Prevalence of Vancomycin-resistant Enterococcus in wild mammals: the first global systematic review and meta-analysis
-
Mohammed Alissa
, Abdullah Alghamdi
, Mohammed A. Alshehri , Suad A. Alghamdi , Ghadah S. Abusalim , Abdulkarim S. Binshaya und Ghada M. Alnafesah
Abstract
Introduction
Vancomycin-resistant Enterococcus (VRE) represents a global public health threat due to its ability to disseminate antimicrobial resistance (AMR) genes across ecological boundaries. While the prevalence of VRE has been extensively studied in clinical and agricultural settings, its occurrence and dynamics in wildlife remain underexplored. This review aimed to systematically examine and analyze the global prevalence of VRE in wild mammals.
Content
Following PRISMA guidelines, an extensive search of six databases yielded 25 studies that met predefined inclusion criteria. Data were extracted and synthesized using a random-effects model to estimate pooled prevalence rates, and subgroup analysis was also performed. Heterogeneity was quantified using the I² statistic, and publication bias was assessed through funnel plots and Egger’s test. The overall pooled prevalence of VRE in wild mammals was 8.4 % (95 % CI: 4.9–14.0), with significant heterogeneity (I² = 87.63 %). Southern Europe recorded the highest prevalence, particularly in Spain (18.6 %) and Portugal (7.0 %), while lower rates were observed in England (3.3 %) and Italy (4.5 %). Species-specific prevalence was highest in Eurasian otters and roe deer (62.1 % and 48.6 %, respectively). Methodological variability also influenced prevalence rates, with disc diffusion reporting the highest prevalence (17.3 %) compared to PCR-based methods (3.9 %).
Summary
The findings indicate a moderately significant prevalence of VRE in wild mammals, underscoring wildlife’s critical role as reservoirs and vectors of AMR.
Outlook
Anthropogenic factors such as agricultural activities and environmental pollution significantly shape the distribution and burden of VRE among wild animals.
Acknowledgments
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2025/R/1447).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization: M.A. and A.A. conceived and designed the study. Methodology: M.A, A.A, S.A.A, M.A.A, G.S.A. and A.S.B. selected and assessed the quality of studies. M.A. and A.S.B. extracted and analyzed data. Analysis and writing: A.A and M.A. interpreted the results and drafted the manuscript. Writing—review and editing: M.A, A.A, S.A.A, M.A.A, G.S.A and A.S.B reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Prince Sattam bin Abdulaziz University project number (PSAU/2025/R/1447).
-
Data availability: Not applicable.
References
1. Ma, F, Xu, S, Tang, Z, Li, Z, Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health 2021;3:32–8. https://doi.org/10.1016/J.BSHEAL.2020.09.004.Suche in Google Scholar
2. Chaudhry, D, Tomar, P. Antimicrobial resistance: the next BIG pandemic. Int J Community Med Public Health 2017;4:2632–6. https://doi.org/10.18203/2394-6040.ijcmph20173306.Suche in Google Scholar
3. Miller, WR, Murray, BE, Rice, LB, Arias, CA. Resistance in Vancomycin-resistant enterococci. Infectious Disease Clinics 2020;34:751–71. https://doi.org/10.1016/J.IDC.2020.08.004.Suche in Google Scholar PubMed PubMed Central
