Abstract
Comminution processes play a pivotal role in diverse applications, ranging from food processing, to mining and materials engineering. The pharmaceutical industry is no exception, with an increased focus on particle engineering to overcome the growing challenges related to the complexity of new drug molecules such as poor water solubility or stability issues. Additionally, the preparation of powders for pulmonary, transdermal, topical, ophthalmic, oral or parenteral administration often requires specific particle size requirements. Thus, milling technologies offer an excellent option for controlling particle size, improving the stability, dissolution, absorption rate, and bioavailability of poorly water-soluble drugs. They also contribute to enhancing pharmaceutical forms and overall product performance. This review highlights the different types of technologies used for comminution, the respective advantages and drawbacks, as well as connected topics including feed material properties, analytical techniques, process analytical technology, process safety, new top-down technologies and key information to consider when selecting a technology. Thus, an in-depth approach of comminution in the pharmaceutical industry is presented. This compilation serves as a source of comprehensive information for those who decide to initiate research projects in this field, or to update their existing literature knowledge and understanding.
Funding source: Fundação para a Ciência e a Tecnologia and Hovione Farmaciência SA.
Award Identifier / Grant number: PD/BDE/150683/2020
Funding source: Fundação para a Ciência e a Tecnologia
Award Identifier / Grant number: UIDP/00313/2020
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: AR: conceptualization, writing-original draft, elaborated tables and figures. FM, JS, AP: conceptualization, writing-review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: AR acknowledges the PhD grant PD/BDE/150683/2020, assigned by FCT (Fundação para a Ciência e Tecnologia, Portugal) and the Hovione Farmaciência SA., from Drugs R&D Doctoral Program. AR, JS and AP acknowledge Fundação para a Ciência e a Tecnologia (FCT), the Portuguese Agency for Scientific Research, for financial support through project UIDP/00313/2020.
-
Data availability: Not applicable.
References
Abbireddy, C. and Clayton, C. (2009). A review of modern particle sizing methods. Proc. Inst. Civ. Eng. Geotech. Eng. 162: 193–201, https://doi.org/10.1680/geng.2009.162.4.193.Search in Google Scholar
Agimelen, O.S., Svoboda, V., Ahmed, B., Cardona, J., Dziewierz, J., Brown, C., McGlone, T., Cleary, A., Tachtatzis, C., Michie, C., et al.. (2017). Monitoring crystal breakage in wet milling processes using inline imaging and chord length distribution measurements. arXiv Data Anal. Stat. Probab. 1703.09186: 1–33.Search in Google Scholar
Agimelen, O.S., Svoboda, V., Ahmed, B., Cardona, J., Dziewierz, J., Brown, C., McGlone, T., Cleary, A., Tachtatzis, C., Michie, C., et al.. (2018). Multi-sensor inline measurements of crystal size and shape distributions during high shear wet milling of crystal slurries. Adv. Powder Technol. 29: 2987–2995, https://doi.org/10.1016/j.apt.2018.09.003.Search in Google Scholar
Ahmed, B., Brown, C.J., McGlone, T., Bowering, D.L., Sefcik, J., and Florence, A.J. (2019). Engineering of acetaminophen particle attributes using a wet milling crystallisation platform. Int. J. Pharm. 554: 201–211, https://doi.org/10.1016/j.ijpharm.2018.10.073.Search in Google Scholar PubMed
Akhtar, K., Khan, S.A., Khan, S.B., and Asiri, A.M. (2018). Scanning electron microscopy: principle and applications in nanomaterials characterization. In: Sharma, S. (Ed.). Handbook of materials characterization. Springer, Cham, pp. 113–145.10.1007/978-3-319-92955-2_4Search in Google Scholar
Aldeeb, M.M.E., Wilar, G., Suhandi, C., Elamin, K.M., and Wathon, N. (2024). Nanosuspension-based drug delivery systems for topical applications nanosuspension-based drug delivery systems for topical applications. Int. J. Nanomed. 19: 825–844, https://doi.org/10.2147/ijn.s447429.Search in Google Scholar
Alemán, J., Chadwick, A.V., He, J., Hess, M., Horie, K., Jones, R.G., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., et al.. (2007). Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 79: 1801–1829, https://doi.org/10.1351/pac200779101801.Search in Google Scholar
Ali, M. (2010). Pulmonary drug delivery. In: Kulkarni, V. (Ed.). Handbook of non-invasive drug delivery systems, Vol. 4. Elsevier Inc., MA, pp. 209–246, https://doi.org/10.1016/b978-0-8155-2025-2.10009-5.Search in Google Scholar
Allian, A., Shah, N.P., Ferretti, A.C., Brown, D.B., Kolis, S.P., and Sperry, J.B. (2020). Process safety in the pharmaceutical industry-part I: thermal and reaction hazard evaluation processes and techniques. Org. Process Res. Dev. 24: 2529–2548, https://doi.org/10.1021/acs.oprd.0c00226.Search in Google Scholar
Al-Nuzal, S. and Mohammed, M. (2017). Fluidized bed opposed jet mill system for processing inorganic materials. IOP Conf. Ser. Mater. Sci. Eng. 225: 012002, https://doi.org/10.1088/1757-899x/225/1/012002.Search in Google Scholar
Amasya, G., Aksu, B., Badilli, U., Onay-Besikci, A., and Tarimci, N. (2019). QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int. J. Pharm. 563: 110–121, https://doi.org/10.1016/j.ijpharm.2019.03.056.Search in Google Scholar PubMed
Amyotte, P.R. and Eckhoff, R.K. (2010). Dust explosion causation, prevention and mitigation: an overview. J. Chem. Heal. Saf. 17: 15–28, https://doi.org/10.1016/j.jchas.2009.05.002.Search in Google Scholar
Andrews, G., Jones, D., Zhai, H., Diak, O.A., and Walker, G. (2007). Effects of grinding in pharmaceutical tablet production. In: Gad, S. (Ed.). Pharmaceutical manufacturing handbook: production and processes. Wiley & Sons, Inc., NJ, pp. 1165–1190.10.1002/9780470259818.ch29Search in Google Scholar
Ao, C.K., Jiang, Y., Zhang, L., Yan, C., Ma, J., Liu, C., Jiang, Y., Zhang, W., and Soh, S. (2022). Balancing charge dissipation and generation: mechanisms and strategies for achieving steady-state charge of contact electrification at interfaces of matter. J. Mater. Chem. A 10: 19572–19605, https://doi.org/10.1039/d2ta03232e.Search in Google Scholar
