwhile, the method, chemical composition, and condition in the preparation of MgO are the important factors affecting its surface and catalytic properties. Therefore, MgO with a high surface area and nanocrystalline structure has encouraging applications for some reactions, including as dry reforming, dehydrohalogenation, oxidative dehydrogenation of butane, nonoxidative dehydrogenation of ethylbenzene, decomposition of CCl4, oxidative coupling of methane, hydrodesulfurization reactions, methane dimerization, and water gas shift reaction oxidation of CO by O2 and ISO-propane conversion. This review highlights the synthesis and the role of MgO as a support catalyst and focuses on the design of better selective, energy-saving, durable, intrinsically clean, and safer catalytic processes.


Corresponding author: Samira Bagheri, Nanotechnology and Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia, e-mail:

About the authors

Nurhidayatullaili Muhd Julkapli

Nurhidayatullaili Muhd Julkapli is a senior lecturer in the Nanotechnology and Catalysis Research Centre, University of Malaya. She received her PhD (Biopolymers) from Universiti Sains MALAYSIA (USM), Malaysia. Currently, she is looking for the new research opportunities to functionalize the nano based materials (metal oxide based, carbon based, metal, etc.) with polymer materials in order to increase the functionality, dispersion ability, homogeneity and resistancy of the nano materials. She has initiated a research project on the band gap re-engineering approach of nano-particle TiO2 with various organic dopants (carbon, nitrogen, sulfur) and chitosan as a support for photocatalyst system on the application of the degradation of organic pollutants.

Samira Bagheri

Samira Bagheri is a senior lecturer in the Nanotechnology and Catalysis Research Centre, University of Malaya. She received her PhD (2013) from the Nanotechnology and Catalysis Research Centre, University of Malaya. Samira’s main research interests are in the areas of carbon nanomaterials, such as carbon nanotubes, graphene oxide and graphene nanosheets, metal oxide nanocomposites advance smart nanohybrids, especially where they apply in electrochemical sensors, supercapacitors, fuel cells and environmental pollution management.

References

Abdullahi, I.; Sakulchaicharoen, N.; Herrera, J. E. Selective growth of single-walled carbon nanotubes over Co-MgO catalyst by chemical vapor deposition of methane. Diamond Relat. Mater. 2013, 38, 1–8.Search in Google Scholar

Abdullahi, I.; Sakulchaicharoen, N.; Herrera, J. E. Selective synthesis of single-walled carbon nanotubes on Fe-MgO catalyst by chemical vapor deposition of methane. Diamond Relat. Mater. 2014, 41, 84–93.Search in Google Scholar

Ahmed, F.; Miura, R.; Hatakeyama, N.; Takaba, H.; Miyamoto, A.; Salahub, D. R. Quantum chemical molecular dynamics study of the water-gas shift reaction on a Pd/MgO(100) catalyst surface. J. Phys. Chem. C2013, 117, 5051–5066.Search in Google Scholar

Akçay, M.; Yurdakoç, M.; Tonbul, Y.; Yurdakoç, K.; Hönicke, D. FTIR study of the adsorption of ammonia and pyridine on V2O5/MgO catalysts. Spectrosc. Lett. 1998, 31, 1–10.Search in Google Scholar

Akhlaghian, F.; Towfighi, J.; Mohajeri, A. Partial oxidation of methane on Rh/TiO2 catalysts: effects of the titania precursor and the presence of tungsten oxide. Sci. Iran. 2012, 19, 1608–1615.Search in Google Scholar

Alfonso, M. J.; Menéndez, M.; Santamaría, J. Oxidative dehydrogenation of butane on V/MgO catalytic membranes. Chem. Eng. J. 2002, 90, 131–138.Search in Google Scholar

An, H.; Gao, Z.; Zhao, X.; Wang, Y. MgO-PbO catalyzed synthesis of diethylene glycol bis(allyl carbonate) by transesterification route. Ind. Eng. Chem. Res. 2011, 50, 7740–7745.Search in Google Scholar

Andache, M.; Rezaei, M.; Moghadam, M. K. A nanocrystalline MgO support for Ni catalysts for steam reforming of CH4. ChineseJ. Catal. 2013, 34, 1443–1448.Search in Google Scholar

Arena, F.; Frusteri, F.; Parmaliana, A. How oxide carriers affect the reactivity of V2O5 catalysts in the oxidative dehydrogenation of propane. Catal. Lett. 1999, 60, 59–63.Search in Google Scholar

Aritani, H.; Yamada, H.; Yamamoto, T.; Tanaka, T.; Imamura, S. XANES study of Li-MgO and Li-La2O3-MgO catalysts for oxidative coupling of methane. J. Synchrotron. Rad. 2001, 8, 593–595.Search in Google Scholar

Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlögl, R.; Schomäcker, R. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev.: Sci. Eng. 2011, 53, 1–10.Search in Google Scholar

Arsalanfar, M.; Mirzaei, A. A.; Bozorgzadeh, H. R. Effect of calcination conditions on the structure and catalytic performance of MgO supported Fe-Co-Mn catalyst for CO hydrogenation. J. Nat. Gas Sci. Eng. 2012a, 6, 1–13.Search in Google Scholar

Arsalanfar, M.; Mirzaei, A. A.; Bozorgzadeh, H. R.; Atashi, H. Effect of process conditions on the surface reaction rates and catalytic performance of MgO supported Fe-Co-Mn catalyst for CO hydrogenation. J. Ind. Eng. Chem. 2012b, 18, 2092–2102.Search in Google Scholar

Arsalanfar, M.; Mirzaei, A. A.; Bozorgzadeh, H. R. Effect of preparation method on catalytic performance, structure and surface reaction rates of MgO supported Fe-Co-Mn catalyst for CO hydrogenation. J. Ind. Eng. Chem. 2013, 19, 478–487.Search in Google Scholar

Arsalanfar, M.; Mirzaei, A. A.; Bozorgzadeh, H. R.; Samimi, A.; Ghobadi, R. Effect of support and promoter on the catalytic performance and structural properties of the Fe-Co-Mn catalysts for Fischer-Tropsch synthesis. J. Ind. Eng. Chem. 2014, 20, 1313–1323.Search in Google Scholar

Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872.Search in Google Scholar

Athar, T.; Hakeem, A.; Ahmed, W. Synthesis of MgO nanopowder via non aqueous sol-gel method. Adv. Sci. Lett. 2012, 7, 27–29.Search in Google Scholar

Avdeeva, L. B.; Goncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. M.; Novgorodov, B. N.; Shaikhutdinov, S. K. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. App. Catal. A. 1996,141, 117–129.Search in Google Scholar

Awadallah, A. E.; Aboul-Enein, A. A.; Aboul-Gheit, A. K. Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes. Fuel2014, 129, 27–36.Search in Google Scholar

Bagheri, S.; Chandrappa, K. G.; Abd Hamid, S. B. Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chemica2013a, 5, 265–270.Search in Google Scholar

Bagheri, S.; Shameli, K.; Abd Hamid, S. B. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J. Chem. 2013b, 2013, 1–5.Search in Google Scholar

Bagheri, S.; Julkapli, M. N.; Yehye, A. W. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sust. Energy Rev. 2015, 41, 113–127.Search in Google Scholar

Baiker, A. Progress in asymmetric heterogeneous catalysis: design of novel chirally modified platinum metal catalysts. J. Mol. Catal. A Chem. 1997, 115, 473–493.Search in Google Scholar

Bañares, M. A. Supported metal oxide and other catalysts for ethane conversion: a review. Catal. Today1999, 51, 319–348.10.1016/S0920-5861(99)00053-XSearch in Google Scholar

Bao, X.; Kong, M.; Lu, W.; Fei, J.; Zheng, X. Performance of Co/MgO catalyst for CO2 reforming of toluene as a model compound of tar derived from biomass gasification. J. Energy Chem. 2014, 23, 795–800.Search in Google Scholar

Bao-you, L.; Qiu-jie, S. Study on the modification of Cu2O supported on MgO for cyclohexanol dehydrogenation with Ce and Sm. Chinese Rare Earth2009, 04, 1–10.Search in Google Scholar