4. Pöntinen, AK, Top, J, Arredondo-Alonso, S, Tonkin-Hill, G, Freitas, AR, Novais, C, et al.. Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era. Nat Commun 2021;12. https://doi.org/10.1038/s41467-021-21749-5.Suche in Google Scholar PubMed PubMed Central
5. Horner, C, Mushtaq, S, Allen, M, Hope, R, Gerver, S, Longshaw, C, et al.. Replacement of Enterococcus faecalis by Enterococcus faecium as the predominant Enterococcus in UK bacteraemias. JAC Antimicrob Resist 2021;3:dlab185. https://doi.org/10.1093/jacamr/dlab185.Suche in Google Scholar PubMed PubMed Central
6. Krawczyk, B, Wityk, P, Gałęcka, M, Michalik, M. The many faces of Enterococcus spp.—commensal, probiotic and opportunistic pathogen. Microorganisms 2021;9:1900. https://doi.org/10.3390/microorganisms9091900.Suche in Google Scholar PubMed PubMed Central
7. Emaneini, M, Hosseinkhani, F, Jabalameli, F, Nasiri, MJ, Dadashi, M, Pouriran, R, et al.. Prevalence of vancomycin-resistant Enterococcus in Iran: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2016;35:1387–92. https://doi.org/10.1007/s10096-016-2702-0.Suche in Google Scholar PubMed
8. Wada, Y, Irekeola, AA, Shueb, RH, Wada, M, Afolabi, HA, Yean, CY, et al.. Prevalence of Vancomycin-resistant Enterococcus (VRE) in poultry in Malaysia: the first meta-analysis and systematic review. Antibiotics 2022;11:171. https://doi.org/10.3390/ANTIBIOTICS11020171/S1.Suche in Google Scholar
9. Wada, Y, Irekeola, AA, Engku Nur Syafirah, EAR, Yusof, W, Huey, LL, Muhammad, SL, et al.. Prevalence of Vancomycin-resistant Enterococcus (VRE) in companion animals: the first meta-analysis and systematic review. Antibiotics 2021;10:138. 2021;10:138 https://doi.org/10.3390/ANTIBIOTICS10020138.Suche in Google Scholar PubMed PubMed Central
10. Garbe, J, Sjögren, J, Cosgrave, EFJ, Struwe, WB, Bober, M, Olin, AI, et al.. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS One 2014;9. https://doi.org/10.1371/JOURNAL.PONE.0091035.Suche in Google Scholar PubMed PubMed Central
11. Smoglica, C, Barco, L, Angelucci, S, Orsini, M, Marsilio, F, Antonucci, A, et al.. Whole genome sequencing of Escherichia coli and Enterococcus spp. in wildlife-livestock interface: a pilot study. J Glob Antimicrob Resist 2023;32:118–21. https://doi.org/10.1016/j.jgar.2023.01.012.Suche in Google Scholar PubMed
12. Stohs, EJ, MacAllister, T, Pergam, SA, Krantz, EM, Jain, R, Sweet, A, et al.. Unintended consequences of pretransplant Vancomycin-resistant Enterococcus screening on antimicrobial stewardship among allogeneic hematopoietic cell transplant recipients. Infect Control Hosp Epidemiol 2018;39:730–3. https://doi.org/10.1017/ICE.2018.43.Suche in Google Scholar PubMed
13. Ali, MT, Masoom, H. Antimicrobial resistance mechanism among gram-negative bacteria: a mini review electronic. Journal of Medical Research 2025;1:68–77. https://doi.org/10.64813/EJMR.2025.013.Suche in Google Scholar
14. Benamu, E, Deresinski, S. Vancomycin-resistant enterococcus infection in the hematopoietic stem cell transplant recipient: an overview of epidemiology, management, and prevention. F1000 Res 2018;7:3. https://doi.org/10.12688/f1000research.11831.1.Suche in Google Scholar PubMed PubMed Central
15. Borah VSBGMHAR, D. Prevalence of multidrug resistant (MDR) novel Enterococcus faecium strain VDR03 in broiler chicken meat samples collected from Dibrugarh town, Assam (India). Res J Microbiol 2016;11:126–32. https://doi.org/10.3923/jm.2016.Suche in Google Scholar