Atiemo-Obeng, V.A. and Calabrese, R.V. (2004). Rotor–stator mixing devices. In: Paul, E., Atiemo-Obeng, V., and Kresta, S. (Eds.). Handbook of industrial mixing. John Wiley & Sons, Inc., NJ, pp. 479–505.10.1002/0471451452.ch8Search in Google Scholar
Augusto, P.E.D., Ibarz, A., and Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. J. Food Eng. 111: 570–579, https://doi.org/10.1016/j.jfoodeng.2012.03.015.Search in Google Scholar
Awad, W.M., Davies, D.W., Kitagawa, D., Halabi, J.M., Al-handawi, M.B., Tahir, I., Tong, F., Campillo-alvarado, G., Shtukenberg, A.G., Alkhidir, T., et al.. (2023). Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52: 3098–3169, https://doi.org/10.1039/d2cs00481j.Search in Google Scholar PubMed
Bailey, A.G. (1984). Electrostatic phenomena during powder handling. Powder Technol. 37: 71–85, https://doi.org/10.1016/0032-5910(84)80007-8.Search in Google Scholar
Becker, M., Kwade, A., and Schwedes, J. (2001). Stress intensity in stirred media mills and its effect on specific energy requirement. Int. J. Miner. Process. 61: 189–208, https://doi.org/10.1016/s0301-7516(00)00037-5.Search in Google Scholar
Bernhardt, C., Reinsch, E., and Husemann, K. (1999). The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol. 105: 357–361, https://doi.org/10.1016/s0032-5910(99)00159-x.Search in Google Scholar
Bnà, S., Ponzini, R., Cestari, M., Cavazzoni, C., Cottini, C., and Benassi, A. (2020). Investigation of particle dynamics and classification mechanism in a spiral jet mill through computational fluid dynamics and discrete element methods. Powder Technol. 364: 746–773, https://doi.org/10.1016/j.powtec.2020.02.029.Search in Google Scholar
Brabazon, D. and Raffer, A. (2010). Advanced characterization techniques for nanostructures. In: Ahmed, W. and Jackson, M. (Eds.). Emerging nanotechnologies for manufacturing. William Andrew Publishing, NY, pp. 59–91.10.1016/B978-0-8155-1583-8.00003-XSearch in Google Scholar
Britton, L.G. (Ed.). (1999). Avoiding static ignition hazards in chemical operations: a CCPS concept book. Center for Chemical Process Safety of the AIChE, NY.10.1002/9780470935408Search in Google Scholar
Brodka-Pfeiffer, K., Langguth, P., Graß, P., and Häusler, H. (2003). Influence of mechanical activation on the physical stability of salbutamol sulphate. Eur. J. Pharm. Biopharm. 56: 393–400, https://doi.org/10.1016/s0939-6411(03)00134-6.Search in Google Scholar PubMed
Broseghini, M., D’Incau, M., Gelisio, L., Pugno, N.M., and Scardi, P. (2016). Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments. Mater. Des. 110: 365–374, https://doi.org/10.1016/j.matdes.2016.06.118.Search in Google Scholar
Burcham, C.L., Collins, P.C., Jarmer, D.J., and Seibert, K.D. (2008). Reduction of particle size of drug substance for low-dose drug products. In: Zheng, J. (Ed.). Formulation and analytical development for low-dose oral drug products. John Wiley & Sons, Inc., NJ, pp. 205–222.10.1002/9780470386361.ch8Search in Google Scholar
Burmeister, C.F. and Kwade, A. (2013). Process engineering with planetary ball mills. Chem. Soc. Rev. 42: 7660–7667, https://doi.org/10.1039/c3cs35455e.Search in Google Scholar PubMed
Caldorera-Moore, M., Glangchai, L., Shi, L., and Roy, K. (2008). Step and flash imprint lithography for the fabrication of shape-specific, enzymatically-triggered, drug nanocarrier. In Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Vol. 2, pp. 415–418.Search in Google Scholar
Carling, C. and Brülls, M. (2021). Milling of poorly soluble crystalline drug compounds to generate appropriate particle sizes for inhaled sustained drug delivery. Int. J. Pharm. 593: 120116, https://doi.org/10.1016/j.ijpharm.2020.120116.Search in Google Scholar PubMed
Chamayou, A. and Dodds, J.A. (2007). Air jet milling. In: Salman, A., Ghadiri, M., and Hounslow, M. (Eds.). Handbook of powder technology, Vol. 12. Elsevier B.V., Amsterdam, pp. 421–435, https://doi.org/10.1016/s0167-3785(07)12011-x.Search in Google Scholar
Chan, C. and Weng, L. (2000). Applications of X-ray photoelectron spectroscopy and static secondary ion mass spectrometry in surface characterization of copolymers and polymers blends. Rev. Chem. Eng. 16: 341–408, https://doi.org/10.1515/revce.2000.16.4.341.Search in Google Scholar
Charalabidis, A., Sfouni, M., Bergström, C., and Macheras, P. (2019). The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. Int. J. Pharm. 566: 264–281, https://doi.org/10.1016/j.ijpharm.2019.05.041.Search in Google Scholar PubMed
Chen, X., Wang, L.G., and Ooi, J.Y. (2020). A DEM-PBM multiscale coupling approach for the prediction of an impact pin mill. Powder Technol. 366: 408–419, https://doi.org/10.1016/j.powtec.2020.02.065.Search in Google Scholar
Chikhalia, V., Forbes, R.T., Storey, R.A., and Ticehurst, M. (2006). The effect of crystal morphology and mill type on milling induced crystal disorder. Eur. J. Pharm. Sci. 27: 19–26, https://doi.org/10.1016/j.ejps.2005.08.013.Search in Google Scholar PubMed
Chistyakov, D. and Sergeev, G. (2020). The polymorphism of drugs: new approaches to the synthesis of nanostructured polymorphs. Pharmaceutics 12: 34, https://doi.org/10.3390/pharmaceutics12010034.Search in Google Scholar PubMed PubMed Central
Choi, J.Y., Yoo, J.Y., Kwak, H.S., Nam, B.U., and Lee, J. (2005). Role of polymeric stabilizers for drug nanocrystal dispersions. Curr. Appl. Phys. 5: 472–474, https://doi.org/10.1016/j.cap.2005.01.012.Search in Google Scholar
Choi, J.Y., Park, C.H., and Lee, J. (2008). Effect of polymer molecular weight on nanocomminution of poorly soluble drug. Drug Deliv. 15: 347–353, https://doi.org/10.1080/10717540802039113.Search in Google Scholar PubMed
Choi, G., Kakumanu, S., Schmitz, L., Robinson, G.L.W.G., Beckett, C.D., and Laugharn, J.A. (2016). Continuous manufacturing of carboxyamidotriazole-encapsulated nanoemulsions using adaptive focused acoustics: potential green technology for the pharmaceutical industry. J. Biomed. Eng. Informatics 2: 70–82, https://doi.org/10.5430/jbei.v2n2p70.Search in Google Scholar
Clayton, K.N., Salameh, J.W., Wereley, S.T., and Kinzer-Ursem, T.L. (2016). Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 10: 054107, https://doi.org/10.1063/1.4962992.Search in Google Scholar PubMed PubMed Central
Clegg, I. (2020). Process analytical technology. In: Riley, C., Riley, S., and Rosanske, T. (Eds.). Specification of drug substances and products. Elsevier Ltd., Amsterdam, pp. 149–173.10.1016/B978-0-08-102824-7.00007-5Search in Google Scholar