Barteka, J. P.; Huppa, J. M.; Brazdila, J. F.; Grassellib, R. K. Oxidative dimerization of methane over lead-magnesium mixed oxide catalysts. Catal. Today1988, 3, 117–126.Search in Google Scholar

Bayal, N.; Jeevanandam, P. Sol-gel synthesis of SnO2-MgO nanoparticles and their photocatalytic activity towards methylene blue degradation. Mater. Res. Bull. 2013, 48, 3790–3799.Search in Google Scholar

Bayal, N.; Jeevanandam, P. Synthesis of TiO2-MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties. Ceram. Int. 2014, 40, 15463–15477.Search in Google Scholar

Bernard, C.; Planeix, J. M.; Brotons, B. Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal. A1998, 173, 175–183.Search in Google Scholar

Bian, S.-W.; Baltrusaitis, J.; Galhotraa, P.; Grassian, V. H. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J. Mater. Chem. 2010,20, 8705–8710.Search in Google Scholar

Biris, A. R.; Li, Z.; Dervishi, E.; Lupu, D.; Xu, Y.; Saini, V.; Watanabe, F.; Biris, A. S. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe single bond Mo/MgO catalytic system. Phys. Lett. A2008, 372, 3051–3057.Search in Google Scholar

Biswas, P.; Kunzru, D. Steam reforming of ethanol for production of hydrogen over Ni/CeO22-ZrO22 catalyst: effect of support and metal loading. Int. J. Hydrogen Energ. 2007, 32, 969–980.Search in Google Scholar

Borhade, A. V.; Kanade, K. G.; Tope, D. R.; Patil, M. D. A Comparative study on synthesis, characterization and photocatalytic activities of MgO and Fe/MgO nanoparticles. Res. Chem. Intermed. 2012, 38, 1931–1946.Search in Google Scholar

Boronat, M.; Corma, A.; Illas, F.; Radilla, J.; Ródenas, T.; Sabater, M. J. Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: influence of surface roughness on reactivity. J. Catal. 2011, 278, 50–58.Search in Google Scholar

Bueno, A. R.; Oman, R. F.M.; Jardim, P. M.; Rey, N. A.; de Avillez, R. R. Kinetics of nanocrystalline MgO growth by the sol-gel combustion method. Micropor. Mesopor. Mater. 2014, 185, 86–91.Search in Google Scholar

Burattin, P.; Che, M.; Louis, C. Metal particle size in Ni/SiO2 materials prepared by deposition-precipitation: influence of the nature of the Ni(II) phase and of its interaction with the support. J. Phys. Chem. B1999, 103, 6171–6178.Search in Google Scholar

Canali, L.; Sherrington, D. C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev. 1999, 28, 85–93.Search in Google Scholar

Cao, M.; Meng, Y.; Lu, Y. Synthesis of diphenyl carbonate from dimethyl carbonate and phenol using O2-promoted PbO/MgO catalysts. Catal. Commun. 2006, 6, 802–807.Search in Google Scholar

Cao, C. Y.; Qu, J.; Wei, F.; Liu, H.; Song, W. G. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl. Mater. Interfaces2012, 4, 4283–4287.Search in Google Scholar

Chang, F.; Zhou, Q.; Pan, H.; Liu, X.-F. Zhang, H.; Xue, W.; Yang, S. Solid mixed-metal-oxide catalysts for biodiesel production: a review. Energy Technol. 2014, 2, 865–873.Search in Google Scholar

Chekin, F.; Bagheri, S.; Abd Hamid, S. B. Electrochemistry and electrocatalysis of cobalt (II) immobilized onto gel-assisted synthesized zinc oxide nanoparticle-multi wall carbon nanotube-polycaprolactone composite film: application to determination of glucose. Anal. Methods2012a, 4, 2423–2428.10.1039/c2ay25251aSearch in Google Scholar

Chekin, F.; Raoof, J. B.; Bagheri, S.; Abd Hamid, S. B. The porous chitosan-sodium dodecyl sulfate-carbon nanotube nanocomposite: direct electrochemistry and electrocatalysis of hemoglobin. Anal. Methods2012b, 4, 2977–2981.10.1039/c2ay25427aSearch in Google Scholar

Chekin, F.; Bagheri, S.; Arof, A. K.; Abd Hamid, S. B. Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J. Solid State Electrochem. 2012c, 16, 3245–3251.Search in Google Scholar

Chekin, F.; Raoof, J.; Bagheri, S.; Abd Hamid, S. B. Fabrication of chitosan-multiwall carbon nanotube nanocomposite containing ferri/ferrocyanide: application for simultaneous detection of d-penicillamine and tryptophan. J. Chin. Chem. Soc. 2012d, 59, 1461–1467.Search in Google Scholar

Chen, Y.-g.; Ren, J. Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3 interactions. Catal. Lett. 1994, 29, 39–48.Search in Google Scholar

Chen, P.; Zhang, H.-B.; Lin, G. D.; Hong, Q.; Tsai, K. R. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon1997, 35, 1495–1501.Search in Google Scholar

Chen, X.; Wang, X.; Xiu, J.; Williams, C. T.; Liang, C. Synthesis and characterization of ferromagnetic nickel-cobalt silicide catalysts with good sulfur tolerance in hydrodesulfurization of dibenzothiophene. J. Phys. Chem. C2012, 116 24968–24976.10.1021/jp308371ySearch in Google Scholar

Chen, X.; Wang, X.; Yao, S.; Mu, X. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal. Commun. 2013,39, 86–89.Search in Google Scholar

Chena, Y.C.; Song, L. J.; Suna, Z. L. Density functional theory study of the chemisorption of CO on Ir/MgO(1 0 0). Appl. Surf. Sci. 2011, 257, 6986–6990.Search in Google Scholar

Cho, D. H.; Kim, Y. G.; Chung, M. J.; Chung, J. S. Preparation and characterization of magnesia-supported chromium catalysts for the fluorination of 1,1,1-trifluoro-2-chloroethane (HCFC-133a). App. Catal. B. 1996, 18, 251–261.Search in Google Scholar

Choudhary, V. R.; Rane, V. H. R. Surface Properties of CaO (or BaO)-La2O3-MgO catalysts and their performance in oxidative coupling of methane. J. Chem. Technol. Biot. 1997, 69, 63–69.Search in Google Scholar

Choudhary, V. R.; Uphade, B. S.; Mamman, A. S. Large enhancement in methane-to-syngas conversion activity of supported Ni catalysts due to precoating of catalyst supports with MgO, CaO or rare-earth oxide. Catal. Lett. 1995, 32, 387–390.Search in Google Scholar

Corma, A.; Hermenegildo, G. Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003, 103, 4307–4366.Search in Google Scholar

Corma, A.; Nieto, J. M. L.; Paredes, N. Influence of the preparation methods of V-Mg-O catalysts on their catalytic properties for the oxidative dehydrogenation of propane. J. Catal. 1993, 144, 425–438.Search in Google Scholar

Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.Search in Google Scholar

Cortés, I.; Rubio, O.; Herguido, J.; Menéndez, M. Kinetics under dynamic conditions of the oxidative dehydrogenation of butane with doped V/MgO. Catal. Today2004, 91–92, 281–284.10.1016/j.cattod.2004.03.044Search in Google Scholar

Costa, V. V.; Estrada, M.; Demidova, Y.; Prosvirin, I.; Kriventsov, V.; Cotta, R. F.; Fuentes, S.; Simakov, A.; Gusevskaya, E. V. Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. J. Catal. 2012, 292, 148–156.Search in Google Scholar

Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science2012, 338, 90–94.Search in Google Scholar

da Silva, A. C. H.; Kuhnen, C. A.; da Silva, S. C.; Dall’Ogilo, E. L.; de Sousa, P. T. DFT study of alkaline-catalyzed methanolysis of pentylic acid triglyceride: gas phase and solvent effects. Fuel2013,107, 387–393.Search in Google Scholar

de Miguel, N.; Manzanedo, J.; Arias, P. L. Active and stable Ni-MgO catalyst coated on a metal monolith for methane steam reforming under low steam-to-carbon ratios. Chem. Eng. Technol. 2012, 35, 2195–2203.Search in Google Scholar

