Startseite Involvement of green technology in microalgal biodiesel production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Involvement of green technology in microalgal biodiesel production

  • Samakshi Verma und Arindam Kuila EMAIL logo
Veröffentlicht/Copyright: 5. März 2020

Abstract

According to the report of the renewable energy policy network for the 21st century published in 2014, biodiesel and bioethanol are the most used biofuels and are responsible for transportation worldwide. Biodiesel specially has shown an increase in production globally by 15 times by volume from 2002 to 2012. Promising feedstock of biodiesel are cyanobacteria and microalgae as they possess a shorter cultivation time (4 fold lesser) and high oil content (10 fold higher) than corn, jatropha and soybean (conventional oil-producing territorial plants). Various valuable natural chemicals are also produced from these organisms including food supplements such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), pigments, and vitamins. Additionally, cellular components of microalgae and cyanobacteria are connected with therapeutic characteristics such as anti-inflammatory, antioxidant, antiviral and immune stimulating. Commercialization of algal biodiesel (or other products) can be achieved by isolating and identifying the high-yielding strains that possess a faster growth rate. Indigenous strains can be genetically engineered into high-yielding transgenic strains. The present article discusses about the use of nanotechnology and genetic engineering approach for improved lipid accumulation in microalgae for biodiesel production.

Acknowledgment

All authors acknowledge Prof. Aditya Shastri, Vice Chancellor of Banasthali Vidyapith, for providing the necessary facilities. We acknowledge the Bioinformatics Center, Banasthali Vidyapith supported by DBT for providing computation support, and DST for providing networking support through the FIST and CURIE programs at the Department of Bioscience and Biotechnology.

  1. Research funding: No funding was received for this research.

  2. Conflict of interest: All authors declare that they do not have any conflict of interest for publishing in this journal.

  3. Ethical approval: The conducted research is not related to either human or animal use.

  4. Informed consent: Not applicable.

References

1. Huang D, Zhou H, Lin L. Biodiesel: an alternative to conventional fuel. Energy Procedia 2012;16:1874–5.10.1016/j.egypro.2012.01.287Suche in Google Scholar

2. Hassan MH, Kalam MA. An overview of biofuel as a renewable energy source: development and challenges. Procedia Eng 2013;56:39–53.10.1016/j.proeng.2013.03.087Suche in Google Scholar

3. An EU strategy for biofuels, Commission of the European Communities. Belgium: Brussels; 2006:1–29.Suche in Google Scholar

4. Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev 2008;12:542–2.10.1016/j.rser.2005.06.001Suche in Google Scholar

5. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 2010;14:217–32.10.1016/j.rser.2009.07.020Suche in Google Scholar

6. Owolabi RU, Adejumo AL, Aderibigbe AF. Biodiesel: fuel for the future (a brief review). Int J Energ Eng 2012;2:223–31.10.5923/j.ijee.20120205.06Suche in Google Scholar

7. Garlapati VK, Gour RS, Sharma V, Roy LS, Prashant JKS, Prashant JKS, et al. Current status of biodiesel production from microalgae in India. In: Advances in Biofeedstocks and Biofuels: Production Technologies for Biofuels, Vol. 2. USA: Wiley-Scrivener Publishing LLC, 2017:129–54.10.1002/9781119117551.ch5Suche in Google Scholar

8. Andrijanto E. Novel bifunctional mesoporous silica nanomaterial catalyst for biodiesel production. Poster of University of Huddersfield Research Festival; 2009.Suche in Google Scholar

9. Lin V, Mahoney P, Gibson K. Nanofarming technology extracts biofuel oil without harming algae. USA: News Released from Office of Public Affairs, Ames Laboratory Creating Materials & Energy Solutions; 2009.Suche in Google Scholar

10. Lu F. Developing innovative photobioreactor and extraction technology for production of biodiesel feedstock using microalgae. United State Department of Agriculture Research, Education & Economics Information System; 2010.Suche in Google Scholar

11. Lenzen M, McBain B, Trainer T, Jutte S, Rey-Lescure O, Huang J. Simulating low-carbon electricity supply for Australia. Appl Energ 2016;179:553–64.10.1016/j.apenergy.2016.06.151Suche in Google Scholar