Clogston, J.D. and Patri, A.K. (2011). Zeta potential measurement. In: McNeil, S. (Ed.). Methods in molecular biology. Springer Science+Business Media, LLC, NY, pp. 63–70.10.1007/978-1-60327-198-1_6Search in Google Scholar PubMed
Coulson, J.M. and Richardson, J.F. (2019). Particle size reduction and enlargement. In: Chhabra, R. and Basavaraj, M. (Eds.). Coulson and Richardson’s chemical engineering. Elsevier Ltd., Oxford, pp. 205–280.10.1016/B978-0-08-101098-3.00006-8Search in Google Scholar
Cunha, S., Costa, C.P., Loureiro, J.A., Alves, J., Peixoto, A.F., Forbes, B., Lobo, J.M.S., and Silva, A.C. (2020). Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics 12: 599, https://doi.org/10.3390/pharmaceutics12070599.Search in Google Scholar PubMed PubMed Central
da Igreja, P., Erve, A., and Thommes, M. (2021). Melt milling as manufacturing method for solid crystalline suspensions. Eur. J. Pharm. Biopharm. 158: 245–253, https://doi.org/10.1016/j.ejpb.2020.11.020.Search in Google Scholar PubMed
Danaei, M., Dehghankhold, M., Ataei, S., Davarani, F.H., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M.R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10: 1–17, https://doi.org/10.3390/pharmaceutics10020057.Search in Google Scholar PubMed PubMed Central
Dendukuri, D., Pregibon, D.C., Collins, J., Hatton, T.A., and Doyle, P.S. (2006). Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5: 365–369, https://doi.org/10.1038/nmat1617.Search in Google Scholar PubMed
Dendukuri, D., Gu, S.S., Pregibon, D.C., Hatton, T.A., and Doyle, P.S. (2007). Stop-flow lithography in a microfluidic device. Lab Chip 7: 818–828, https://doi.org/10.1039/b703457a.Search in Google Scholar PubMed
Desimone, J.M., Wang, J., and Wang, Y. (2012). Particle replication in non-wetting templates: a platform for engineering shape- and size-specific Janus particles. In: Jiang, S. and Granick, S. (Eds.). Janus particle synthesis, self-assembly and applications. RSC Publishing, Cambridge, pp. 90–107.10.1039/9781849735100-00090Search in Google Scholar
Desrumaux, A. and Marcand, J. (2002). Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. Int. J. Food Sci. Technol. 37: 263–269, https://doi.org/10.1046/j.1365-2621.2002.00565.x.Search in Google Scholar
Dhakate, M.M., Joshi, J.B., and Khakhar, D.V. (2021). Analysis of grinding in a spiral jet mill. Part 1: Batch grinding. Chem. Eng. Sci. 231: 116310, https://doi.org/10.1016/j.ces.2020.116310.Search in Google Scholar
Dhiman, A. and Prabhakar, P.K. (2021). Micronization in food processing: a comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J. Food Eng. 292: 110248, https://doi.org/10.1016/j.jfoodeng.2020.110248.Search in Google Scholar
Ding, S. (1998). Recent developments in ophthalmic drug delivery. Pharm. Sci. Technol. Today 1: 328–335, https://doi.org/10.1016/s1461-5347(98)00087-x.Search in Google Scholar
Djokić, M., Djuriš, J., Solomun, L., Kachrimanis, K., Djurić, Z., and Ibrić, S. (2014). The influence of spiral jet-milling on the physicochemical properties of carbamazepine form III crystals: quality by design approach. Chem. Eng. Res. Des. 92: 500–508, https://doi.org/10.1016/j.cherd.2013.09.011.Search in Google Scholar
Drögemeier, R. and Leschonski, K. (1996). Ultra fine grinding in a two stage rotor impact mill. Int. J. Miner. Process. 44–45: 485–495, https://doi.org/10.1016/0301-7516(95)00054-2.Search in Google Scholar
Duong, T. and Mooter, G. (2016). The role of the carrier in the formulation of pharmaceutical solid dispersions. Part I: Crystalline and semi-crystalline carriers. Expert Opin. Drug Deliv. 13: 1583–1594, https://doi.org/10.1080/17425247.2016.1198768.Search in Google Scholar PubMed
Eerdenbrugh, B., Mooter, G., and Augustijns, P. (2008). Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm. 364: 64–75, https://doi.org/10.1016/j.ijpharm.2008.07.023.Search in Google Scholar PubMed
Engstrom, J., Wang, C., Lai, C., and Sweeney, J. (2013). Introduction of a new scaling approach for particle size reduction in toothed rotor-stator wet mills. Int. J. Pharm. 456: 261–268, https://doi.org/10.1016/j.ijpharm.2013.08.084.Search in Google Scholar PubMed
Falke, S. and Betzel, C. (2019). Dynamic light scattering (DLS): principles, perspectives, applications to biological samples. In: Pereira, A., Tavares, P., and Limão-Vieira, P. (Eds.). Bioanalysis, Vol. 8. Springer, Cham, pp. 173–193, https://doi.org/10.1007/978-3-030-28247-9_6.Search in Google Scholar
FDA (2004). Guidance for industry, PAT – a framework for innovative pharmaceutical development, Manufacturing and quality assurance. US Department of Health and Human Services.Search in Google Scholar
Floury, J., Bellettre, J., Legrand, J., and Desrumaux, A. (2004). Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem. Eng. Sci. 59: 843–853, https://doi.org/10.1016/j.ces.2003.11.017.Search in Google Scholar
Fokina, E.L., Budim, N.I., Kochnev, V.G., and Chernik, G.G. (2004). Planetary mills of periodic and continuous action. J. Mater. Sci. 39: 5217–5221, https://doi.org/10.1023/b:jmsc.0000039213.44891.7d.10.1023/B:JMSC.0000039213.44891.7dSearch in Google Scholar
Frank, W.L. (2004). Dust explosion prevention and the critical importance of housekeeping. Process Saf. Prog. 23: 175–184, https://doi.org/10.1002/prs.10033.Search in Google Scholar
Fukunaka, T., Golman, B., and Shinohara, K. (2006). Batch grinding kinetics of ethenzamide particles by fluidized-bed jet-milling. Int. J. Pharm. 311: 89–96, https://doi.org/10.1016/j.ijpharm.2005.12.018.Search in Google Scholar PubMed
Funahashi, I., Kondo, K., Ito, Y., Yamada, M., and Niwa, T. (2019). Novel contamination-free wet milling technique using ice beads for poorly water-soluble compounds. Int. J. Pharm. 563: 413–425, https://doi.org/10.1016/j.ijpharm.2019.04.008.Search in Google Scholar PubMed
Funk, J. and Dinger, D. (1994). Milling or comminution. In: Funk, J. and Dinger, D. (Eds.). Predictive process control of crowded particulate suspensions. Springer, NY, pp. 373–394.10.1007/978-1-4615-3118-0_25Search in Google Scholar
Gabriele, B.P.A., Williams, C.J., Lauer, M.E., Derby, B., and Cruz-Cabeza, A.J. (2020). Nanoindentation of molecular crystals: lessons learned from aspirin. Cryst. Growth Des. 20: 5956–5966, https://doi.org/10.1021/acs.cgd.0c00635.Search in Google Scholar PubMed PubMed Central