Dervishi, E.; Li, Z.; Watanabe, F.; Courte, A.; Biswas, A.; Biris, A. R.; Saini, V.; Xu, Y.; Biris, A. S. Versatile catalytic system for the large-scale and controlled synthesis of single-wall, double-wall, multi-wall, and graphene carbon nanostructures. Chem. Mater. 2009, 21, 5491–5498.Search in Google Scholar

Devaraja, P. B.; Avadhani, D. N.; Prashantha, S. C.; Nagabhushana, H.; Sharma, S. C.; Nagabhushana, B. M.; Nagaswarupa, H. P. Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochimi. Acta Mol. Biomol. Spectrosc. 2014, 118, 847–851.Search in Google Scholar

Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem. Mater. 2001, 13, 435–440.Search in Google Scholar

Drif, A.; Bion, N.; Brahmi, R.; Ojala, S.; Pirault-Roy, L.; Turpeinen, E.; Seelam, P. K.; Keiski, R. L.; Epron, F. Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. App. Catal. A. 2015, In Press.10.1016/j.apcata.2015.02.019Search in Google Scholar

Dumbre, D. K.; Yadav, P. N.; Bhargava, S. K.; Choudhary, V. R. Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acids over gold nano-particles supported on MgO (or CaO) and other metal oxides. J. Catal. 2013, 301, 134–140.Search in Google Scholar

El-Shobaky, H. G.; Mokhtar, W. M. S. Surface and catalytic properties of the Co3O4/MgO system doped with Fe2O3. Adsorpt. Sci Technol. 2001, 19, 1–10.Search in Google Scholar

El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.; El-Boohy, H. A. Catalytic conversion of ethanol over Co3O4/MgO system treated with γ-irradiation. Mater. Lett. 2002, 57, 525–531.Search in Google Scholar

Estrada, M.; Costa, V. V.; Beloshapkin, S.; Fuentes, S.; Stoyanov, E.; Gusevskaya, E. V.; Simakov, A. Aerobic oxidation of benzyl alcohol in methanol solutions over Au nanoparticles: Mg(OH)2 vs MgO as the support. App. Catal. A. 2014, 473, 96–103.Search in Google Scholar

Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem. Rev. 2000, 100, 2159–2232.Search in Google Scholar

Fajerwerg, K.; Debellefontaine, H. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl. Catal. B1996, 10, L229–L235.10.1016/S0926-3373(96)00041-0Search in Google Scholar

Fattah, Z.; Rezaei, M.; Biabani-Ravandi, A.; Irankhah, A. Preparation of Co-MgO mixed oxide nanocatalysts for low temperature CO oxidation: optimization of preparation conditions. Process Saf. Environ. Prot. 2014, 92, 948–956.Search in Google Scholar

Feng, P.; Zhongtao, H. Study on the supported MoO3/MgO catalyst for dehydrogenation of propane. Nat. Gas Chem. Ind. 1995, 4, 1–10.Search in Google Scholar

Feng, J.; Ding, Y.; Guo, Y.; Li, X.; Li, W. Calcination temperature effect on the adsorption and hydrogenated dissociation of CO2 over the NiO/MgO catalyst. Fuel2013,109, 110–115.Search in Google Scholar

Galeano, C.; Güttel, R.; Paul, M.; Arnal, P.; Lu, A. H.; Schüth, F. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. Chemistry2011, 17, 8434–8439.Search in Google Scholar

Gallon, H. J.; Tu, X.; Twigg, M. V.; Whitehead, J. C. Plasma-assisted methane reduction of a NiO catalyst – low temperature activation of methane and formation of carbon nanofibres. App. Catal. B. 2011, 106, 616–620.Search in Google Scholar

Gandhi, S.; Abiramipriya, P.; Pooja, N.; Juliat Latha Jeyakumari, J.; Yelil Arasi, A.; Dhanalakshmi, V.; Gopinathan Nair, M.R.; Anbarasan, R. Synthesis and characterizations of nano sized MgO and its nano composite with poly(vinyl alcohol). J. Non-Cryst. Solids2011, 357, 181–185.Search in Google Scholar

García, H.; Nieto, J. M. L.; Palomares, E.; Solsona, B. Photoluminescence of supported vanadia catalysts: linear correlation between the vanadyl emission wavelength and the isoelectric point of the oxide support. Catal. Lett. 2000, 69, 217–221.Search in Google Scholar

Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.Search in Google Scholar

Gulková, D.; Kaluža, L.; Vít, Z.; Zdražil, M. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading: effect of MoO3 dispersion on rate of spreading. Catal. Commun. 2006, 7, 276–280.Search in Google Scholar

Ha, N. N.; Huyen, N. D.; Cam, L. M. Ab-initio study of effect of basic MgO to V2O5 catalyst on oxidative dehydrogenation of C3H8 and n-C4H10. App. Catal. A. 2011, 407, 106–111.Search in Google Scholar

Habibia, D.; Farajia, A. R.; Arshadib, M.; Fierroc J. L. G. Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J. Mol. Catal. A: Chem. 2013, 372, 90–99.Search in Google Scholar

Hadia, N. M. A.; Hussein Abdel-Hafez, M. Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater. Sci. Semicond. Proc. 2015, 29, 238–244.Search in Google Scholar

Halawy, S. A.; Mohamed, M. A.; El-Hafez, S. F. A. The poisoning effect of Co3O4 on γ-Al2O3 and MgO supports during the decomposition of isopropyl alcohol. Collect. Czech. Chem. Commun. 1995, 60, 2057–2063.Search in Google Scholar

Hammond, C.; Schümperli, M. T.; Conrad, S.; Hermans, I. Hydrogen transfer processes mediated by supported iridium oxide nanoparticles. Chem. Cat. Chem. 2013, 5, 2983–2990.Search in Google Scholar

Hasegawa, S.; Tanaka, T.; Kudo, M.; Mamada, H.; Hattori, H.; Yoshida, S. Structure and reactivity of MoO3-MgO catalysts. Catal. Lett. 1992, 12, 255–266.Search in Google Scholar

Hassan, A.; Lopez-Linares, F.; Nassar, N. N.; Carbognani-Arambarri, L.; Pereira-Almao, P. Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catal. Today2013, 207, 112–118.Search in Google Scholar

Herrmann, W. A.; Kohlpaintner, C. W. Water-soluble ligands, metal complexes, and catalysts: synergism of homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 1993, 32, 1524–1544. In English.Search in Google Scholar

Hillerová, E.; Vít, Z.; Zdražil, M. Magnesia supported Ni-Mo sulfide hydrodesulfurization and hydrodenitrogenation catalysts prepared by non-aqueous impregnation. App. Catal. A. 1994, 118, 111–125.Search in Google Scholar

Holt, T. E; Logan, A. D.; Chakraborti, S.; Datye, A. K. The effect of catalyst preparation conditions on the morphology of MgO catalyst supports. App. Catal. 1987, 34, 199–213.Search in Google Scholar

Inusa, A.; Nataphan, S.; Jose, E. H. Selective synthesis of single-walled carbon nanotubes on Fe–MgO catalyst by chemical vapor deposition of methane. Diam. Relat. Mater. 2014, 41, 84–93.Search in Google Scholar

Isaguliants, G. V.; Belomestnykh, I. P. Selective oxidation of methanol to formaldehyde over V-Mg-O catalysts. Catal. Today2005, 100, 441–445.Search in Google Scholar

Jang, W.-J.; Jeong, D.-W.; Shim, J.-O.; Roh, H.-S., Son, I. H.; Leeb, S. J. H2 and CO production over a stable Ni-MgO-Ce0.8Zr0.2O2 catalyst from CO2 reforming of CH4. Int. J. Hydrogen Energ. 2013,38, 14508–4512.Search in Google Scholar