12. Lapuerta M, Armas O, Rodriguez-Fernandez J. Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 2008;34:198–23.10.1016/j.pecs.2007.07.001Suche in Google Scholar

13. Torres-Jimenez E, Jerman MS, Gregorc A, Lisec I, Dorado MP, Kegl B. Physical and chemical properties of ethanol–diesel fuel blends. Fuel 2011;90:795–2.10.1016/j.fuel.2010.09.045Suche in Google Scholar

14. Shahid EM, Jamal Y. Production of biodiesel: a technical review. Renew Sust Energ Rev 2011;15:4732–45.10.1016/j.rser.2011.07.079Suche in Google Scholar

15. Mishra VK, Goswami R. A review of production, properties and advantages of biodiesel. Biofuels 2018;9:273–89.10.1080/17597269.2017.1336350Suche in Google Scholar

16. Mofizur M, Rasul MG, Hassan NMS, Nabi MN. Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 2019;156:53–8.10.1016/j.egypro.2018.11.088Suche in Google Scholar

17. Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technol 1999;70:1–15.10.1016/S0960-8524(99)00025-5Suche in Google Scholar

18. Roux JM, Lamotte H, Achard JL. An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 2017;112:680–8.10.1016/j.egypro.2017.03.1137Suche in Google Scholar

19. Chandra R, Rohit MV, Swamy YV, Mohan SV. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technol 2014;165:279–87.10.1016/j.biortech.2014.02.102Suche in Google Scholar PubMed

20. Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresource Technol 2015;184:169–78.10.1016/j.biortech.2014.10.056Suche in Google Scholar PubMed

21. Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO. Algae based biorefinery–how to make sense? Renew Sust Energ Rev 2015;47:295–07.10.1016/j.rser.2015.03.052Suche in Google Scholar

22. Zhang XL, Yan S, Tyagi RD, Surampalli RY. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sust Energ Rev 2013;26:216–23.10.1016/j.rser.2013.05.061Suche in Google Scholar

23. Jain VK, Rattan S, Verma A. Recent trends in materials and devices. In: Springer Proceedings in Physics, New York, NY, USA; 2015.Suche in Google Scholar

24. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metal 2014;2014:1–8.10.1155/2014/692643Suche in Google Scholar

25. Da-Silva TL, Gouveia L, Reis A. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 2014;98:1043–53.10.1007/s00253-013-5389-5Suche in Google Scholar PubMed

26. Hossain N, Mahlia TMI, Saidur R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels 2019;12:125.10.1186/s13068-019-1465-0Suche in Google Scholar PubMed PubMed Central

27. Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 2013;17:496–05.10.1016/j.cbpa.2013.04.007Suche in Google Scholar PubMed

28. Srirangan K, Pyne ME, Chou CP. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresource Technol 2011;102:8589–604.10.1016/j.biortech.2011.03.087Suche in Google Scholar PubMed

29. Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP. Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 2014;9:e94028.10.1371/journal.pone.0094028Suche in Google Scholar PubMed PubMed Central

30. Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 2011;93:91–100.10.1016/j.biochi.2010.07.020Suche in Google Scholar PubMed

31. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosirapseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86.10.1126/science.1101156Suche in Google Scholar PubMed

32. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A. The Chlorellavariabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010;22:2943–55.10.1105/tpc.110.076406Suche in Google Scholar PubMed PubMed Central

33. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008;456:239–44.10.1038/nature07410Suche in Google Scholar PubMed

34. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007;318:245–50.10.1126/science.1143609Suche in Google Scholar PubMed PubMed Central

35. Orsini M, Costelli C, Malavasi V, Cusano R, Concas A, Angius A, et al. Complete sequence and characterization of mitochondrial and chloroplast genome of Chlorella variabilis NC64A. Mitochondrial DNA A 2016;27:3128–30.10.3109/19401736.2015.1007297Suche in Google Scholar PubMed

36. Ortiz-Matamoros MF, Islas-Flores T, Voigt B, Menzel D,Baluska F, Villanueva MA. Heterologous DNA uptake in cultured Symbiodinium spp. aided by Agrobacterium tumefaciens. PLoS One 2015;10:e0132693.10.1371/journal.pone.0132693Suche in Google Scholar PubMed PubMed Central