Garcia, A., Mack, P., Williams, S., Fromen, C., Shen, T., Tully, J., Pillai, J., Kuehl, P., Napier, M., DeSimone, J.M., et al.. (2012). Microfabricated engineered particle systems for respiratory drug delivery and other pharmaceutical applications. J. Drug Deliv.: 941243, https://doi.org/10.1155/2012/941243.Search in Google Scholar PubMed PubMed Central
Gelperina, S., Kisich, K., Iseman, M.D., and Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172: 1487–1490, https://doi.org/10.1164/rccm.200504-613pp.Search in Google Scholar PubMed PubMed Central
Georget, E., Miller, B., Callanan, M., Heinz, V., and Mathys, A. (2014). (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods – a review. Front Nutr. 1: 1–6, https://doi.org/10.3389/fnut.2014.00015.Search in Google Scholar PubMed PubMed Central
Gers, R., Climent, E., Legendre, D., Anne-Archard, D., and Frances, C. (2010). Numerical modelling of grinding in a stirred media mill: hydrodynamics and collision characteristics. Chem. Eng. Sci. 65: 2052–2064, https://doi.org/10.1016/j.ces.2009.12.003.Search in Google Scholar
Ghosh, I., Schenck, D., Bose, S., Liu, F., and Motto, M. (2013). Identification of critical process parameters and its interplay with nanosuspension formulation prepared by top down media milling technology – a QbD perspective. Pharm. Dev. Technol. 18: 719–729, https://doi.org/10.3109/10837450.2012.723720.Search in Google Scholar PubMed
Gratton, S.E.A., Pohlhaus, P.D., Lee, J., Guo, J., Cho, M.J., and DeSimone, J.M. (2007). Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINTTM nanoparticles. J. Control. Release 121: 10–18, https://doi.org/10.1016/j.jconrel.2007.05.027.Search in Google Scholar PubMed PubMed Central
Gurumukhi, V.C. and Bari, S.B. (2020). Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: exploring characterizations and in vivo safety. J. Drug Deliv. Sci. Technol. 56: 11–18, https://doi.org/10.1016/j.jddst.2020.101545.Search in Google Scholar
Håkansson, A. (2018). Rotor-stator mixers: from batch to continuous mode of operation – a review. Processes 6: 32, https://doi.org/10.3390/pr6040032.Search in Google Scholar
Håkansson, A., Arlov, D., Carlsson, F., and Innings, F. (2017). Hydrodynamic difference between inline and batch operation of a rotor-stator mixer head – a CFD approach. Can. J. Chem. Eng. 95: 806–816, https://doi.org/10.1002/cjce.22718.Search in Google Scholar
Hanif, M. and Majeedullah (2022). Comminution. In: Khan, S.A. (Ed.). Advances in the pharmaceutical sciences series, Vol. 46. Springer, Cham.10.1007/978-3-030-84977-1_3Search in Google Scholar
Harter, A., Schenck, L., Lee, I., and Cote, A. (2013). High-shear rotor-stator wet milling for drug substances: expanding capability with improved scalability. Org. Process Res. Dev. 17: 1335–1344, https://doi.org/10.1021/op4001143.Search in Google Scholar
Harvill, T.L., Hoog, J.H., and Holve, D.J. (1995). In‐process particle size distribution measurements and control. Part. Part. Syst. Charact. 12: 309–313, https://doi.org/10.1002/ppsc.19950120611.Search in Google Scholar
Hashemifard, S.A., Khosravi, A., Abdollahi, F., Alihemati, Z., and Rezaee, M. (2020). Synthetic polymeric membranes for gas and vapor separations. In: Ismail, A., Salleh, W., and Yusof, N. (Eds.). Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainability. Elsevier Inc., Amsterdam, pp. 217–272.10.1016/B978-0-12-818485-1.00011-3Search in Google Scholar
He, Y., Ye, Z., Liu, X., Wei, Z., Qiu, F., Li, H.F., Zheng, Y., and Ouyang, D. (2020). Can machine learning predict drug nanocrystals? J. Control. Release 322: 274–285, https://doi.org/10.1016/j.jconrel.2020.03.043.Search in Google Scholar PubMed
Hecq, J., Deleers, M., Fanara, D., Vranckx, H., and Amighi, K. (2005). Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299: 167–177, https://doi.org/10.1016/j.ijpharm.2005.05.014.Search in Google Scholar PubMed
Hickey, A.J., Martonen, T.B., and Yang, Y. (1996). Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols. Pharm. Acta Helv. 71: 185–190, https://doi.org/10.1016/0031-6865(96)00014-3.Search in Google Scholar PubMed
Iyer, J., Brunsteiner, M., Modhave, D., and Paudel, A. (2023). Role of crystal disorder and mechanoactivation in solid-state stability of pharmaceuticals. J. Pharm. Sci. 112: 1539–1565, https://doi.org/10.1016/j.xphs.2023.02.019.Search in Google Scholar PubMed
Jacobs, C. and Müller, R.H. (2002). Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm. Res. 19: 189–194, https://doi.org/10.1023/a:1014276917363.10.1023/A:1014276917363Search in Google Scholar
Jacob, S., Nair, A.B., and Shah, J. (2020). Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 24: 3, https://doi.org/10.1186/s40824-020-0184-8.Search in Google Scholar PubMed PubMed Central
Jinno, J.I., Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G.G., Higaki, K., and Kimura, T. (2006). Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control Release. 111: 56–64, https://doi.org/10.1016/j.jconrel.2005.11.013.Search in Google Scholar PubMed
Jones, M.D., Young, P.M., Traini, D., Shur, J., Edge, S., and Price, R. (2008). The use of atomic force microscopy to study the conditioning of micronised budesonide. Int. J. Pharm. 357: 314–317, https://doi.org/10.1016/j.ijpharm.2008.01.042.Search in Google Scholar PubMed
Juhnke, M., Märtin, D., and John, E. (2012). Generation of wear during the production of drug nanosuspensions by wet media milling. Eur. J. Pharm. Biopharm. 81: 214–222, https://doi.org/10.1016/j.ejpb.2012.01.005.Search in Google Scholar PubMed
Kaasalainen, M., Aseyev, V., Haartman, E., Karaman, D.S., Mäkilä, E., Tenhu, H., Rosenholm, J., and Salonen, J. (2017). Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res. Lett. 12: 74, https://doi.org/10.1186/s11671-017-1853-y.Search in Google Scholar PubMed PubMed Central
Kaliva, M. and Vamvakaki, M. (2010). Materials characterization. In: Narain, R. (Ed.). Polymer science and nanotechnology. Elsevier Inc., Amsterdam.Search in Google Scholar
Karakucuk, A. and Celebi, N. (2020). Investigation of formulation and process parameters of wet media milling to develop etodolac nanosuspensions. Pharm. Res. 37: 111, https://doi.org/10.1007/s11095-020-02815-x.Search in Google Scholar PubMed