16. Preethi, C, Thumu, SCR, Halami, PM. Occurrence and distribution of multiple antibiotic-resistant Enterococcus and Lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin, tetracycline and vancomycin resistance. Ann Microbiol 2017;67:395–404. https://doi.org/10.1007/s13213-017-1270-6.Suche in Google Scholar
17. Hefazi, M, Damlaj, M, Alkhateeb, HB, Partain, DK, Patel, R, Razonable, RR, et al.. Vancomycin-resistant Enterococcus colonization and bloodstream infection: prevalence, risk factors, and the impact on early outcomes after allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. Transpl Infect Dis 2016;18:913–20. https://doi.org/10.1111/TID.12612.Suche in Google Scholar PubMed
18. Murray, C, Ikuta, K, Sharara, F, Swetschinski, L, Robles Aguilar, G, Gray, A, et al.. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399:629–55. https://doi.org/10.1016/s0140-6736(21)02724-0.Suche in Google Scholar
19. Elshamy, AA, Aboshanab, KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA 2020;6:Fso438. https://doi.org/10.2144/fsoa-2019-0098.Suche in Google Scholar PubMed PubMed Central
20. Narasimhulu, K, Sreenivasa Rao, P, Venu Vinod, A. Isolation and identification of bacterial strains and study of their resistance to heavy metals and antibiotics. J Microb Biochem Technol 2010;2:74–6. https://doi.org/10.4172/1948-5948.1000027.Suche in Google Scholar
21. Shaw, T, Bartholomeusz, A, Locarnini, S. HBV drug resistance: mechanisms, detection and interpretation. J Hepatol 2006;44:593–606. https://doi.org/10.1016/J.JHEP.2006.01.001.Suche in Google Scholar
22. Lozano, C, Gonzalez-Barrio, D, Camacho, MC, Lima-Barbero, JF, de la Puente, J, Höfle, U, et al.. Characterization of fecal Vancomycin-resistant Enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 2016;72:813–20. https://doi.org/10.1007/S00248-015-0648-X.Suche in Google Scholar
23. Sami ASSAMS, H. Emergence of linezolid resistance in Enterococci: prevalent genotypes and resistance pattern in Vancomycin-resistant Enterococci in a North-indian tertiary care hospital. N Z J Med Lab Sci 2020;74:27–30. https://doi.org/10.3316/informit.323077107272382.Suche in Google Scholar
24. Smout, E, Palanisamy, N, Valappil, SP. Prevalence of vancomycin-resistant Enterococci in India between 2000 and 2022: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2023;12:1–13. https://doi.org/10.1186/S13756-023-01287-Z/TABLES/3.Suche in Google Scholar
25. Kampmeier, S, Tönnies, H, Correa-Martinez, CL, Mellmann, A, Schwierzeck, V. A nosocomial cluster of Vancomycin resistant Enterococci among COVID-19 patients in an intensive care unit. Antimicrob Resist Infect Control 2020;9:1–6. https://doi.org/10.1186/S13756-020-00820-8/TABLES/1.Suche in Google Scholar
26. Page, MJ, McKenzie, JE, Bossuyt, PM, Boutron, I, Hoffmann, TC, Mulrow, CD, et al.. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71.Suche in Google Scholar PubMed PubMed Central
27. Mude, ASA, Nageye, YA, Bello, KE. Prevalence of hepatitis B virus among people in Somalia and among Somalian immigrants in Diaspora: a systematic review and meta-analysis. Microbes and Infectious Diseases 2024;5:532–46. https://doi.org/10.21608/MID.2024.269809.1799.Suche in Google Scholar