37. Sumiya N, Fujiwara T, Kobayashi Y, Misumi O, Miyagishima SY. Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 2014;9:e111261.10.1371/journal.pone.0111261Suche in Google Scholar PubMed PubMed Central

38. Tablizo FA, Lluisma AO. The mitochondrial genome of the red alga Kappaphycus striatus (“Green Sacol” variety): complete nucleotide sequence, genome structure and organization, and comparative analysis. Mar Genomics 2014;18:155–61.10.1016/j.margen.2014.05.006Suche in Google Scholar PubMed

39. Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2013;5:2368–81.10.1093/gbe/evt179Suche in Google Scholar PubMed PubMed Central

40. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 2015;27:1–9.10.1016/j.ymben.2014.10.002Suche in Google Scholar PubMed

41. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 2001;292:2073–5.10.1126/science.160015Suche in Google Scholar PubMed

42. Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 2011;13:89–95.10.1016/j.ymben.2010.10.003Suche in Google Scholar PubMed

43. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 2010;9:486–501.10.1128/EC.00364-09Suche in Google Scholar PubMed PubMed Central

44. Herve C, De-Franco PO, Groisillier A, Tonon T, Boyen C. New members of the glutathione transferase family discovered in red and brown algae. Biochem J 2008;412:535–44.10.1042/BJ20071464Suche in Google Scholar PubMed

45. Jiang P, Qin S, Tseng CK. Expression of the lacZ reporter gene in sporophytes of the seaweed Laminariajaponica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 2003;21:1211–6.10.1007/s00299-003-0645-2Suche in Google Scholar PubMed

46. Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 2010;76:6741–50.10.1128/AEM.01056-10Suche in Google Scholar PubMed PubMed Central

47. Happe T, Schutz K, Bohme H. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2000;182:1624–31.10.1128/JB.182.6.1624-1631.2000Suche in Google Scholar PubMed PubMed Central

48. Hondo S, Takahashi M, Osanai T, Matsuda M, Hasunuma T, Tazuke A, et al. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J Biosci Bioeng 2015;120:510–7.10.1016/j.jbiosc.2015.03.004Suche in Google Scholar PubMed

49. Ifuku K, Yan D, Miyahara M, Inoue-Kashino N, Yamamoto YY, Kashino Y. A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis. Photosynth Res 2015;123:203–11.10.1007/s11120-014-0048-ySuche in Google Scholar PubMed

50. Apt KE, Grossman AR, Kroth-Pancic PG. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996;252:572–79.Suche in Google Scholar

51. Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. Peer J 2014;2:e394.10.7717/peerj.394Suche in Google Scholar PubMed PubMed Central

52. Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB. Chloroplast transformation in Euglenagracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Gen 2001;39:49–60.10.1007/s002940000174Suche in Google Scholar PubMed

53. Breglia SA, Slamovits CH, Leander BS. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. J Eukaryot Microbiol 2007;54:86–92.10.1111/j.1550-7408.2006.00233.xSuche in Google Scholar PubMed

54. Miller PW, Dunn WI, Schmidt RR. Alternative splicing of a precursor-mRNA encoded by the Chlorella sorokiniana NADP-specific glutamate dehydrogenase gene yields mRNAs for precursor proteins of isozyme subunits with different ammonium affinities. Plant Mol Biol 1998;37:243–63.10.1023/A:1005921018137Suche in Google Scholar

55. Webber AN, Bingham SE, Lee H. Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. Photosynth Res 1995;44: 191–205.10.1007/BF00018309Suche in Google Scholar PubMed

56. Feng S, Xue L, Liu H, Lu P. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 2009;36:1433–9.10.1007/s11033-008-9333-1Suche in Google Scholar PubMed

57. Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, et al. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 1994;91:5080–4.10.1073/pnas.91.11.5080Suche in Google Scholar PubMed PubMed Central

58. Hirata R, Takahashi M, Saga N, Mikami K. Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae. Mar Biotechnol 2011;13:1038–47.10.1007/s10126-011-9367-6Suche in Google Scholar PubMed

59. Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002;129:7–12.10.1104/pp.011023Suche in Google Scholar PubMed PubMed Central

60. Aires T, Serrao EA, Kendrick G, Duarte CM, Arnaud-Haond S. Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerparacemosa, track the invasion source. PLoS One 2013;8:e68429.10.1371/journal.pone.0068429Suche in Google Scholar PubMed PubMed Central

61. Johanningmeier U, Fischer D. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: engineering chloroplasts of microalgae for the production of bioactive compounds. In: Bio-Farms for Nutraceuticals. Boston, MA: Springer, 2010:144–51.10.1007/978-1-4419-7347-4_11Suche in Google Scholar PubMed

62. Adamczak M, Bornscheuer UT, Bednarski W. The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 2009;111(8):800–13.10.1002/ejlt.200900078Suche in Google Scholar

63. Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25(3):294–306.10.1016/j.biotechadv.2007.02.001Suche in Google Scholar PubMed

64. Lelong A, Haberkorn H, Le-Goic N, Hegaret H, Soudant P. A new insight into allelopathic effects of Alexandriumminutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microb Ecol 2011;62:919–30.10.1007/s00248-011-9889-5Suche in Google Scholar PubMed

65. Greenfield DI, Duquette A, Goodson A, Keppler CJ, Williams SH, Brock LM. The effects of three chemical algaecides on cell numbers and toxin content of the cyanobacteria Microcystis aeruginosa and Anabaenopsis sp. Environ Manage 2014;54:1110–20.10.1007/s00267-014-0339-2Suche in Google Scholar PubMed

66. He C, Baoxiang PE, Dezheng W. WangJinfu “Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts”. Front Chem Eng China 2007;1(1):11–5.10.1007/s11705-007-0003-ySuche in Google Scholar

67. Royon D, daz M, Ellenrieder G, Locatelli S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 2007;98:648–53.10.1016/j.biortech.2006.02.021Suche in Google Scholar PubMed

68. Miao X, Wu Q. High quality biodiesel production from heterotrophic microalgal oil. Bioresour Technol 2006;97:841–6.10.1016/j.biortech.2005.04.008Suche in Google Scholar

69. Ahmad M, Rashid S, Khan MA, Zafar M, Sultana S, Gulzar S. Optimization of base catalyzed transesterification of peanut oil biodiesel. Afr J Biotechnol 2009;8(3):441–6.Suche in Google Scholar

70. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 2008;99(6):1716–21.10.1016/j.biortech.2007.03.051Suche in Google Scholar

71. Ghadge SV, Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy 2005;28(6):601–5.10.1016/j.biombioe.2004.11.009Suche in Google Scholar

72. Meher LC, Dharmagadda VS, Naik SN. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol 2006;97(12):1392–7.10.1016/j.biortech.2005.07.003Suche in Google Scholar

73. Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 2010;101(19):7201–10.10.1016/j.biortech.2010.04.079Suche in Google Scholar

74. Darnoko D, Cheryan M. Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 2000;77(12):1263–7.10.1007/s11746-000-0198-ySuche in Google Scholar

75. Karmee SK, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 2005;96(13):1425–9.10.1016/j.biortech.2004.12.011Suche in Google Scholar

76. Korus RA, Hoffman DS, Bam N, Peterson CL, Drown DC. Transesterification process to manufacture ethyl ester of rape oil. In: The Proceedings of the First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, Vol. 2. National Renewable Energy Laboratory, Golden Co, 1993:815–26.Suche in Google Scholar

77. Chen L, Liu T, Zhang W, Chen X, Wang J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 2012;111:208–14.10.1016/j.biortech.2012.02.033Suche in Google Scholar

78. Saydut A, Duz MZ, Kaya C, Kafadar AB, Hamamci C. Transesterified sesame (Sesamumindicum L.) seed oil as a biodiesel fuel. Bioresour Technol 2008;99(14):6656–60.10.1016/j.biortech.2007.11.063Suche in Google Scholar

79. Antolın G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramırez AI. Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 2002;83(2):111–4.10.1016/S0960-8524(01)00200-0Suche in Google Scholar