Karbstein, H. and Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Process. 34: 205–211, https://doi.org/10.1016/0255-2701(94)04005-2.Search in Google Scholar
Kaur, A., Yadav, J.P., Sathe, R.Y., Puri, V., Bharatam, P.V., and Bansal, A.K. (2022). Understanding poor milling behavior of voriconazole from crystal structure and intermolecular interactions. Mol. Pharm. 19: 985–997, https://doi.org/10.1021/acs.molpharmaceut.1c00978.Search in Google Scholar PubMed
Keck, C.M. and Müller, R.H. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur. J. Pharm. Biopharm. 62: 3–16, https://doi.org/10.1016/j.ejpb.2005.05.009.Search in Google Scholar PubMed
Kendall, K. (1978). The impossibility of comminuting small particles by compression. Nature 272: 710–711, https://doi.org/10.1038/272710a0.Search in Google Scholar
Kéri, A., Sápi, A., Ungor, D., Sebők, D., Csapó, E., Kónya, Z., and Galbács, G. (2020). Porosity determination of nano- and sub-micron particles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 35: 1139–1147, https://doi.org/10.1039/d0ja00020e.Search in Google Scholar
Kessler, R.W., Kessler, W., and Gmbh, K.P. (2020). Best practice and performance of hardware in process analytical technology (PAT). In: Brown, S., Walczak, B., and Tauler, R. (Eds.). Comprehensive chemometrics, Vol. 4. Elsevier B.V., Amsterdam, pp. 237–274.10.1016/B978-0-12-409547-2.14611-6Search in Google Scholar
Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G., and Lee, J. (2014). Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9: 304–316, https://doi.org/10.1016/j.ajps.2014.05.005.Search in Google Scholar
Kluge, J., Muhrer, G., and Mazzotti, M. (2012). High pressure homogenization of pharmaceutical solids. J. Supercrit. Fluids 66: 380–388, https://doi.org/10.1016/j.supflu.2012.01.009.Search in Google Scholar
Koeninger, B., Hensler, T., Romeis, S., Peukert, W., and Wirth, K.E. (2018). Dynamics of fine grinding in a fluidized bed opposed jet mill. Powder Technol. 327: 346–357, https://doi.org/10.1016/j.powtec.2017.12.084.Search in Google Scholar
Koeninger, B., Spoetter, C., Romeis, S., Weber, A.P., and Wirth, K.E. (2019). Classifier performance during dynamic fine grinding in fluidized bed opposed jet mills. Adv. Powder Technol. 30: 1678–1686, https://doi.org/10.1016/j.apt.2019.05.018.Search in Google Scholar
Koradia, K.D., Sheth, N.R., Koradia, H.D., and Dabhi, M.R. (2018). Ziprasidone nanocrystals by wet media milling followed by spray drying and lyophilization: formulation and process parameter optimization. J. Drug Deliv. Sci. Technol. 43: 73–84, https://doi.org/10.1016/j.jddst.2017.09.011.Search in Google Scholar
Kordić, Š., Matijašić, G., and Gretić, M. (2018). Prediction of particle size distribution of dronedarone hydrochloride in spiral jet mill using design of experiments. Chem. Eng. Commun. 205: 197–206, https://doi.org/10.1080/00986445.2017.1380632.Search in Google Scholar
Kotamarthy, L., Metta, N., and Ramachandran, R. (2020). Understanding the effect of granulation and milling process parameters on the quality attributes of milled granules. Processes 8: 683, https://doi.org/10.3390/pr8060683.Search in Google Scholar
Krause, K.P., Kayser, O., Mäder, K., Gust, R., and Müller, R.H. (2000). Heavy metal contamination of nanosuspensions produced by high-pressure homogenization. Int. J. Pharm. 196: 169–172, https://doi.org/10.1016/s0378-5173(99)00414-7.Search in Google Scholar PubMed
Kubavat, H.A., Shur, J., Ruecroft, G., Hipkiss, D., and Price, R. (2012). Investigation into the influence of primary crystallization conditions on the mechanical properties and secondary processing behaviour of fluticasone propionate for carrier based dry powder inhaler formulations. Pharm. Res. 29: 994–1006, https://doi.org/10.1007/s11095-011-0640-1.Search in Google Scholar PubMed
Kumar, A.Y. (2024). The new three-dimensional safety approach for the implementation of Process Safety Management (PSM) and improving safety aspects for the pharmaceutical industry in India – an overview. Indones. J. Innov. Appl. Sci. 4: 44–54, https://doi.org/10.47540/ijias.v4i1.1269.Search in Google Scholar
Kumar, V., Taylor, M.K., Mehrotra, A., and Stagner, W.C. (2013). Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process. AAPS PharmSciTech 14: 523–530, https://doi.org/10.1208/s12249-013-9934-4.Search in Google Scholar PubMed PubMed Central
Kumar, R., Thakur, A.K., Chaudhari, P., and Banerjee, N. (2022). Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J. Pharm. Innov. 17: 333–352, https://doi.org/10.1007/s12247-020-09530-5.Search in Google Scholar
Kumar, R., Thakur, A.K., Chaudhari, P., Kumar, R., Naresh, K., Thapliyal, D., Bedar, A., Krishna, R.S., and Pitchaiah, K.C. (2024). Nanoparticle preparation of pharmaceutical compounds via wet milling: Current status and future prospects. Powder Technol. 435: 119430, https://doi.org/10.1016/j.powtec.2024.119430.Search in Google Scholar
Kwade, A. (1999). Wet comminution in stirred media mills – research and its practical application. Powder Technol. 105: 14–20, https://doi.org/10.1016/s0032-5910(99)00113-8.Search in Google Scholar
Kwade, A. and Schwedes, J. (1997). Wet comminution in stirred media mills. KONA Powder Part. J. 15: 91–102, https://doi.org/10.14356/kona.1997013.Search in Google Scholar
Kwade, A. and Schwedes, J. (2007). Wet grinding in stirred media mills. Handb. Powder Technol. 12: 251–382.10.1016/S0167-3785(07)12009-1Search in Google Scholar
Langille, S.E. (2013). Particulate matter in injectable drug products. PDA J. Pharm. Sci. Technol. 67: 186–200, https://doi.org/10.5731/pdajpst.2013.00922.Search in Google Scholar PubMed
Lee, J., Lee, S.J., Choi, J.Y., Yoo, J.Y., and Ahn, C.H. (2005). Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur. J. Pharm. Sci. 24: 441–449, https://doi.org/10.1016/j.ejps.2004.12.010.Search in Google Scholar PubMed
Lemke, T., Bagusat, F., Köhnke, K., Husemann, K., and Mögel, H.J. (1999). Time dependent viscosity of concentrated alumina suspensions. Colloids Surf. A Physicochem. Eng. Asp. 150: 283–287, https://doi.org/10.1016/s0927-7757(98)00815-2.Search in Google Scholar
Li, M., Azad, M., Davé, R., and Bilgili, E. (2016). Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics 8: 17, https://doi.org/10.3390/pharmaceutics8020017.Search in Google Scholar PubMed PubMed Central