Jeong, D.-W.; Jang, W.-J.; Shim, J.-O.; Roh, H.-S.; Son, I. H.; Lee, S. J. The effect of preparation method on the catalytic performance over superior MgO-promoted Ni-Ce0.8Zr0.2O2 catalyst for CO2 reforming of CH4. Int. J. Hydrogen Energ. 2014, 38, 13649–13654.Search in Google Scholar

Jia, J.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B2000, 104, 11153–11156.Search in Google Scholar

Jiang, X.; Liu, H.; Liang, H.; Jiang, G.; Huang, J.; Hong, Y.; Huang, D.; Li, Q.; Sun, D. Effects of biomolecules on the selectivity of biosynthesized Pd/MgO catalyst toward selective oxidation of benzyl alcohol. Ind. Eng. Chem. Res. 2014, 53, 19128–19135.Search in Google Scholar

Jiménez, R.; García, X.; Cellier, C.; Ruiz, P.; Gordon, A. L. Soot combustion with K/MgO as catalyst. App. Catal. A. 2006a, 297, 125–134.Search in Google Scholar

Jiménez, R.; García, X.; Cellier, C.; Ruiz, P.; Gordon, A. L. Soot combustion with K/MgO as catalyst: II. Effect of K-precursor. App. Catal. A. 2006b, 314, 81–88.Search in Google Scholar

Jin, Y.; Wang, G.; Li, Y. Catalytic growth of high quality single-walled carbon nanotubes over a Fe/MgO catalyst derived from a precursor containing Feitknecht compound. App. Catal. A. 2012, 445–446, 121–127.Search in Google Scholar

Joyner, R. W.; Pendry, J. B.; Saldin, D. K.; Tennison, S. R. Metal-support interactions in heterogeneous catalysis. Surf. Sci. 1984, 138, 84–94.Search in Google Scholar

Julkapli, N. M.; Bagheri, S. Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energ. 2015, 40, 948–979.Search in Google Scholar

Julkapli, N. M.; Bagheri, S.; Abd Hamid, S. B. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, http://dx.doi.org/10.1155/2014/692307.10.1155/2014/692307Search in Google Scholar PubMed PubMed Central

Kabir, A.; Furton, K. G; Malik, A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends Anal. Chem. 2013, 45, 197–218.Search in Google Scholar

Kathyayini, H.; Nagaraju, N.; Fonseca, A.; Nagy, J. B. Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes. J. Mol. Catal. A: Chem. 2004, 223, 129–136.Search in Google Scholar

Kim, S. C. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J. Hazard. Mater. 2002, 91, 285–299.Search in Google Scholar

Kim, D. S.; Wachs, I. E.; Segawa, K. Molecular structures and reactivity of supported molybdenum oxide catalysts. J. Catal. 1994, 149, 268–277.Search in Google Scholar

Klicpera, T.; Zdražil, M. High surface area MoO3/MgO: preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene. Catal. Lett. 1999, 58, 47–51.Search in Google Scholar

Klicpera, T.; Zdražil, M. Synthesis of a high surface area monolayer MoO3/MgO catalyst in a (NH4)6Mo7O24/MgO/methanol slurry, and its hydrodesulfurization activity. J. Mater. Chem. 2000, 10, 1603–1608.Search in Google Scholar

Klicpera, T.; Zdražil, M. High surface area MoO3/MgO: preparation by reaction of MoO3 and MgO in methanol or ethanol slurry and activity in hydrodesulfurization of benzothiophene. App. Catal. A. 2001, 216, 41–50.Search in Google Scholar

Kong, M.; Yang, Q.; Fei, J.; Zheng, X. Experimental study of Ni/MgO catalyst in carbon dioxide reforming of toluene, a model compound of tar from biomass gasification. Int. J. Hydrogen Energ. 2012, 37, 13355–13364.Search in Google Scholar

Krischok, S.; Stracke, P.; Höfft, O.; Kempter, V.; Zhukovskii, Y. F.; Kotomin, E.A. A comparative analysis of electron spectroscopy and first-principles studies on Cu(Pd) adsorption on MgO. Surf. Sci. 2006a, 600, 3815–3820.Search in Google Scholar

Krischok, S.; Stracke, P.; Kempter, V. Metal (Cu; Pd) adsorption on MgO: investigations with MIES and UPS. Appl. Phys. A2006b, 82, 167–173.10.1007/s00339-005-3348-4Search in Google Scholar

Kumar, M.; Aberuagba, F.; Gupta, J. K.; Rawat, K. S.; Sharma, L. D.; Dhar, G. M. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity. J. Mol. Catal. A: Chem. 2004, 213, 217–223.Search in Google Scholar

Kumar, D.; Buchi Reddy, V.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron2007, 63, 3093–3097.Search in Google Scholar

L’vov, B. V.; Galwey, A. K. Toward a general theory of heterogeneous reactions. J. Therm. Anal. Calorim. 2013, 113, 561–568.Search in Google Scholar

Lazar, M. D.; Biris, A. R. Borodi, G.; Voica, C.; Watanabe, F.; Dervishi, E.; Biris, A. S. Magnesia supported Au and Ag catalysts for the preparation of few-layer graphene-metal nanocomposites: relationship between catalyst structure and the properties of graphene composites. J. Mater. Sci. 2013, 48, 7409–7421.Search in Google Scholar

Ledoux, M. J.; Pham-Huu, C. Silicon carbide: a novel catalyst support for heterogeneous catalysis. CATTECH2001, 5, 226–246.Search in Google Scholar

Li, X.-H.; Li, W.-Y.; Xie, K.-C. Supported vanadia catalysts for dehydrogenation of ethylbenzene with CO2. Catal. Lett. 2005, 105, 223–227.Search in Google Scholar

Li, Y.; Zhang, X. B.; Tao, X. Y.; Xu, J. M.; Huang, W. Z.; Luo, J. H.; Luo, Z. Q.; Li, T.; Liu, F.; Bao, Y.; Geise, H. J. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon2006, 43, 295–301.Search in Google Scholar

Li, Z.; Zhang, H.; Tobin, J.; Morris, M. A.; Qiu, J.; Attard, G.; Holmes, J. D. The synthesis of bamboo structured carbon nanotubes on MgO supported bimetallic Cu-Mo catalysts. Design, Synthesis and Growth of Nanotubes for Industrial Technology2007, doi: 10.2240/azojono0122, 1–12.Search in Google Scholar

Li, H.; Zhang, L.; Dai, H.; He, H. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls. Inorg. Chem. 2009, 48, 4421–4434.Search in Google Scholar

Li, D.; Sakai, S.; Nakagawa, Y.; Tomishige, K. FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Phys. Chem. Chem. Phys. 2012a, 14, 9204–9213.10.7312/li--16274-015Search in Google Scholar

Li, L.; Nan, C.; Peng, Q.; Li, Y. Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene. Chem. Eur. J. 2012b, 18, 10491–10496.Search in Google Scholar

Li, L.; He, S.; Song, Y.; Zhao, J.; Ji, W.; Au, C.-T. Fine-tunable Ni@porous silica core-shell nanocatalysts: synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas. J. Catal. 2012c, 288, 54–64.Search in Google Scholar

Li, W.; Yue, Z.; Chunyang, L.; Weimin, G.; Hongchen, G. Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning. Chem. Commun. 2013, 49, 3787–3789.Search in Google Scholar

Li, Y.; Lu, G.; Ma, J. Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation. RSC Adv. 2014a, 4, 17420–17428.Search in Google Scholar

Li, Y.; Wei, Z.; Wang, Y. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane. Front. Chem. Sci. Eng. 2014b, 8, 133–140.Search in Google Scholar

Li, M.; Xu, X.; Gong, Y.; Wei, Z.; Hou, Z.; Li, H.; Wang,Y. Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds. Green Chem. 2014c, 16, 4371–4377.Search in Google Scholar

Lian, Y.; Wang, H.; Zheng, Q.; Fang, W.; Yang, Y. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction. J. Natural Gas Chemistry2009, 18, 161–166.Search in Google Scholar