80. Du W, Xu YY, Zeng J, Liu DH. Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnol Appl Biochem 2004;40(2):187–90.10.1042/BA20030142Suche in Google Scholar

81. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101(2):87–96.10.1263/jbb.101.87Suche in Google Scholar

82. Vijayaraghavan K, Hemanathan K. Biodiesel production from freshwater algae. Energy Fuels 2009;23(11):5448–53.10.1021/ef9006033Suche in Google Scholar

83. Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Nat Renew Energy La 1998;328:1–294.Suche in Google Scholar

84. Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev 2007;11(6):1300–11.10.1016/j.rser.2005.08.006Suche in Google Scholar

85. Nelson LA, Foglia TA, Marmer WN. Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 1996;73(9):1191–5.10.1007/BF02523383Suche in Google Scholar

86. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, et al. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 1999;76(7):789–93.10.1007/s11746-999-0067-6Suche in Google Scholar

87. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 2000;77(4):355–60.10.1007/s11746-000-0058-9Suche in Google Scholar

88. Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, et al. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Biosci Bioeng 2000;90(2):180–3.10.1016/S1389-1723(00)80107-3Suche in Google Scholar

89. Fedosov SN, Brask J, Pedersen AK, Nordblad M, Woodley JM, Xu X. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B. J Mol Catal B Enzym 2013;85:156–68.10.1016/j.molcatb.2012.09.011Suche in Google Scholar

90. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 2002;17(3–5):151–5.10.1016/S1381-1177(02)00022-XSuche in Google Scholar

91. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem Eng J 2014;90:103–13.10.1016/j.bej.2014.05.019Suche in Google Scholar

92. Taher H, Al-Zuhair S, AlMarzouqui A, Hashim I. Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 2011;55(1):23–31.10.1016/j.bej.2011.03.003Suche in Google Scholar

93. Al-Zuhair S, Hussein A, Al-Marzouqi AH, Hashim I. Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochem Eng J 2012;60:106–10.10.1016/j.bej.2011.10.010Suche in Google Scholar

94. Moreno-Pirajan JC, Giraldo L. Study of immobilized candida rugosa lipase for biodiesel fuel production from palm oil by flow micro calorimetry. Arab J Chem 2011;4(1):55–62.10.1016/j.arabjc.2010.06.019Suche in Google Scholar

95. Tan Z, Fang M, Du H, Song L, Ren D, Tang X, et al. Production of biodiesel catalyzed by Candida rugosa lipase at interface of w/o microemulsion system. J Braz Chem Soc 2014;25(9):1704–11.Suche in Google Scholar

96. Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, et al. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour Technol 2011;102(2):2105–8.10.1016/j.biortech.2010.08.034Suche in Google Scholar PubMed

97. Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 2005;96(7):769–77.10.1016/j.biortech.2004.05.029Suche in Google Scholar PubMed

98. Guldhe A, Singh B, Rawat I, Permaul K, Bux F. Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 2015;147:117–24.10.1016/j.fuel.2015.01.049Suche in Google Scholar

99. Devanesan MG, Viruthagiri T, Sugumar N. Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 2007;6(21):2497–501.10.5897/AJB2007.000-2396Suche in Google Scholar

100. Huang D, Han S, Han Z, Lin Y. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichiapastoris whole cells in an isooctane system. Biochem Eng J 2012;63:10–4.10.1016/j.bej.2010.08.009Suche in Google Scholar

101. Huang J, Xia J, Yang Z, Guan F, Cui D, Guan G, et al. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichiapastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels 2014;7(1):111.10.1186/1754-6834-7-111Suche in Google Scholar PubMed PubMed Central

102. Dossat V, Combes D, Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb Technol 1999;25(3–5):194–200.10.1016/S0141-0229(99)00026-5Suche in Google Scholar

103. Xu Y, Nordblad M, Nielsen PM, Brask J, Woodley JM. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. J Mol Catal B Enzym 2011;72(3–4):213–9.10.1016/j.molcatb.2011.06.008Suche in Google Scholar

104. Chen HC, Ju HY, Wu TT, Liu YC, Lee CC, Chang C, et al. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. Biomed Res Int 2010;2011:6.10.1155/2011/950725Suche in Google Scholar