Loh, Z.H., Samanta, A.K., and Sia Heng, P.W. (2014). Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian. J. Pharm. Sci. 10: 255–274, https://doi.org/10.1016/j.ajps.2014.12.006.Search in Google Scholar
Luczak, B., Müller, R., Kessel, C., Ulbricht, M., and Schultz, H.J. (2019). Visualization of flow conditions inside spiral jet mills with different nozzle numbers – analysis of unloaded and loaded mills and correlation with grinding performance. Powder Technol. 342: 108–117, https://doi.org/10.1016/j.powtec.2018.09.078.Search in Google Scholar
Ma, Q., Sun, H., Che, E., Zheng, X., Jiang, T., Sun, C., and Wang, S. (2013). Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state. Int. J. Pharm. 441: 75–81, https://doi.org/10.1016/j.ijpharm.2012.12.025.Search in Google Scholar PubMed
MacDonald, R., Rowe, D., Martin, E., and Gorringe, L. (2016). The spiral jet mill cut size equation. Powder Technol. 299: 26–40, https://doi.org/10.1016/j.powtec.2016.05.016.Search in Google Scholar
Malamatari, M., Somavarapu, S., Kachrimanis, K., Bloxham, M., Taylor, K.M.G., and Buckton, G. (2016). Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: the influence of mannitol as a co-milling agent. Int. J. Pharm. 514: 200–211, https://doi.org/10.1016/j.ijpharm.2016.06.032.Search in Google Scholar PubMed
Malamatari, M., Taylor, K.M.G., Malamataris, S., Douroumis, D., and Kachrimanis, K. (2018). Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov. Today 23: 534–547, https://doi.org/10.1016/j.drudis.2018.01.016.Search in Google Scholar PubMed
McLean, S., Patel, R., and Bruno, R. (2016). Injection of pharmaceuticals designed for oral use: harms experienced and effective harm reduction through filtration. In: Nielsen, S., Bruno, R., and Schenk, S. (Eds.). Current topics in behavioral neurosciences, Vol. 4. Springer, Cham, pp. 77–98, https://doi.org/10.1007/7854_2016_470.Search in Google Scholar PubMed
Meng, W., Sirota, E., Feng, H., McMullen, J.P., Codan, L., and Cote, A.S. (2020). Effective control of crystal size via an integrated crystallization, wet milling, and annealing recirculation system. Org. Process Res. Dev. 24: 2639–2650, https://doi.org/10.1021/acs.oprd.0c00307.Search in Google Scholar
Midoux, N., Hošek, P., Pailleres, L., and Authelin, J.R. (1999). Micronization of pharmaceutical substances in a spiral jet mill. Powder Technol. 104: 113–120, https://doi.org/10.1016/s0032-5910(99)00052-2.Search in Google Scholar
Miguel, G.S., Lambert, S.D., and Graham, N.J.D. (2002). Thermal regeneration of granular activated carbons using inert atmospheric conditions. Environ. Technol. 23: 1337–1346, https://doi.org/10.1080/09593332508618449.Search in Google Scholar PubMed
Mikulášek, P., Wakeman, R.J., and Marchant, J.Q. (1997). The influence of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions. Chem. Eng. J. 67: 97–102, https://doi.org/10.1016/s1385-8947(97)00026-0.Search in Google Scholar
Mio, H., Kano, J., Saito, F., and Kaneko, K. (2004). Optimum revolution and rotational directions and their speeds in planetary ball milling. Int. J. Miner. Process. 74S: 85–92, https://doi.org/10.1016/j.minpro.2004.07.002.Search in Google Scholar
Monteiro, A., Afolabi, A., and Bilgili, E. (2013). Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Drug Dev. Ind. Pharm. 39: 266–283, https://doi.org/10.3109/03639045.2012.676048.Search in Google Scholar PubMed
Mortensen, H.H., Innings, F., and Håkansson, A. (2017). The effect of stator design on flowrate and velocity fields in a rotor-stator mixer – an experimental investigation. Chem. Eng. Res. Des. 121: 245–254, https://doi.org/10.1016/j.cherd.2017.03.016.Search in Google Scholar
Möschwitzer, J.P. (2013). Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm. 453: 142–156, https://doi.org/10.1016/j.ijpharm.2012.09.034.Search in Google Scholar PubMed
Moura, C., Neves, F., and Costa, E. (2016). Impact of jet-milling and wet-polishing size reduction technologies on inhalation API particle properties. Powder Technol. 298: 90–98, https://doi.org/10.1016/j.powtec.2016.05.008.Search in Google Scholar
Müller, R.H. and Peters, K. (1998). Nanosuspensions for the formulation of poorly soluble drugs. I. Preparation by a size-reduction technique. Int. J. Pharm. 160: 229–237, https://doi.org/10.1016/s0378-5173(97)00311-6.Search in Google Scholar
Muller, F., Polke, R., and Schadel, G. (1996). Spiral jet mills: hold up and scale up. Int. J. Miner. Process. 44–45: 315–326, https://doi.org/10.1016/b978-0-444-82440-0.50029-8.Search in Google Scholar
Naeem, S., Kiew, L.V., Yong, C.L., Yin, Y.T., and Misran, M.B. (2015). Drug delivery and innovative pharmaceutical development in mimicking the red blood cell membrane. Rev. Chem. Eng. 31: 491–508, https://doi.org/10.1515/revce-2015-0010.Search in Google Scholar
Naik, S. and Chaudhuri, B. (2015). Quantifying dry milling in pharmaceutical processing: a review on experimental and modeling approaches. J. Pharm. Sci. 104: 2401–2413, https://doi.org/10.1002/jps.24512.Search in Google Scholar PubMed
Nakach, M., Authelin, J.R., Chamayou, A., and Dodds, J. (2004). Comparison of various milling technologies for grinding pharmaceutical powders. Int. J. Miner. Process. 74S: S173–S181, https://doi.org/10.1016/j.minpro.2004.07.039.Search in Google Scholar
Nakach, M., Authelin, J.R., Perrin, M.A., and Lakkireddy, H.R. (2018). Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions. Int. J. Pharm. 547: 61–71, https://doi.org/10.1016/j.ijpharm.2018.05.042.Search in Google Scholar PubMed
Nakach, M., Authelin, J.R., Corsini, C., and Gianola, G. (2019). Jet milling industrialization of sticky active pharmaceutical ingredient using quality-by-design approach. Pharm. Dev. Technol. 24: 849–863, https://doi.org/10.1080/10837450.2019.1608449.Search in Google Scholar PubMed
Nalluri, V.R. and Kuentz, M. (2010). Advancing pharmaceutical dry milling by process analytics and robustness testing. J. Pharm. Innov. 5: 100–108, https://doi.org/10.1007/s12247-010-9088-9.Search in Google Scholar
Nalluri, V.R., Schirg, P., Gao, X., Virdis, A., Imanidis, G., and Kuentz, M. (2010). Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. Int. J. Pharm. 391: 107–114, https://doi.org/10.1016/j.ijpharm.2010.02.027.Search in Google Scholar PubMed
National Fire Protection Association (2017). Second correlating revision no. 12-NFPA 652-2017.Search in Google Scholar