28. Bello, KE, Mat Jusoh, TNA, Irekeola, AA, Abu, N, Mohd Amin, NAZ, Mustaffa, N, et al.. A recent prevalence of hepatitis B virus (HBV) genotypes and subtypes in Asia: a systematic review and meta-analysis. Healthcare (Switzerland) 2023;11. https://doi.org/10.3390/HEALTHCARE11071011.Suche in Google Scholar PubMed PubMed Central
29. Mohd Yusof, MS, Ahmed, N, Bakhir, SNI, Shiva Shanghari, RV, Hashairi, FM. The prevalence of leptospirosis infections among humans in Malaysia: a systematic review and meta-analysis. Trop Biomed 2025;42:201–12. https://doi.org/10.47665/TB.42.2.013.Suche in Google Scholar PubMed
30. Wada, Y, Harun, AB, Yean, CY, Zaidah, AR. Vancomycin-resistant Enterococci (VRE) in Nigeria: the first systematic review and meta-analysis. Antibiotics 2020;9:565. 2020;9:565 https://doi.org/10.3390/ANTIBIOTICS9090565.Suche in Google Scholar PubMed PubMed Central
31. Cornell, J, Mulrow, C, Localio, R, Stack, CB, Meibohm, AR, Guallar, E, et al.. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014;160:267–70. https://doi.org/10.7326/m13-2886.Suche in Google Scholar PubMed
32. Egger, M, Smith, GD, Schneider, M, Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34. https://doi.org/10.1136/bmj.315.7109.629.Suche in Google Scholar PubMed PubMed Central
33. Bello, KE, Bello, KE, Adebayo Irekeola, A, Al-Mhanna, SB, Oseni, M-L, Omebije, AP, Bello, MdpiComKE, Irekeola, AA, et al.. Prevalence of spontaneous bacterial peritonitis (SBP) in hepatitis B (HBV), and hepatitis C (HCV) liver cirrhosis: a systematic review and meta-analysis. SB Al-Mhanna, OML Oseni, AP Omebije, RH Shueb, N MustaffaHealthcare, 2023•mdpiCom 2023;11. https://doi.org/10.3390/healthcare11020275.Suche in Google Scholar PubMed PubMed Central
34. Mallon, DJP, Corkill, JE, Hazel, SM, Sian Wilson, J, French, NP, Bennett, M, et al.. Excretion of Vancomycin-resistant Enterococci by wild mammals. Emerg Infect Dis 2002;8:636. https://doi.org/10.3201/EID0806.010247.Suche in Google Scholar
35. Poeta, P, Costa, D, Sáenz, Y, Klibi, N, Ruiz-Larrea, F, Rodrigues, J, et al.. Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 2005;52:396–402. https://doi.org/10.1111/J.1439-0450.2005.00881.X.Suche in Google Scholar
36. Poeta, P, Costa, D, Igrejas, G, Rojo-Bezares, B, Sáenz, Y, Zarazaga, M, et al.. Characterization of vanA-containing Enterococcus faecium isolates carrying Tn5397-like and Tn916/Tn1545-like transposons in wild boars (Sus Scrofa). Microb Drug Resist 2007;13:151–6. https://doi.org/10.1089/MDR.2007.759.Suche in Google Scholar PubMed
37. Poeta, P, Radhouani, H, Sargo, R, Igrejas, G. In vitro activity of dalbavancin against enterococci isolates from wild animals, pets, poultry and humans in Portugal. J Basic Microbiol 2008;48:526–8. https://doi.org/10.1002/JOBM.200800146.Suche in Google Scholar PubMed
38. Figueiredo, N, Radhouani, H, Gonçalves, A, Rodrigues, J, Carvalho, C, Igrejas, G, et al.. Genetic characterization of vancomycin-resistant enterococci isolates from wild rabbits. J Basic Microbiol 2009;49:491–4. https://doi.org/10.1002/JOBM.200800387.Suche in Google Scholar
39. Lessa, SS, Paes, RCS, Santoro, PN, Mauro, RA, Vieira-da-Motta, O. Identification and antimicrobial resistance of microflora colonizing feral pig (Sus scrofa) of Brazilian Pantanal. Braz J Microbiol 2011;42:740–9. https://doi.org/10.1590/S1517-838220110002000042.Suche in Google Scholar PubMed PubMed Central