Liu, B. C.; Lyu, S. C.; Jung, S. I.; Kang, H. K.; Yang, C.-W.; Park, J. W.; Park, C. Y.; Lee, C. J. Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst. Chem. Phys. Lett. 2004, 383, 104–108.Search in Google Scholar

Liu, Q.; Fang, Y. New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized-bed over Fe-Mo/MgO catalyst. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64, 296–300.Search in Google Scholar

Liu, B. C.; Yu, B.; Zhang, M. X. Catalytic CVD synthesis of double-walled carbon nanotubes with a narrow distribution of diameters over Fe-Co/MgO catalyst. Chem. Phys. Lett. 2006, 407, 232–235.Search in Google Scholar

Liu, J.; Sun, B.; Hu, J.; Pei, Y.; Li, H.; Qiao, M. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal-support interaction and excellent intrinsic activity. J. Catal. 2010, 274, 287–295.Search in Google Scholar

Liu, W.-W.; Aziz, A.; Chai, S.-P.; Mohamed, A. R.; Tye, C.-T. Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes. New Carbon Mater. 2011a, 26, 255–261.Search in Google Scholar

Liu, H.; Zhang, R.; Yan, R.; Wang, B.; Xie, K. CH4 dissociation on NiCo (1 1 1) surface: a first-principles study. Appl. Surf. Sci. 2011b, 257, 8955–8964.Search in Google Scholar

Liu, Y.; Pan, Y.; Chi, W.; Shen, Z. Quality improvement of single-walled carbon nanotubes by doping B in Fe/MgO catalyst. Appl. Surf. Sci. 2011c, 257, 9403–9406.Search in Google Scholar

Liu, X.; Wang, R.; Song, L.; He, H.; Zhang, G.; Zi, X.; Qiu, W. The oxidation of carbon monoxide over the palladium nanocube catalysts: effect of the basic-property of the support. Catal. Commun. 2014, 46, 213–218.Search in Google Scholar

Liu, X.; Conte, M.; Sankar, M.; He, Q.; Murphy, D. M.; Morgan, D.; Jenkins, R. L.; Knight, D.; Whiston, K.; Kiely, C. J.; Hutchings, G. J. Liquid phase oxidation of cyclohexane using bimetallic Au-Pd/MgO catalysts. App. Catal. A. 2015, In Press.10.1016/j.apcata.2015.02.034Search in Google Scholar

Lu, Y.; Zhu, Y.; Li, S.; Zhang, X.; Guo, L. Behavior of nickel catalysts in supercritical water gasification of glucose: influence of support. Biomass Bioenerg. 2014, 67, 125–136.Search in Google Scholar

Ma, J.; Chen, C. Z.; Wang, D. G.; Hu, J. H. Synthesis, characterization and in vitro bioactivity of magnesium-doped sol-gel glass and glass-ceramics. Ceram. Int. 2011, 37, 1637–1644.Search in Google Scholar

Maccallini, E.; Tsoufis, T.; Policicchio, A.; La Rosa, S.; Caruso, T.; Chiarello, G.; Colavita, E.; Formoso, V.; Gournis, D.; Agostino, R. G. A spectro-microscopic investigation of Fe-Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon2010, 48, 3434–3445.Search in Google Scholar

Mastuli, M. S.; Kamarulzaman, N.; Nawawi, M. A.; Mahat, A. M.; Rusdi, R.; Kamarudin, N. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Res. Lett. 2014, 9, 134–138.Search in Google Scholar

Mateos-Pedrero, C.; Blerot, B.; Soria, M. A.; González-Carrazán, S. R.; Ruíz, P. Further on the influence of the presence of small amount of N2O in the reactant feed in the catalytic oxidation of methane over supported Rh catalysts. Catal. Today2013, 213, 155–162.Search in Google Scholar

Mehta, M.; Mukhopadhyay, M.; Christian, R.; Mistry, N. Synthesis and characterization of MgO nanocrystals using strong and weak bases. Powder Technol. 2012, 226, 213–221.Search in Google Scholar

Minami, H.; Kinoshita, K.; Tsuji, T.; Yanagimoto, H. Preparation of highly crystalline magnesium oxide and polystyrene/magnesium hydroxide composite particles by sol-gel processes in an ionic liquid. J. Phys. Chem. 2012, 16, 14568–14574.Search in Google Scholar

Miró, E. E.; Ravelli, F.; Ulla, M. A.; Cornaglia, L. M.; Querini, C. A. Catalytic combustion of diesel soot on Co, K supported catalysts. Catal. Today1999, 53, 631–638.Search in Google Scholar

Mirzaei, H.; Davoodnia, A. Microwave assisted sol-gel synthesis of MgO Nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-dihydropyridines. Chin. J. Catal. 2012, 33, 1502–1507.Search in Google Scholar

Mirzaei, A. A.; Pourdolat, A.; Arsalanfar, M.; Atashi, H.; Samimi, A. R. Kinetic study of CO hydrogenation on the MgO supported Fe-Co-Mn sol-gel catalyst. J. Ind. Eng. Chem. 2013, 19, 1144–1152.Search in Google Scholar

Mirzaei, F.; Rezaei, M.; Meshkani, F.; Fattah, Z. Carbon dioxide reforming of methane for syngas production over Co-MgO mixed oxide nanocatalysts. J. Ind. Eng. Chem. 2015, In Press.10.1016/j.jiec.2014.03.034Search in Google Scholar

Mohan, V.; Pramod, C. V.; Suresh, M.; Prasad Reddy, K.; David Raju, B.; Rama Rao, K. S. Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline. Catal. Commun. 2012,18, 89–92.Search in Google Scholar

Mohandes, F.; Davar, F.; Salavati-Niasari, M. Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids2010, 71, 1623–162.Search in Google Scholar

Mojet, B. L.; Miller, J. T.; Ramaker, D. E.; Koningsberger, D.C. A new model describing the metal-support interaction in noble metal catalysts. J. Catal. 1999, 186, 373–386.Search in Google Scholar

Montero, J. M.; Gai, P.; Wilson, K.; Lee, A. F. Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem. 2009, 11, 265–268.Search in Google Scholar

Morales-Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Grätzel, M.; Hu, X. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew. Chem. Int. Ed. 2015, 54, 664–667.Search in Google Scholar

Ni, L.; Kuroda, K.; Zhou, L.-P.; Tokushi, K.; Ohta, K.; Matsuishi, K.; Nakamura, J. Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon2006, 44, 2265–2272.Search in Google Scholar

Nishiyama, T.; Aika, K.-I. Mechanism of the oxidative coupling of methane using CO2 as an oxidant over PbO-MgO. J. Catal. 1990, 122, 346–351.Search in Google Scholar

Nørskova, J. K.; Bligaarda, T.; Logadottira, A.; Bahna, S.; Hansena, L. B.; Bollingera, M.; Bengaarda, H.; Hammerb, B.; Sljivancaninb, Z.; Mavrikakisc, M.; Xuc, Y.; Dahld, S.; Jacobsend, C. J. H. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278.Search in Google Scholar

Pacheco, M. I.; Soler, J.; Dejoz, A.; López Nieto, J. M.; Herguido, J.; Menéndeza, M.; Santamaría, J. MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catal. Today2000, 61, 101–107.Search in Google Scholar

Pagadala, R.; Maddila, S.; Moodley, V.; van Zyl, W. E.; Jonnalagadda, S. B. An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Lett. 2014, 55, 4006–4010.Search in Google Scholar

Palizdar, M.; Ahgababazadeh, R.; Mirhabibi, A.; Brydson, R.; Pilehvari, S. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 2011, 11, 5345–5351(7).Search in Google Scholar

Parmaliana, A.; Arena, F.; Frusteri, F.; Giordano, N. Temperature-programmed reduction study of NiO-MgO interactions in magnesia-supported Ni catalysts and NiO-MgO physical mixture. J. Chem. Soc. Faraday Trans. 1990, 86, 2663–2669.Search in Google Scholar