105. Azócar L, Navia R, Beroiz L, Jeison D, Ciudad G. Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnol 2014;31(5):422–9.10.1016/j.nbt.2014.04.006Suche in Google Scholar

106. Modi MK, Reddy JR, Rao BV, Prasad RB. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 2007;98(6):1260–4.10.1016/j.biortech.2006.05.006Suche in Google Scholar

107. Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 2009;102(5):1298–315.10.1002/bit.22256Suche in Google Scholar

108. Du W, Xu Y, Liu D, Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 2004;30(3–4):125–9.10.1016/j.molcatb.2004.04.004Suche in Google Scholar

109. Li L, Du W, Liu D, Wang L, Li Z. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 2006;43(1–4):58–62.10.1016/j.molcatb.2006.06.012Suche in Google Scholar

110. Zheng Y, Quan J, Ning X, Zhu LM, Jiang B, He ZY. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World J Microbiol Biotechnol 2009;25(1):41.10.1007/s11274-008-9858-4Suche in Google Scholar

111. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 2002;17(3–5):133–42.10.1016/S1381-1177(02)00020-6Suche in Google Scholar

112. Modi MK, Reddy JR, Rao BV, Prasad RB. Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 2006;28(9):637–40.10.1007/s10529-006-0027-2Suche in Google Scholar

113. Rathore V, Madras G. Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 2007;86(17–18):2650–9.10.1016/j.fuel.2007.03.014Suche in Google Scholar

114. del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A. Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. J Supercrit Fluid 2004;31(2):159–74.10.1016/j.supflu.2003.11.005Suche in Google Scholar

115. Reverchon E, Marrone C. Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J Supercrit Fluid 2001;19(2):161–75.10.1016/S0896-8446(00)00093-0Suche in Google Scholar

116. Sovova H, Zarevucka M, Vacek M, Stránský K. Solubility of two vegetable oils in supercritical CO2. J Supercrit Fluid 2001;20(1):15–28.10.1016/S0896-8446(01)00057-2Suche in Google Scholar

117. Romero MD, Calvo L, Alba C, Daneshfar A, Ghaziaskar HS. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb Technol 2005;37(1):42–8.10.1016/j.enzmictec.2004.12.033Suche in Google Scholar

118. Celia E, Cernia E, Palocci C, Soro S, Turchet T. Tuning Pseudomonas cepacea lipase (PCL) activity in supercritical fluids. J Supercrit Fluid 2005;33(2):193–9.10.1016/j.supflu.2004.07.002Suche in Google Scholar

119. Novak Z, Habulin M, Krmelj V, Knez Ž. Silica aerogels as supports for lipase catalyzed esterifications at sub-and supercritical conditions. J Supercrit Fluid 2003;27(2):169–78.10.1016/S0896-8446(02)00233-4Suche in Google Scholar

120. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S. Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J Supercrit Fluid 2014;86:57–66.10.1016/j.supflu.2013.11.020Suche in Google Scholar

121. Andrich G, Zinnai A, Nesti U, Venturi F. Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Aliment 2006;35(2):195–203.10.1556/AAlim.35.2006.2.6Suche in Google Scholar

122. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 2003;356:328–34.10.1016/S0020-1693(03)00363-3Suche in Google Scholar

123. Mendes RL, Fernandes HL, Coelho J, Reis EC, Cabral JM, Novais JM, et al. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 1995;53(1):99–103.10.1016/0308-8146(95)95794-7Suche in Google Scholar

124. Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 2011;102(21):10151–3.10.1016/j.biortech.2011.08.064Suche in Google Scholar PubMed

125. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol 2011;102(1):178–85.10.1016/j.biortech.2010.06.136Suche in Google Scholar PubMed

126. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 2005;107(6):381–6.10.1002/ejlt.200501130Suche in Google Scholar

127. Madeira Lau R, Van Rantwijk F, Seddon KR, Sheldon RA. Lipase-catalyzed reactions in ionic liquids. Org Lett 2000;2(26):4189–91.10.1021/ol006732dSuche in Google Scholar PubMed

128. Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL. Lipase catalysis in ionic liquids and supercritical carbon dioxide at 150 C. Biotechnol Prog 2003;19(2):380–2.10.1021/bp025759oSuche in Google Scholar PubMed

129. Lozano P, De Diego T, Carrie D, Vaultier M, Iborra JL. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 2001;23(18):1529–33.10.1023/A:1011697609756Suche in Google Scholar

130. Dang DT, Ha SH, Lee SM, Chang WJ, Koo YM. Enhanced activity and stability of ionic liquid-pretreated lipase. J Mol Catal B Enzym 2007;45(3–4):118–21.10.1016/j.molcatb.2007.01.001Suche in Google Scholar

131. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 2003;125(14):4125–31.10.1021/ja028557xSuche in Google Scholar PubMed

132. Klähn M, Lim GS, Wu P. How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 2011;13(41):18647–60.10.1039/c1cp22056jSuche in Google Scholar PubMed

133. Choi SA, Oh YK, Jeong MJ, Kim SW, Lee JS, Park JY. Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 2014;65:169–74.10.1016/j.renene.2013.08.015Suche in Google Scholar

134. Young G, Nippgen F, Titterbrandt S, Cooney MJ. Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 2010;72(1):118–21.10.1016/j.seppur.2010.01.009Suche in Google Scholar

135. Lozano P, Bernal JM, Vaultier M. Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 2011;90(11):3461–7.10.1016/j.fuel.2011.06.008Suche in Google Scholar

136. Gonzalez C, Marciniak J, Villaverde S, Leon C, Garcia PA, Munoz R. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia. Water Sci Technol 2008;58(1):95–102.10.2166/wst.2008.655Suche in Google Scholar PubMed

137. Hernandez D, Riano B, Coca M, Solana M, Bertucco A, Garcia-Gonzalez MC. Microalgae cultivation in high rate algal ponds using slaughter house wastewater for biofuel applications. Chem Eng J 2016;285:449–58.10.1016/j.cej.2015.09.072Suche in Google Scholar

138. Rawat I, Kumar RR, Mutanda T, Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 2013;103:444–67.10.1016/j.apenergy.2012.10.004Suche in Google Scholar

139. Ho SH, Chen CY, Lee DJ, Chang JS. Perspectives on microalgal CO2-emission mitigation systems–a review. Biotechnol Adv 2011;29(2):189–98.10.1016/j.biotechadv.2010.11.001Suche in Google Scholar PubMed

140. Anbalagan A, Toledo-Cervantes A, Posadas E, Rojo EM, Lebrero R, Gonzalez-Sanchez A, et al. Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: evaluation of tubular algal-bacterial photo bioreactor. J CO2 Util 2017;21:353–9.10.1016/j.jcou.2017.07.016Suche in Google Scholar

141. Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances: characterization, structure and function. Berlin, Heidelberg: Springer Science & Business Media; 2012.Suche in Google Scholar

142. Brennan L, Owende P. Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 2010;14(2):557–77.10.1016/j.rser.2009.10.009Suche in Google Scholar

143. Zhang Q, Li X, Guo D, Ye T, Xiong M, Zhu L, et al. Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings. Bioresour Technol 2018;253:323–32.10.1016/j.biortech.2018.01.014Suche in Google Scholar PubMed

144. Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 2012;109(7):1674–84.10.1002/bit.24451Suche in Google Scholar PubMed

145. Guzzon A, Bohn A, Diociaiuti M, Albertano P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 2008;42(16):4357–67.10.1016/j.watres.2008.07.029Suche in Google Scholar PubMed

146. Wu Y, Hu Z, Yang L, Graham B, Kerr PG. The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 2011;102(3):2419–26.10.1016/j.biortech.2010.10.113Suche in Google Scholar PubMed

147. Ozkan A, Kinney K, Katz L, Berberoglu H. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 2012;114:542–8.10.1016/j.biortech.2012.03.055Suche in Google Scholar PubMed

Received: 2019-08-11
Accepted: 2020-01-06
Published Online: 2020-03-05
Published in Print: 2020-06-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/reveh-2019-0061/html?lang=de
Button zum nach oben scrollen