N’Da, D.D. (2014). Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules 19: 20780–20807, https://doi.org/10.3390/molecules191220780.Search in Google Scholar PubMed PubMed Central
Niazi, S.K. (2004). Handbook of pharmaceutical manufacturing formulations: semisolid products. CRC Press LLC, Boca Raton.Search in Google Scholar
Nissinen, T., Ikonen, T., Lama, M., Riikonen, J., and Lehto, V.P. (2016). Improved production efficiency of mesoporous silicon nanoparticles by pulsed electrochemical etching. Powder Technol. 288: 360–365, https://doi.org/10.1016/j.powtec.2015.11.015.Search in Google Scholar
Noyes, A.A. and Whitney, W.R. (1897). The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19: 930–934, https://doi.org/10.1021/ja02086a003.Search in Google Scholar
Ogonowski, S., Wołosiewicz-Głab, M., Ogonowski, Z., Foszcz, D., and Pawełczyk, M. (2018). Comparison of wet and dry grinding in electromagnetic mill. Minerals 8: 138, https://doi.org/10.3390/min8040138.Search in Google Scholar
Oktay, A.N., Ilbasmis-Tamer, S., and Celebi, N. (2019). The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm. Dev. Technol. 24: 1278–1286, https://doi.org/10.1080/10837450.2019.1667384.Search in Google Scholar PubMed
Orumwense, O.A. and Forssberg, E. (1991). Superfine and ultrafine grinding – a literature survey. Miner. Process. Extr. Metall. Rev. 11: 107–127, https://doi.org/10.1080/08827509208914216.Search in Google Scholar
Osorio-Arias, J.C., Vega-Castro, O., and Martínez-Monteagudo, S.I. (2021). Fundamentals of high-pressure homogenization of foods. Innov. Food. Process. Technol: 244–273, https://doi.org/10.1016/b978-0-08-100596-5.23021-7.Search in Google Scholar
Ouranidis, A., Gkampelis, N., Vardaka, E., Karagianni, A., Tsiptsios, D., Nikolakakis, I., and Kachrimanis, K. (2020). Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation. Pharmaceutics 12: 969, https://doi.org/10.3390/pharmaceutics12100969.Search in Google Scholar PubMed PubMed Central
Oyedeji, O., Gitman, P., Qu, J., and Webb, E. (2020). Understanding the impact of lignocellulosic biomass variability on the size reduction process: a review. ACS Sustain. Chem. Eng. 8: 2327–2343, https://doi.org/10.1021/acssuschemeng.9b06698.Search in Google Scholar
Özcan-Taşkin, G.N. (2012). Dispersion of fine powders in liquids: particle incorporation and size reduction. Pharm. Blending Mix.: 129–151.10.1002/9781118682692.ch7Search in Google Scholar
Ozerov, R. and Vorobyev, A. (2007). Molecular physics. In: Ozerov, R. and Vorobyev, A. (Eds.). Physics for chemists. Elsevier B.V., Amsterdam, pp. 169–250.10.1016/B978-044452830-8/50005-2Search in Google Scholar
Pacek, A.W., Hall, S., Cooke, M., and Kowalski, A.J. (2013). Emulsification in rotor-stator mixers. In: Tadros, T. (Ed.). Emulsion formation and stability. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 127–167.10.1002/9783527647941.ch5Search in Google Scholar
Paraschiv, G., Moiceanu, G., Voicu, G., Chitoiu, M., Cardei, P., Dinca, M.N., and Tudor, P. (2021). Optimization issues of a hammer mill working process using statistical modelling. Sustainability 13: 973, https://doi.org/10.3390/su13020973.Search in Google Scholar
Paredes, A.J., Camacho, N.M., Schofs, L., Dib, A., Zarazaga, M., Litterio, N., Allemandi, D.A., Bruni, S.S., Lanusse, C., and Palma, S.D. (2020). Ricobendazole nanocrystals obtained by media milling and spray drying: pharmacokinetic comparison with the micronized form of the drug. Int. J. Pharm. 585: 119501, https://doi.org/10.1016/j.ijpharm.2020.119501.Search in Google Scholar PubMed
Parrott, E.L. (1974). Milling of pharmaceutical solids. J. Pharm. Sci. 63: 813–829, https://doi.org/10.1002/jps.2600630603.Search in Google Scholar PubMed
Patel, R., Baria, A., and Patel, N. (2008). An overview of size reduction technologies in the field of pharmaceutical manufacturing. Asian. J. Pharm. 2: 216, https://doi.org/10.4103/0973-8398.45033.Search in Google Scholar
Peltonen, L. and Hirvonen, J. (2010). Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 62: 1569–1579, https://doi.org/10.1111/j.2042-7158.2010.01022.x.Search in Google Scholar PubMed
Prestidge, C.A. (1997). Rheological investigations of galena particle interactions. Colloids Surf. A Physicochem. Eng. Asp. 126: 75–83, https://doi.org/10.1016/s0927-7757(96)03872-1.Search in Google Scholar
Price, R. and Young, P.M. (2005). On the physical transformations of processed pharmaceutical solids. Micron 36: 519–524, https://doi.org/10.1016/j.micron.2005.04.003.Search in Google Scholar PubMed
Rabinow, B.E. (2004). Nanosuspensions in drug delivery. Nat. Rev. Drug. Discov. 3: 785–796, https://doi.org/10.1038/nrd1494.Search in Google Scholar PubMed
Radeke, L.M., Jongebloed, N., Ulbricht, M., and Schultz, H.J. (2023). Experimental investigation of the flow conditions in spiral jet mills via particle image velocimetry – influence of product outlet diameter and gas flow rate. Powders 2: 169–188, https://doi.org/10.3390/powders2010012.Search in Google Scholar
Rolland, A., Wagner, N., Chatelus, A., Shroot, B., and Schaefer, H. (1993). Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10: 1738–1744, https://doi.org/10.1023/a:1018922114398.10.1023/A:1018922114398Search in Google Scholar
Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., and DeSimone, J.M. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127: 10096–10100, https://doi.org/10.1021/ja051977c.Search in Google Scholar PubMed
Romeis, S., Schmidt, J., and Peukert, W. (2016). Mechanochemical aspects in wet stirred media milling. Int. J. Miner. Process. 156: 24–31, https://doi.org/10.1016/j.minpro.2016.05.018.Search in Google Scholar
Rumpf, H. (1973). Physical aspects of comminution and new formulation of a law of comminution. Powder Technol. 7: 145–159, https://doi.org/10.1016/0032-5910(73)80021-x.Search in Google Scholar
Sabia, C., Frigerio, G., Casalini, T., Cornolti, L., Martinoli, L., Buffo, A., Marchisio, D.L., and Barbato, M.C. (2021). A detailed CFD analysis of flow patterns and single-phase velocity variations in spiral jet mills affected by caking phenomena. Chem. Eng. Res. Des. 174: 234–253, https://doi.org/10.1016/j.cherd.2021.07.031.Search in Google Scholar
Salazar, J., Müller, R.H., and Möschwitzer, J.P. (2014). Combinative particle size reduction technologies for the production of drug nanocrystals. J. Pharm.: 265754, https://doi.org/10.1155/2014/265754.Search in Google Scholar PubMed PubMed Central