40. Radhouani, H, Igrejas, G, Carvalho, C, Pinto, L, Gonçalves, A, Lopez, M, et al.. Clonal lineages, antibiotic resistance and virulence factors in vancomycin-resistant enterococci isolated from fecal samples of red foxes (Vulpes vulpes). J Wildl Dis 2011;47:769–73. https://doi.org/10.7589/0090-3558-47.3.769.Suche in Google Scholar PubMed
41. Semedo-Lemsaddek, T, Nóbrega, CS, Ribeiro, T, Pedroso, NM, Sales-Luís, T, Lemsaddek, A, et al.. Virulence traits and antibiotic resistance among enterococci isolated from Eurasian otter (Lutra lutra). Vet Microbiol 2013;163:378–82. https://doi.org/10.1016/J.VETMIC.2012.12.032.Suche in Google Scholar PubMed
42. Katakweba, AAS, Møller, KS, Muumba, J, Muhairwa, AP, Damborg, P, Rosenkrantz, JT, et al.. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. J Appl Microbiol 2015;118:966–75. https://doi.org/10.1111/JAM.12738.Suche in Google Scholar PubMed
43. Nowakiewicz, A, Ziółkowska, G, Zieba, P, Kostruba, A. Undomesticated animals as a reservoir of multidrug-resistant Enterococcus in eastern Poland. J Wildl Dis 2014;50:645–50. https://doi.org/10.7589/2013-09-240.Suche in Google Scholar PubMed
44. Lozano, C, Gonzalez-Barrio, D, Camacho, MC, Lima-Barbero, JF, de la Puente, J, Höfle, U, et al.. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 2015 72:;72:813–20. https://doi.org/10.1007/S00248-015-0648-X.Suche in Google Scholar
45. Lozano, C, Gonzalez-Barrio, D, Camacho, MC, Lima-Barbero, JF, de la Puente, J, Höfle, U, et al.. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 2016;72:813–20. https://doi.org/10.1007/S00248-015-0648-X.Suche in Google Scholar
46. Guerrero-Ramos, E, Cordero, J, Molina-González, D, Poeta, P, Igrejas, G, Alonso-Calleja, C, et al.. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol 2016;53:156–64. https://doi.org/10.1016/J.FM.2015.09.007.Suche in Google Scholar PubMed
47. Dec, M, Stȩpień-Pyśniak, D, Gnat, S, Fratini, F, Urban-Chmiel, R, Cerri, D, et al.. Antibiotic susceptibility and virulence genes in enterococcus isolates from wild mammals living in Tuscany, Italy. Microb Drug Resist 2020;26:505–19. https://doi.org/10.1089/MDR.2019.0052.Suche in Google Scholar PubMed
48. Hamarova, L, Kopcakova, A, Kocianova-Adamcova, M, Piknova, M, Javorsky, P, Pristas, P. Antimicrobial resistance of Enterococci from wild animals in Slovakia. Pol J Environ Stud 2021;30:2085–91. https://doi.org/10.15244/PJOES/126371.Suche in Google Scholar
49. Smoglica, C, Vergara, A, Angelucci, S, Festino, AR, Antonucci, A, Marsilio, F, et al.. Antibiotic-resistant bacteria dissemination in the wildlife, livestock, and water of Maiella national park, Italy. Animals 2023;13:432. https://doi.org/10.3390/ANI13030432/S1.Suche in Google Scholar
50. Das, AK, Dudeja, M, Kohli, S, Ray, P. Genotypic characterization of vancomycin-resistant Enterococcus causing urinary tract infection in Northern India. Indian J Med Res 2022;155:423–31. https://doi.org/10.4103/ijmr.ijmr_2554_19.Suche in Google Scholar PubMed PubMed Central
51. Lawpidet, P, Tengjaroenkul, B, Saksangawong, C, Sukon, P. Global prevalence of Vancomycin-resistant Enterococci in food of animal origin: a meta-analysis 2021;18:405–12 https://doi.org/10.1089/FPD.2020.2892.Suche in Google Scholar PubMed
52. Azzam, A, Elkafas, H, Khaled, H, Ashraf, A, Yousef, M, Elkashef, AA. Prevalence of Vancomycin-resistant enterococci (VRE) in Egypt (2010–2022): a systematic review and meta-analysis. J Egypt Publ Health Assoc 2023;98. https://doi.org/10.1186/S42506-023-00133-9.Suche in Google Scholar