Patel, H.; Manocha, L. M.; Manocha, S. Large scale synthesis of carbon nanotubes from liquefied petroleum gas on Fe/MgO and Fe-Ni/MgO. Nanosci. Nanotechnol-Asia, 2012, 2, 66–75.Search in Google Scholar

Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Chen, Y.; Lv, D.-M.; Lua, G.; Guo, G.-C. MgO: an excellent catalyst support for CO oxidative coupling to dimethyl oxalate. Catal. Sci. Technol. 2014, 4, 1925–1930.Search in Google Scholar

Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv. Synth. Catal. 2006, 348, 609–679.Search in Google Scholar

Phillips, D. C.; Sawhill, S. J.; Self, R.; Bussell, M. E. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J. Catal. 2002, 207, 266–273.Search in Google Scholar

Prada, S.; Giordano, L.; Pacchioni, G. Li, Al, and Ni substitutional doping in MgO ultrathin films on metals: work function tuning via charge compensation. J. Phys. Chem. C2012, 116, 5781–5786.Search in Google Scholar

Pruden, A. L.; Ollis, D. F. Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water. J. Catal. 1983, 82, 404–417.Search in Google Scholar

Puna, J. F.; Gomes, J. F.; Bordado J. C.; Correia, M. J. N.; Dias, A. P. S. Screening heterogeneous catalyst for transesterification of triglycerides to biodiesel. Int. J. Energ. Clean Environ. 2011, 12, 1–10.Search in Google Scholar

Qi, P.; Chen, S.; Chen, J.; Zheng, J.; Zheng, X.; Yuan, Y. Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid. ACS Catal. 2015, 5, 2659–2670.Search in Google Scholar

Qingwen, L.; Hao, Y.; Yan, C.; Jin, Z.; Zhongfan, L. A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. J. Mater. Chem. 2002,12, 1179–1183.Search in Google Scholar

Qiu-jie, S.; Bao-you, L.; Wei, F.; Ning, L. Study on the modification of Cu2O supported over MgO prepared by amorphous citrate method for cyclohexanol dehydrogenation with transition metals. Chem. Res. Appl. 2009, 1–10.Search in Google Scholar

Querini, C. A.; Ulla, M. A.; Requejo, F.; Soria, J.; Sedrán, U. A.; Miró, E. E. Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co,K/MgO catalysts. App. Catal. B. 1998, 15, 5–19.Search in Google Scholar

Querini, C. A.; Cornaglia, L. M.; Ulla, M. A.; Miró, E. E. Catalytic combustion of diesel soot on Co,K/MgO catalysts. Effect of the potassium loading on activity and stability. App. Catal. B. 1999, 20, 165–177.Search in Google Scholar

Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S. B. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. BioMed. Res. Int. 2014a, 1–9. http://dx.doi.org/10.1155/2014/205636.10.1155/2014/205636Search in Google Scholar

Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S. B. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 2014b, 368, 207–229.Search in Google Scholar

Reddy, B. M.; Kumar, M. V.; Ratnam, K. J. Preparation and characterization of V2O5/MgO catalysts for selective oxidation of 4-methylanisole to anisaldehyde. Res. Chem. Intermdiat. 1998, 24, 919–931.Search in Google Scholar

Renault, O.; Labeau, M. Strong <200> and <111> preferred orientations of MgO thin films synthesized on amorphous substrate by aerosol assisted-metallorganic chemical vapor deposition. J. Electrochem. Soc. 1999, 146, 3731–3735.Search in Google Scholar

Reyhani, A.; Mortazavi, S. Z.; Moshfegh, A. Z.; Golikand, A. N. A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes. Int. J. Hydrogen Energ. 2010, 35, 231–237.Search in Google Scholar

Rezaei, M.; Meshkani, F.; Ravandi, A. B.; Nematollahi, B.; Ranjbar, A.; Hadian, N.; Mosayebi, Z. Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surface area and plated-like shape. Int. J. Hydrogen Energ. 2011,36, 11712–11717.Search in Google Scholar

Riaz, N.; Chong, F. K.; Dutta, B. K.; Man, Z. B.; Khan, M. S.; Nurlaela, E. Photodegradation of Orange II under visible light using Cu-Ni/TiO2: effect of calcination temperature. Chem. Eng. J. 2012, 185–186, 108–119.Search in Google Scholar

Ringleb, F.; Sterrer, M.; Freund, H.-J. Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(0 0 1)-supported MgO(0 0 1) thin films. App. Catal. A. 2014,474, 186–193.Search in Google Scholar

Rubio, O.; Herguido, J.; Menéndez, M. Oxidative dehydrogenation of n-butane on V/MgO catalysts – kinetic study in anaerobic conditions. Chem. Eng. Sci. 2003, 58, 4619–4627.Search in Google Scholar

Ruckenstein, E.; Hu, Y. H. Role of support in CO2 reforming of CH4 to syngas over Ni catalysts. J. Catal. 1996, 162, 230–238.Search in Google Scholar

Sachtler, W. M. H.; Zhang, Z. Zeolite-supported transition metal catalysts. Adv. Catal. 1993, 39, 129–220.Search in Google Scholar

Santos, J.; Phillips, J.; Dumesic, J. A. Metal-support interactions between iron and Titania for catalysts prepared by thermal decomposition of iron pentacarbonyl and by impregnation. J. Catal. 1983, 81, 147–167.Search in Google Scholar

Schuurman, Y.; Drcamp, T.; Jalibert, J. C.; Mirodatos, C. A TAP reactor investigation of the oxidative dehydrogenation of propane over a V/MgO catalyst: experiment and modeling. Stud. Surf. Sci. Catal. 1999, 122, 133–140.Search in Google Scholar

Senevirathna, M. K. I.; Pitigala, P. K. D. D. P.; Premalal, E. V. A.; Tennakone, K.; Kumara, G. R. A.; Konno, A. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Sol. Energ. Mat. Sol. C. 2007, 91, 544–547.10.1016/j.solmat.2006.11.008Search in Google Scholar

Shajahan, M.; Mo, Y. H.; Fazle Kibria, A. K. M.; Kim, M. J.; Nahm, K. S. High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts. Carbon2004, 42, 2245–2253.Search in Google Scholar

Shi, C.; Zhang, P. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane. App. Catal. B. 2015, 170–171, 43–52.Search in Google Scholar

Shi, Q.; Liu, N.; Liang, Y. Preparation of MgO-supported Cu2O catalyst and its catalytic properties for cyclohexanol dehydrogenation. ChineseJ. Catal. 2007, 28, 57–61.Search in Google Scholar

Shimura, K.; Kanai, H.; Utani, K.; Matsuyama, K.; Imamura, S. Selective epoxidation of allyl acetate with tert-butyl hydroperoxide over MoO3/MgO. App. Catal. A. 2005, 283, 117–124.Search in Google Scholar

Shvets, V. A.; Kazansky, V. B. Oxygen anion-radicals adsorbed on supported oxide catalysts containing Ti, V and Mo ions. J. Catal. 1972, 25, 123–130.Search in Google Scholar

Simon, U.; Arndt, S.; Otremba, T.; Schlingmann, T.; Görke, O.; Dinse, K.-P.; Schomäcker, R.; Schubert, H. Li/MgO with spin sensors as catalyst for the oxidative coupling of methane. Catal. Commun. 2012a, 18, 132–136.Search in Google Scholar

Simon, U.; Harth, M.; Arndt, S.; Berthold, A.; Görke, O.; Hartmann, C.; Schomäcker, R.; Schubert, H. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts. Int. J. Mater. Res. 2012b, 103, 1488–1498.Search in Google Scholar

Soler, J.; López Nieto, J. M.; Herguido, J.; Menéndez, M.; Santamaría, J. Oxidative dehydrogenation of n-butane on V/MgO catalysts. Influence of the type of contactor. Catal. Lett. 1998, 50, 25–30.Search in Google Scholar

Song, X.; Tong, K.; Sun, S.; Sun, Z.; Yu, J. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Front. Chem. Sci. Eng. 2013, 7, 130–138.Search in Google Scholar

