Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes
Abstract
Bioethanol is currently the only alternative to gasoline that can be used immediately without having to make any significant changes in the way fuel is distributed. In addition, the carbon dioxide (CO2) released during the combustion of bioethanol is the same as that used by the plant in the atmosphere for its growth, so it does not participate in the increase of the greenhouse effect. Bioethanol can be obtained by fermentation of plants containing sucrose (beet, sugar cane…) or starch (wheat, corn…). However, large-scale use of bioethanol implies the use of very large agricultural surfaces for maize or sugarcane production. Lignocellulosic biomass (LCB) such as agricultural residues for the production of bioethanol seems to be a solution to this problem due to its high availability and low cost even if its growth still faces technological difficulties. In this review, we present an overview of lignocellulosic biomass, the different methods of pre-treatment of LCB and the various fermentation processes that can be used to produce bioethanol from LCB.
Acknowledgments
The authors gratefully acknowledge all laboratories and schools.
Research funding: Authors state no funding involved.
Conflict of interest: Authors state no conflict of interest.
Informed consent: Informed consent is not applicable.
Ethical approval: The conducted research is not related to either human or animal use.
References
1. Australian Academy of Science. The science of climate change: questions and answers. Canberra: Australian Academy of Science; 2015.Suche in Google Scholar
2. Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 2008;26(1):89–105.10.1016/j.biotechadv.2007.09.002Suche in Google Scholar
3. Commission E. Report from the commission to the European parliament, the Council, the European economic and social committee and the committee of the regions. Brussels: Commission European; 2015.Suche in Google Scholar
4. Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 2000;84–86(1–9):5–38.10.1007/978-1-4612-1392-5_1Suche in Google Scholar
5. Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefining 2007;1(2):119–34.10.1002/bbb.4Suche in Google Scholar
6. Moon SK, Kim SW, Choi GW. Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 2012;157(4):584–9.10.1016/j.jbiotec.2011.06.009Suche in Google Scholar
7. Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 2011;52(2):858–75.10.1016/j.enconman.2010.08.013Suche in Google Scholar
8. Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 2009;86(11):2273–82.10.1016/j.apenergy.2009.03.015Suche in Google Scholar
9. Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 2016;66:751–74.10.1016/j.rser.2016.08.038Suche in Google Scholar
10. Galbe M, Zacchi G. Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 2012;46:70–8.10.1016/j.biombioe.2012.03.026Suche in Google Scholar
11. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 2012;38(4):522–50.10.1016/j.pecs.2012.02.002Suche in Google Scholar
12. Lee J. Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 1997;56(1):1–24.10.1016/S0168-1656(97)00073-4Suche in Google Scholar
13. Liu CF, Sun RC. Cellulose. 1st ed. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Oxford: Elsevier; 2010:131–67.10.1016/B978-0-444-53234-3.00005-5Suche in Google Scholar
14. Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose –– its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 2012;90(2):735–64.10.1016/j.carbpol.2012.05.026Suche in Google Scholar PubMed
15. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 2003;125(47):14300–6.10.1021/ja037055wSuche in Google Scholar PubMed
16. Bochek AM. Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ J Appl Chem 2003;76(11):1711–9.10.1023/B:RJAC.0000018669.88546.56Suche in Google Scholar
17. Satgé C, Granet R, Verneuil B, Branland P, Krausz P. Synthesis and properties of biodegradable plastic films obtained by microwave-assisted cellulose acylation in homogeneous phase. Comptes Rendus Chim 2004;7(2):135–42.10.1016/j.crci.2003.11.003Suche in Google Scholar
18. Ren JL, Sun RC. Hemicelluloses. 1st ed. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Oxford: Elsevier; 2010:73–130.10.1016/B978-0-444-53234-3.00004-3Suche in Google Scholar
19. Buranov AU, Mazza G. Lignin in straw of herbaceous crops. Ind Crops Prod 2008;28(3):237–59.10.1016/j.indcrop.2008.03.008Suche in Google Scholar
20. Lu F, Ralph J. Lignin. 1st ed. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Oxford: Elsevier; 2010:169–207.10.1016/B978-0-444-53234-3.00006-7Suche in Google Scholar
21. Clarke S, Fernando P. Characteristics of biomass combustion. Available at:http://www.omafra.gov.on.ca/french/engineer/facts/11-034.htm.Suche in Google Scholar
22. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 2012;38(4):449–67.10.1016/j.pecs.2012.03.002Suche in Google Scholar