53. Das, S, Konar, J, Talukdar, M. Prevalence of Vancomycin-resistant Enterococcus causing urinary tract infection in a tertiary care hospital of Eastern India. Biomed Biotechnol Res J 2021;5:463–5. https://doi.org/10.4103/bbrj.bbrj_212_21.Suche in Google Scholar
54. Phukan, C, Lahkar, M, Ranotkar, S, Saikia, KK. Emergence of vanA gene among Vancomycin-resistant Enterococci in a tertiary care hospital of North-East India. Indian J Med Res 2016;143:357–61. https://doi.org/10.4103/0971-5916.182627.Suche in Google Scholar PubMed PubMed Central
55. Kim, SH, Cho, SY, Kim, HM, Huh, K, Kang, CI, Peck, KR, et al.. Sequence type 17 is a predictor of subsequent bacteremia in Vancomycin-resistant Enterococcus faecium-colonized patients: a retrospective cohort study. Antimicrob Resist Infect Control 2021;10. https://doi.org/10.1186/S13756-021-00980-1.Suche in Google Scholar PubMed PubMed Central
56. Johnson, N, Golding, M, Phipps, LP. Detection of tick-borne pathogens in red deer (Cervus Elaphus), United Kingdom. Pathogens 2021;10. https://doi.org/10.3390/pathogens10060640.Suche in Google Scholar PubMed PubMed Central
57. Haberecht, HB, Nealon, NJ, Gilliland, JR, Holder, AV, Runyan, C, Oppel, RC, et al.. Antimicrobial-resistant Escherichia coli from environmental waters in Northern Colorado. J Environ Public Health 2019;2019. https://doi.org/10.1155/2019/3862949.Suche in Google Scholar PubMed PubMed Central
58. Baros Jorquera, C, Moreno-Switt, AI, Sallaberry-Pincheira, N, Munita, JM, Flores Navarro, C, Tardone, R, et al.. Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health 2021;13:100298. https://doi.org/10.1016/J.ONEHLT.2021.100298.Suche in Google Scholar PubMed PubMed Central
59. Thanner, S, Drissner, D, Walsh, F. Antimicrobial resistance in agriculture. mBio 2016;7. JPEG https://doi.org/10.1128/MBIO.02227-15/ASSET/5DB7B533-E142-4CE9-8276-62C878786EF5/ASSETS/GRAPHIC/MBO0021627880001.Suche in Google Scholar
60. Vezeau, N, Kahn, L. Current understanding and knowledge gaps regarding wildlife as reservoirs of antimicrobial resistance. Am J Vet Res 2024;85. https://doi.org/10.2460/AJVR.24.02.0040.Suche in Google Scholar
61. Allen, HK, Trachsel, J, Looft, T, Casey, TA. Finding alternatives to antibiotics. Ann N Y Acad Sci 2014;1323:91–100. https://doi.org/10.1111/NYAS.12468.Suche in Google Scholar PubMed
62. Absar, M, Zaidah, AR, Mahmood, A, Ahmad, S, Ejaz, H, Ahmed, N, et al.. A review of in silico and in vitro approaches in the fight against Carbapenem-resistant Enterobacterales. J Clin Lab Anal 2025;39. https://doi.org/10.1002/JCLA.70018.Suche in Google Scholar PubMed PubMed Central
63. Ahmed, N, Abusalah, MAHA, Abuarqoub, AH. Nanomedicine in the fight against multidrug-resistant infections: a review on emerging strategies and translational prospects. Int J Nanomed 2025;20:12331–62. https://doi.org/10.2147/IJN.S547259.Suche in Google Scholar PubMed PubMed Central
64. Shunmugam, P, Ahmed, N, Singh, KKB. ipaH-Targeted electrochemical genosensor: a fast and reliable diagnostic approach for simultaneous detection Shigella species and enteroinvasive Escherichia coli. Microchem J 2025;216. https://doi.org/10.1016/J.MICROC.2025.114794.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/reveh-2025-0140).
© 2025 Walter de Gruyter GmbH, Berlin/Boston