Stamatakis, M.; Christiansen, M. A.; Vlachos, D. G.; Mpourmpakis, G. Multiscale modeling reveals poisoning mechanisms of MgO-Supported Au clusters in CO oxidation. Nano Lett. 2012, 12, 3621–3626.Search in Google Scholar

Su, Q.; Zhong, G.; Li, J.; Du, G.; Xu, B. Branched carbon nanotubes synthesized by pyrolysis of dimethyl sulfide over Fe/MgO catalyst and their luminescent property. Physica E Low Dimens. Syst. Nanostruct. 2011, 43, 1224–1228.Search in Google Scholar

Sui, R.; Charpentier, P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem. Rev. 2012, 112, 3057–3082.Search in Google Scholar

Sullivan, J. A.; Burnham, S. The use of alkaline earth oxides as pH modifiers for selective glycerol oxidation over supported Au catalysts. Renew. Energ. 2015, 78, 89–92.Search in Google Scholar

Sun, L.; He, H.; Liu, C.; Ye, Z. Local super-saturation dependent synthesis of MgO nanosheets. Appl. Surf. Sci. 2011, 257, 3607–3611.Search in Google Scholar

Suresh, J.; Rajiv Gandhi, R.; Gowri, S.; Selvam, S.; Sundrarajan, M. Surface modification and antibacterial behaviour of bio-synthesised MgO nanoparticles coated cotton fabric. J. Biobased Mater. Bio. 2012, 6, 165–171.Search in Google Scholar

Takeguchi, T.; Furukawa, S.-N.; Inoue, M.; Eguchi, K. Autothermal reforming of methane over Ni catalysts supported over CaO-CeO2-ZrO2 solid solution. App. Catal. A. 2003, 240, 223–233.Search in Google Scholar

Taleshi, F.; Hosseini, A. A. Synthesis of uniform MgO/CNT nanorods by precipitation method. J. Nanostructure Chem. 2012, 3–4.10.1186/2193-8865-3-4Search in Google Scholar

Tang, Z.-X.; Fang, X.-J.; Zhang, Z.-L.; Zhou, T.; Zhang, X.-Y.; Shi, L.-E. Nanosize MgO as antibacterial agent: preparation and characteristics. Braz. J. Chem. Eng. 2012, 29, 1–10.Search in Google Scholar

Tantirungrotechai, J.; Thepwatee, S.; Yoosuk, B. Biodiesel synthesis over Sr/MgO solid base catalyst. Fuel2013, 106, 279–284.Search in Google Scholar

Téllez, C.; Menéndez, M.; Santamaría, J. Kinetic study of the oxidative dehydrogenation of butane on V/MgO catalysts. J. Catal. 1999, 183, 210–221.Search in Google Scholar

Termehyousefi, A.; Bagheri, S.; Shinji, K.; Rouhi, J.; Rusop Mahmood, M.; Ikeda, S. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material. BioMed Res. Int. 2014, 1–7. http://dx.doi.org/10.1155/2014/691537.10.1155/2014/691537Search in Google Scholar

Termehyousefi, A.; Bagheri, S.; Kadri, N. A.; Mohamed Elfghi, F.; Rusop, M.; Ikeda, S. Synthesis of well-crystalline lattice carbon nanotubes via neutralized cooling method. Mater. Manuf. Processes2015, 30, 59–62.Search in Google Scholar

Tkachenko, O. P.; Kucherov, A. V.; Glukhov, L. M.; Greish, A. A.; Beletskaya, I. P.; Kustov, L. M. Spectral studies of catalysts of oxidative dehydrogenation of dimethyl ether to dimethoxyethane, Russ. J. Phys. Chem. A2013, 87, 1249–1251.Search in Google Scholar

Tsoufis, T.; Xidas, P.; Jankovic, L.; Gournis, D.; Saranti, A.; Bakas, T.; Karakassides, M. A. Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO. Diam. Relat. Mater. 2007, 16, 155–160.Search in Google Scholar

Turek, A. M.; Wachs, I. E.; DeCanio, E. Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. J. Phys. Chem. C1992, 96, 5000–5007.Search in Google Scholar

Utamapanya, S.; Klabunde, K. J.; Schlup, J. R. Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem. Mater. 1991, 3, 175–181.Search in Google Scholar

Vatanim, A.; Jabbari, E.; Askarieh, M.; Torangi, M. A. Kinetic modeling of oxidative coupling of methane over Li/MgO catalyst by genetic algorithm. J. Nat. Gas Sci. Eng. 2014, 20, 347–356.Search in Google Scholar

Vidal-Michel, R.; Hohn, K. L. Effect of crystal size on the oxidative dehydrogenation of butane on V/MgO catalysts. J. Catal. 2004, 221, 127–136.Search in Google Scholar

Vogt, C.; Chang, S. L. Y.; Taghavimoghaddam, J.; Chaffee, A. L. Improvements in the pre-combustion carbon dioxide sorption capacity of a magnesium oxide-cesium carbonate sorbent. Energ. Fuels2014, 28, 5284–5295.Search in Google Scholar

Vuurman, M. A.; Wachs, I. E. In situ Raman spectroscopy of alumina-supported metal oxide catalysts. J. Phys. Chem. 1992, 96, 5008–5016.Search in Google Scholar

Wachs, I. E. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal. Today1996, 27, 437–455.10.1016/0920-5861(95)00203-0Search in Google Scholar

Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles. ACS Catal. 2014, 4, 2175–2185.Search in Google Scholar

Wang, H.; Baker, R. T. K. Decomposition of methane over a Ni-Cu-MgO catalyst to produce hydrogen and carbon nanofibers. J. Phys. Chem. B2004, 108, 20273–20277.10.1021/jp040496xSearch in Google Scholar

Wang, S, Lu (Max) GQ. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energ. Fuels1996, 10, 896–904.10.1021/ef950227tSearch in Google Scholar

Wang, F.-l.; Tsai, T.-F. Promotion effect of Pt on Cr/MgO catalyst in the reaction of cyclohexanol and methanol to 2,6-dimethylphenol. App. Catal. A. 2000, 201, 91–99.Search in Google Scholar

Wang, F.-l.; Tsai, T.-F.; T.; Cheng, Y.-h.; Catalytic synthesis of 2,6-dimethylphenol form methanol and cyclohexanol over magnesium oxide supported chromium catalysts. App. Catal. A. 1995, 126, L229–L233.Search in Google Scholar

Wang, F.; Li, Y.; Cai, W.; Zhan, E.; Mu, X.; Shen, W. Ethanol steam reforming over Ni and Ni-Cu catalysts. Catal. Today2009, 146, 31–36.Search in Google Scholar

Wang, H.; Teng, Y.; Radhakrishnan, L.; Nemoto, Y.; Masataka, I.; Yuichi, S.; Yamauchi, Y. Mesoporous Co3O4 for low temperature CO oxidation: effect of calcination temperatures on their catalytic performance. J. Nanosci. Nanotechno. 2011, 11, 3843–3850.Search in Google Scholar

Wang, G.; Wang, J.; Wang, H.; Bai, J. Preparation and evaluation of molybdenum modified Fe/MgO catalysts for the production of single-walled carbon nanotubes and hydrogen-rich gas by ethanol decomposition. J. Environ. Chem. Eng. 2012a, 2, 1588–1595.Search in Google Scholar

Wang, G.; Chen, J.; Tian, Y.; Jin, Y.; Li, Y. Water assisted synthesis of double-walled carbon nanotubes with a narrow diameter distribution from methane over a Co-Mo/MgO catalyst, Catal. Today2012b, 183, 26–33.10.1016/j.cattod.2011.07.004Search in Google Scholar

Wang, L.; Zhao, Y.; Liu, C.; Gonga, W.; Guo, H. Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning. Chem. Commun. 2013, 49, 3787–3789.Search in Google Scholar