23. Sassner P, Galbe M, Zacchi G. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 2008;32(5):422–30.10.1016/j.biombioe.2007.10.014Suche in Google Scholar
24. Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 2010;101(13):4744–53.10.1016/j.biortech.2009.11.080Suche in Google Scholar
25. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 2012;46:25–35.10.1016/j.biombioe.2012.04.020Suche in Google Scholar
26. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 2010;101(13):4851–61.10.1016/j.biortech.2009.11.093Suche in Google Scholar
27. Fatih Demirbas M, Balat M, Balat H. Biowastes-to-biofuels. Energy Convers Manag 2011;52(4):1815–28.10.1016/j.enconman.2010.10.041Suche in Google Scholar
28. Hamelinck CN, Van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 2005;28(4):384–410.10.1016/j.biombioe.2004.09.002Suche in Google Scholar
29. Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 2010;101(13):4992–5002.10.1016/j.biortech.2009.11.007Suche in Google Scholar
30. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 2016;109:252–67.10.1016/j.bej.2016.01.021Suche in Google Scholar
31. Paulová L, Patáková P, Rychtera M, Additional KM. Production of 2nd generation of liquid biofuels chapter. Liquid, Gaseous and Solid Biofuels. London: Intech Open Access; 2013:47–78.10.5772/53492Suche in Google Scholar
32. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005;96(6):673–86.10.1016/j.biortech.2004.06.025Suche in Google Scholar
33. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002;83(1):1–11.10.1016/S0960-8524(01)00212-7Suche in Google Scholar
34. Szczodrak J, Fiedurek J. Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 1996;10(5–6):367–75.10.1016/0961-9534(95)00114-XSuche in Google Scholar
35. Ibrahim HAH. Pretreatment of straw for bioethanol production. Energy Procedia 2012;14:542–51.10.1016/j.egypro.2011.12.973Suche in Google Scholar
36. Jonsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 2013;6(1):1–10.10.1186/1754-6834-6-16Suche in Google Scholar PubMed PubMed Central
37. Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 2007;50(1):1–39.10.1016/j.resconrec.2006.05.007Suche in Google Scholar
38. Zhang Y, Chen H. Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chem Eng Sci 2012;75:177–82.10.1016/j.ces.2012.02.052Suche in Google Scholar
39. Sun Y, Cheng JJ. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 2005;96(14):1599–606.10.1016/j.biortech.2004.12.022Suche in Google Scholar PubMed
40. Chen H, Han Y, Xu J. Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem 2008;43(12):1462–6.10.1016/j.procbio.2008.07.003Suche in Google Scholar
41. Sánchez ÓJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008;99(13):5270–95.10.1016/j.biortech.2007.11.013Suche in Google Scholar PubMed
42. Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 2008;87(17–18):3640–7.10.1016/j.fuel.2008.06.009Suche in Google Scholar
43. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 2007;98(16):3000–11.10.1016/j.biortech.2006.10.022Suche in Google Scholar PubMed
44. Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energy 2012;37(1):19–27.10.1016/j.renene.2011.06.045Suche in Google Scholar
45. Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology. Berlin: Springer; 2007:41–65.10.1007/10_2007_070Suche in Google Scholar
46. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 2005;96(18):1986–93.10.1016/j.biortech.2005.01.013Suche in Google Scholar
47. Ziemiński K, Romanowska I, Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag 2012;32(6):1131–7.10.1016/j.wasman.2012.01.016Suche in Google Scholar
48. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 2013;27:77–93.10.1016/j.rser.2013.06.033Suche in Google Scholar
49. Wan C, Li Y. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol J 2010;101(16):6398–403.10.1016/j.biortech.2010.03.070Suche in Google Scholar
50. Gupta VK, Tuohy MG. Biofuel technologies, recent development. Heidelberg: Springer; 2013.10.1007/978-3-642-34519-7Suche in Google Scholar
51. Nazhad MM, Ramos LP, Paszner L, Saddler JN. Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme Microb Technol 1995;17(1):68–74.10.1016/0141-0229(94)00057-XSuche in Google Scholar
52. Guibet J-C, Chauvel A. Using oxygenated organic products as fuels in engines. Part two: different systems for producing alcohol fuels. Technico-economic analysis. Oil Gas Sci Technol 2006;36(6):685–733.Suche in Google Scholar
53. Binod P, Janu KU, Sindhu R, Pandey A. Hydrolysis of lignocellulosic biomass for bioethanol production. Alternative Feedstocks and Conversion Processes. Waltham: Academic Press; 2011:229–50.10.1016/B978-0-12-385099-7.00010-3Suche in Google Scholar
54. Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007;315(5813):804–7.10.1126/science.1137016Suche in Google Scholar PubMed
55. Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EPS, Stambuk BU. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 2014;63:13–20.10.1016/j.enzmictec.2014.05.003Suche in Google Scholar PubMed
56. Schmid RD. Pocket Atlas of biotechnology and genetic engineering. Ballan-Miré, French: Pocket Atlas; 2005.Suche in Google Scholar
57. Dragone G, Silva DP, De Almeida E Silva JB. Factors influencing ethanol production rates at high-gravity brewing. LWT – Food Sci Technol 2004;37(7):797–802.10.1016/j.lwt.2004.03.006Suche in Google Scholar
58. Aldiguier AS, Alfenore S, Cameleyre X, Goma G, Uribelarrea JL, Guillouet SE, et al. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Bioprocess Biosyst Eng 2004;26(4):217–22.10.1007/s00449-004-0352-6Suche in Google Scholar PubMed
59. Buzás Z, Dallmann K, Szajáni B. Influenc of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells. Biotechnol Bioeng 1989;34(6):882–4.10.1002/bit.260340620Suche in Google Scholar PubMed
60. Rosa MF, Sá-Correia I. Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 1996;135(2–3):271–4.10.1111/j.1574-6968.1996.tb08000.xSuche in Google Scholar PubMed
61. Tavva SSMD, Deshpande A, Durbha SR, Palakollu VAR, Goparaju AU, Yechuri VR, et al. Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass. Renew Energy 2016;86:1317–23.10.1016/j.renene.2015.09.074Suche in Google Scholar
62. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, et al. Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 2012;47(10):1452–9.10.1016/j.procbio.2012.05.016Suche in Google Scholar
63. Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and SSF processes for the bioconversion of steam-explode wheat straw. J Ind Microbiol Biotechnol 2000;25(4):184–92.10.1038/sj.jim.7000054Suche in Google Scholar
64. Kang KE, Chung DP, Kim Y, Chung BW, Choi GW. High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 2015;145:18–24.10.1016/j.fuel.2014.12.052Suche in Google Scholar
65. Li H, Kim NJ, Jiang M, Kang JW, Chang HN. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour Technol 2009;100(13):3245–51.10.1016/j.biortech.2009.01.021Suche in Google Scholar PubMed
66. Lu J, Li X, Yang R, Yang L, Zhao J, Liu Y, et al. Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae. Bioresour Technol 2013;144:539–47.10.1016/j.biortech.2013.07.007Suche in Google Scholar
67. Koo BW, Kim HY, Park N, Lee SM, Yeo H, Choi IG. Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass Bioenergy 2011;35(5):1833–40.10.1016/j.biombioe.2011.01.014Suche in Google Scholar
68. Öhgren K, Rudolf A, Galbe M, Zacchi G. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 2006;30(10):863–9.10.1016/j.biombioe.2006.02.002Suche in Google Scholar
69. Scordia D, Cosentino SL, Jeffries TW. Effectiveness of dilute oxalic acid pretreatment of Miscanthus×giganteus biomass for ethanol production. Biomass Bioenergy 2013;59:540–8.10.1016/j.biombioe.2013.09.011Suche in Google Scholar
70. Sipos B, Kreuger E, Svensson SE, Réczey K, Björnsson L, Zacchi G. Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 2010;34(12):1721–31.10.1016/j.biombioe.2010.07.003Suche in Google Scholar
71. Olofsson K, Wiman M, Lidén G. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 2010;145(2):168–75.10.1016/j.jbiotec.2009.11.001Suche in Google Scholar
72. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. 2008;100(6):1122–31.10.1002/bit.21849Suche in Google Scholar
73. Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, Tikhonov A, et al. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour Technol 2011;102(17):8310–3.10.1016/j.biortech.2011.05.075Suche in Google Scholar
74. Krishna SH, Reddy TJ, Chowdary GV. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 2001;77(2):193–6.10.1016/S0960-8524(00)00151-6Suche in Google Scholar
75. Linde M, Galbe M, Zacchi G. Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb Technol 2007;40(5):1100–7.10.1016/j.enzmictec.2006.08.014Suche in Google Scholar
76. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 2015;33(6):1091–107.10.1016/j.biotechadv.2014.12.002Suche in Google Scholar
77. Roca C, Olsson L. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2003;60(5):560–3.10.1007/s00253-002-1147-9Suche in Google Scholar
78. Triwahyuni E, Muryanto, Sudiyani Y, Abimanyu H. The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia 2015;68:138–46.10.1016/j.egypro.2015.03.242Suche in Google Scholar
79. Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, et al. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. J Biotechnol 2010;150(3):404–7.10.1016/j.jbiotec.2010.09.962Suche in Google Scholar
80. Niklitschek T, Salazar O, Carmona R, Garcia A, Lienqueo ME. Comparison of shf and ssf processes from forest residues pretreated with ionic liquid to obtain bioethanol. J Biotechnol 2010;150:181–181.10.1016/j.jbiotec.2010.08.472Suche in Google Scholar
81. Rana V, Eckard AD, Ahring BK. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. J Korean Phys Soc 2014;3(1):1–13.10.1186/2193-1801-3-516Suche in Google Scholar
82. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 2004;39(11):1533–42.10.1016/S0032-9592(03)00285-1Suche in Google Scholar
83. Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, et al. Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 2011;86(6):881–7.10.1002/jctb.2604Suche in Google Scholar
84. Wu Z, Lee YY. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl Biochem Biotechnol A: Enzym Eng Biotechnol 1998;7072:479–92.10.1007/978-1-4612-1814-2_44Suche in Google Scholar
85. Mesa L, González E, Romero I, Ruiz E, Cara C, Castro E. Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chem Eng J 2011;175(1):185–91.10.1016/j.cej.2011.09.092Suche in Google Scholar
86. Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 2006;126(4):488–98.10.1016/j.jbiotec.2006.05.001Suche in Google Scholar PubMed
87. Zerva A, Savvides AL, Katsifas EA, Karagouni AD, Hatzinikolaou DG. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour Technol 2014;162:294–9.10.1016/j.biortech.2014.03.137Suche in Google Scholar PubMed
88. Agbor V, Carere C, Cicek N, Sparling R, Levin D. Biomass pretreatment for consolidated bioprocessing (CBP). Advances in Biorefineries. Cambridge: Woodhead Publishing; 2014:234–58.10.1533/9780857097385.1.234Suche in Google Scholar
89. Chinn MS, Nokes SE, Strobel HJ. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnol Prog 2006;22(1):53–9.10.1021/bp050163xSuche in Google Scholar PubMed
90. Inokuma K, Takano M, Hoshino K. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochem Eng J 2013;72:24–32.10.1016/j.bej.2012.12.009Suche in Google Scholar
91. Mizuno R, Ichinose H, Honda M, Takabatake K, Sotome I, Takai T, et al. Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using flammulina velutipes. Biosci Biotechnol Biochem 2009;73(7):1671–3.10.1271/bbb.90099Suche in Google Scholar PubMed
92. Flores JA, Gschaedler A, Amaya-Delgado L, Herrera-López EJ, Arellano M, Arrizon J. Simultaneous saccharification and fermentation of agave tequilana fructans by kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresour Technol 2013;146:267–73.10.1016/j.biortech.2013.07.078Suche in Google Scholar PubMed
93. Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 2012;112(1):38–44.10.1111/j.1365-2672.2011.05171.xSuche in Google Scholar PubMed
94. Hu N, Yuan B, Sun J, Wang SA, Li FL. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 2012;95(5):1359–68.10.1007/s00253-012-4240-8Suche in Google Scholar PubMed
95. Brethauer S, Studer MH. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 2014;7(4):1446–53.10.1039/c3ee41753kSuche in Google Scholar
96. Zuroff TR, Xiques SB, Curtis WR. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels 2013;6(1):1–12.10.1186/1754-6834-6-59Suche in Google Scholar PubMed PubMed Central
97. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact 2014;13(1):1–11.10.1186/s12934-014-0092-5Suche in Google Scholar PubMed PubMed Central
98. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs. Process Biochem 2014;49(11):1941–9.10.1016/j.procbio.2014.07.009Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Climate change, extreme rainfall events, drinking water and enteric disease
- Review Articles
- The roles of radio-functional natural chemicals for the development of cancer radiation therapy
- The “Moscow signal” epidemiological study, 40 years on
- Sources of lead exposure in various countries
- Exposure to environmental toxicants and young children’s cognitive and social development
- Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes
- Environmental pharmacology: source, impact and solution
- Mini Reviews
- An overview of health hazards of volatile organic compounds regulated as indoor air pollutants
- Microalgae to biofuels production: a review on cultivation, application and renewable energy
- Letter to the Editor
- Authors’ Reply to Drießen’s Letter to the Editor on “A novel database of bio-effects from non-ionizing radiation”
Artikel in diesem Heft
- Frontmatter
- Editorial
- Climate change, extreme rainfall events, drinking water and enteric disease
- Review Articles
- The roles of radio-functional natural chemicals for the development of cancer radiation therapy
- The “Moscow signal” epidemiological study, 40 years on
- Sources of lead exposure in various countries
- Exposure to environmental toxicants and young children’s cognitive and social development
- Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes
- Environmental pharmacology: source, impact and solution
- Mini Reviews
- An overview of health hazards of volatile organic compounds regulated as indoor air pollutants
- Microalgae to biofuels production: a review on cultivation, application and renewable energy
- Letter to the Editor
- Authors’ Reply to Drießen’s Letter to the Editor on “A novel database of bio-effects from non-ionizing radiation”