Wang, Z.; Xu, C.; Wang, H. A facile preparation of highly active Au/MgO catalysts for aerobic oxidation of benzyl alcohol. Catal. Lett. 2014, 144, 1919–1929.Search in Google Scholar

Wanga, J. A.; Novaroa, O.; Bokhimia, X.; Lópezb, T.; Gómezb, R.; Navarretec, J.; Llanosc, M. E.; López-Salinasc, E. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 1998, 35, 317–323.Search in Google Scholar

Weckhuysen, B. M.; Keller, D. E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today2003, 78, 25–46.Search in Google Scholar

Wu, H.; La Parola, V.; Pantaleo, G.; Puleo, F.; Venezia, A. M., Liotta, L. F. Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other Bi-metallic systems. Catalysts2013, 3, 563–583.Search in Google Scholar

Wu, H.; Pantaleo, G.; La Parola, V.; Venezia, A. M.; Collard, X.; Aprile, C.; Liotta, L. F. Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M=Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. App. Catal. B. 2014, 156–157, 350–361.Search in Google Scholar

Xiang, Y.; Meng, Q.; Li, X.; Wang, J. In situ hydrogen from aqueous-methanol for nitroarene reduction and imine formation over an Au-Pd/Al2O3 catalyst. Chem. Commun. 2010, 46, 5918–5920.Search in Google Scholar

Xiao, F.; Fang, L.; Li, W.; Wanga, D. One-step synthesis of aluminum magnesium oxide nanocomposites for simultaneous removal of arsenic and lead ions in water. RSC Adv. 2015, 5, 8190–8193.Search in Google Scholar

Xie, Y.-C.; Tang, Y.-Q. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Adv. Catal. 1990, 37, 1–43.Search in Google Scholar

Xu, B.-Q.; Wei, J.-M.; Wang, H.-Y.; Sun, K.-Q.; Zhu, Q.-M. Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal. Today2001, 68, 217–225.Search in Google Scholar

Xu, L.; Song, H.; Chou, L. Ordered mesoporous MgO-Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int. J. Hydrogen Energ. 2013, 38, 7307–7325.Search in Google Scholar

Xu, C.; Wang, Z.; Huangfu, X.; Wang, H. On the study of the relationship between the thermal stability of Au catalysts and the basic nature of their supports for aerobic oxidation of benzyl alcohol. RSC Adv. 2014, 4, 27337–27345.Search in Google Scholar

Yan, X.; Liu, C.-j. Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diam. Relat. Mater. 2013, 50–57.10.1016/j.diamond.2012.11.001Search in Google Scholar

Yang, Y.; Gilbert, A.; Xu, C. C. Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. App. Catal. A. 2009, 360, 242–249.Search in Google Scholar

Yang, W.; Chu, W.; Jiang, C.; Wen, J.; Sun, W. Cerium oxide promoted Ni/MgO catalyst for the synthesis of multi-walled carbon nanotubes. Chinese J. Catal. 2011, 32, 1323–1328.Search in Google Scholar

Yang, W.; Feng, Y.; Chu, W. Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promoted effect of Ni/MgO catalysts. J. Nanotechnol. 2014, 4, Article ID 54703.Search in Google Scholar

Yeoh, W.-M.; Lee, K.-Y.; Chai, S.-P.; Lee, K.-T.; Mohamed, A. R. The role of molybdenum in Co-Mo/MgO for large-scale production of high quality carbon nanotubes. J. Alloy. Compd. 2010, 493, 539–543.Search in Google Scholar

Yin, X.; Hong, L.; Gong, Z. A decrease in NiO-MgO phase through its solid solution equilibrium with tetragonal (La1-zSrz)2Ni1-yMgyO4-δ: effect on catalytic partial oxidation of methane. J. Nanomater. 2012, 3, 1–10.Search in Google Scholar

Yoshihara, N.; Ago, H.; Tsuji, M. Chemistry of Water-Assisted Carbon Nanotube growth over Fe-Mo/MgO catalyst. J. Phys. Chem. C2007, 111, 11577–11582.Search in Google Scholar

Yun-long, X.; Guang-yu, L.; Dan, L.; Yi-jun, Z.; Meng-fe, L. A study on Cr/MgO catalysts for acrylonitrile synthesis from acetonitrile and methanol. J. Mol. Catal. 2004, 1, 1–10.Search in Google Scholar

Zanganeh, R.; Rezaei, M.; Zamaniyan, A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts. Int. J. Hydrogen Energ. 2013, 38, 3012–3018.Search in Google Scholar

Zanganeh, R.; Rezaei, M.; Zamaniyan, A. Preparation of nanocrystalline NiO-MgO solid solution powders as catalyst for methane reforming with carbon dioxide: effect of preparation conditions. Adv. Powder Technol. 2014, 25, 1111–1117.Search in Google Scholar

Zavyalova, U.; Geske, M.; Horn, R.; Weinberg, G.; Frandsen, W.; Schuster, M.; Schlögl, R. Morphology and microstructure of Li/MgO Catalysts for the oxidative coupling of methane. Chem. Cat. Chem. 2011, 3, 949–959.Search in Google Scholar

Zdražil, M. MgO-supported Mo, CoMo and NiMo sulfide hydrotreating catalysts. Catal. Today2003, 86, 151–171.10.1016/S0920-5861(03)00409-7Search in Google Scholar

Zeng, D.; Liu, R.; Xie, C.; Xu, Y.; Zhou, H.; Huang, Z.; Kuang, Y. Preparation of Pd/MgO-reduced graphene oxide hybrid catalyst and enhanced activity for methanol electrooxidation. J. Solid State Electr. 2014,18, 2549–2553.Search in Google Scholar

Zhan, G.; Hong, Y.; Mbah, V. T.;Huang, J.; Ibrahim, A.-R.; Du, M.; Li, Q. Bimetallic Au-Pd/MgO as efficient catalysts for aerobic oxidation of benzyl alcohol: a green bio-reducing preparation method. App. Catal. A. 2012, 439–440, 1179–186.Search in Google Scholar

Zhang, Q.; Liu, Y.; Hu, L.; Qian, W.-z.; Luo, G.-h.; Wei, F. Synthesis of thin-walled carbon nanotubes from methane by changing the Ni/Mo ratio in a Ni/Mo/MgO catalyst. New Carbon Mater. 2008, 23, 319–325.Search in Google Scholar

Zhang, Z.; Che, H.; Wang, Y.; Gao, J.; Zhao, L.; She, X.; Sun, J.; Gunawan, P.; Zhong, Z.; Su, F. Facile synthesis of mesoporous Cu2O microspheres with improved catalytic property for dimethyldichlorosilane synthesis. Ind. Eng. Chem. Res. 2012, 51, 1264–1274.Search in Google Scholar

Zhang, M.; Zhao, N.; Sha, J.; Liu, E.; Shi, C.; Lia, J.; He, C. Synthesis of novel carbon nano-chains and their application as supercapacitors. J. Mater. Chem. A2014, 2, 16268–16275.Search in Google Scholar

Zheng, C.; Cheng, X.; Chen, P.; Yang, C.; Bao, S.; Xia, J.; Guo, M.; Sun, X. Highly porous Fe2O3/KIT-6 with Mg substitution for heterogeneous fenton oxidation of imidacloprid with enhanced catalytic activity. Chem. Lett. 2015, 44, 601–603.Search in Google Scholar

Zhong, Z.; Chen, H.; Tang, S.; Ding, J.; Lin, J.; Tan, K. L. Catalytic growth of carbon nanoballs with and without cobalt encapsulation. Chem. Phys. Lett. 2000, 330, 41–47.Search in Google Scholar

Zhu, K.; Hua, W.; Deng, W.; Richards, R. M. Preparation of MgO nanosheets with polar (111) surfaces by ligand exchange and esterification – synthesis, structure, and application as catalyst support. Eur. J. Inorg. Chem. 2012, 2012, 2869–2876.Search in Google Scholar

Received: 2015-6-15
Accepted: 2015-8-15
Published Online: 2015-9-29
Published in Print: 2016-3-1

©2016 by De Gruyter

Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2015-0010/html
Scroll to top button