Saleem, I.Y. and Smyth, H.D.C. (2010). Micronization of a soft material: air-jet and micro-ball milling. AAPS PharmSciTech 11: 1642–1649, https://doi.org/10.1208/s12249-010-9542-5.Search in Google Scholar PubMed PubMed Central
Salunke, S., O’Brien, F., Tan, D.C.T., Harris, D., Math, M.C., Ariën, T., Klein, S., Timpe, C., and European Paediatric Formulation Initiative EuPFI (2022). Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv. Drug. Deliv. Rev. 190: 114507, https://doi.org/10.1016/j.addr.2022.114507.Search in Google Scholar PubMed
Schaaf, U.S. and Karbstein, H.P. (2018). Fabrication of nanoemulsions by rotor-stator emulsification. In: Jafari, S. and McClements, D. (Eds.). Nanoemulsions: formulation, applications, and characterization. Elsevier Inc., London, pp. 141–174.10.1016/B978-0-12-811838-2.00006-0Search in Google Scholar
Scott, L., Borissova, A., Burns, A., and Ghadiri, M. (2021). Influence of holdup on gas and particle flow patterns in a spiral jet mill. Powder Technol. 377: 233–243, https://doi.org/10.1016/j.powtec.2020.08.099.Search in Google Scholar
Seibert, K.D., Collins, P.C., and Fisher, E. (2010). Milling operations in the pharmaceutical industry. In: Ende, D. (Ed.). Chemical engineering in the pharmaceutical industry: R&D to manufacturing. John Wiley & Sons, Inc., NJ, pp. 365–378.10.1002/9780470882221.ch19Search in Google Scholar
Seibert, K.D., Collins, P.C., Luciani, C.V., and Fisher, E.S. (2019). Milling operations in the pharmaceutical industry. In: Ende, D. and Ende, M. (Eds.). Chemical engineering in the pharmaceutical industry. John Wiley & Sons, Inc., NJ, pp. 861–879.10.1002/9781119600800.ch38Search in Google Scholar
Seo, S.M., Kim, D.M., Chung, T.J., Yoo, J.J., Kim, H.J., Chun, H.J., Jang, J.W., and Oh, K.S. (2012). Effect of milling time on the viscosity of hydroxyapatite suspension. Curr. Appl. Phys. 12: 71–75, https://doi.org/10.1016/j.cap.2012.02.023.Search in Google Scholar
Shaal, L., Müller, R.H., and Shegokar, R. (2010). SmartCrystal combination technology – scale up from lab to pilot scale and long term stability. Pharmazie 65: 877–884.Search in Google Scholar
Shegokar, R. (2016). Wet media milling: an effective way to solve drug solubility issue. In: Aliofkhazraei, M. (Ed.). Handbook of nanoparticles. Springer, Cham, pp. 385–406.10.1007/978-3-319-15338-4_20Search in Google Scholar
Shekunov, B.Y., Chattopadhyay, P., Tong, H.H.Y., and Chow, A.H.L. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res. 24: 203–227, https://doi.org/10.1007/s11095-006-9146-7.Search in Google Scholar PubMed
Shetty, N., Cipolla, D., Park, H., and Zhou, Q.T. (2020). Physical stability of dry powder inhaler formulations. Expert Opin. Drug. Deliv. 17: 77–96, https://doi.org/10.1080/17425247.2020.1702643.Search in Google Scholar PubMed PubMed Central
Silva, A.F.T., Burggraeve, A., Denon, Q., Meeren, P.V.D., Sandler, N., Kerkhof, T.V.D., Hellings, M., Vervaet, C., Remon, J.P., Lopes, J.A., et al.. (2013). Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. Eur. J. Pharm. Biopharm. 85: 1006–1018, https://doi.org/10.1016/j.ejpb.2013.03.032.Search in Google Scholar PubMed
Siriluck, S., Zafar, U., Hare, C., Hassanpour, A., Lönnroth, N.T., Venugopal, N., Murtagh, M.J., and Ghadiri, M. (2021). Influence of mechanical properties on milling of amorphous and crystalline silica-based solids. Powder Technol. 391: 239–252, https://doi.org/10.1016/j.powtec.2021.06.016.Search in Google Scholar
Soni, G., Kale, K., Shetty, S., Gupta, M.K., and Yadav, K.S. (2020). Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 6: e03846, https://doi.org/10.1016/j.heliyon.2020.e03846.Search in Google Scholar PubMed PubMed Central
Souto, E.B., Ribeiro, A.F., Ferreira, M.I., Teixeira, M.C., Shimojo, A.A.M., Soriano, J.L., Naveros, B.C., Durazzo, A., Lucarini, M., Souto, S.B., et al.. (2020). New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci. 21: 393, https://doi.org/10.3390/ijms21020393.Search in Google Scholar PubMed PubMed Central
Stang, M., Schuchmann, H., and Schubert, H. (2001). Emulsification in high-pressure homogenizers. Eng. Life Sci. 1: 151–157, https://doi.org/10.1002/1618-2863(200110)1:4<151::aid-elsc151>3.0.co;2-d.10.1002/1618-2863(200110)1:4<151::AID-ELSC151>3.0.CO;2-DSearch in Google Scholar
Stetefeld, J., McKenna, S.A., and Patel, T.R. (2016). Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8: 409–427, https://doi.org/10.1007/s12551-016-0218-6.Search in Google Scholar PubMed PubMed Central
Strobel, A., Köninger, B., Romeis, S., Schott, F., Wirth, K.E., and Peukert, W. (2020). Assessing stress conditions and impact velocities in fluidized bed opposed jet mills. Particuology 53: 12–22, https://doi.org/10.1016/j.partic.2020.02.006.Search in Google Scholar
Subramanyam, C.V.S., Thimmasetty, J., Suresh, S., and Devi, V.K. (2019). Size reduction. In: Subrahmanyam, C.V.S., Thimmasetty, J., Suresh, S., and Devi, V.K. (Eds.). Pharmaceutical engineering principles and practices. Vallabh Prakashan, Delhi, pp. 66–68.Search in Google Scholar
Taylor, L., Skuse, D., Blackburn, S., and Greenwood, R. (2020). Stirred media mills in the mining industry: material grindability, energy-size relationships, and operating conditions. Powder Technol. 369: 1–16, https://doi.org/10.1016/j.powtec.2020.04.057.Search in Google Scholar
Tejedor, M., Pazesh, S., Nordgren, N., Schuleit, M., Rutland, M.W., Alderborn, G., and Millqvist-Fureby, A. (2018). Milling induced amorphisation and recrystallization of α-lactose monohydrate. Int. J. Pharm. 537: 140–147, https://doi.org/10.1016/j.ijpharm.2017.12.021.Search in Google Scholar PubMed
Thalberg, K., Lindholm, D., and Axelsson, A. (2004). Comparison of different flowability tests for powders for inhalation. Powder Technol. 146: 206–213, https://doi.org/10.1016/j.powtec.2004.08.003.Search in Google Scholar
Thayer, A. (2010). Finding solutions. Chem. Eng. News 88: 13–18, https://doi.org/10.1021/cen-v088n022.p013.Search in Google Scholar
Thommes, M., Ely, D.R., Carvajal, M.T., and Pinal, R. (2011). Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions. Mol. Pharm. 8: 727–735, https://doi.org/10.1021/mp1003493.Search in Google Scholar PubMed
Tumuluru, J.S. and Heikkila, D.J. (2019). Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 6: 12, https://doi.org/10.3390/bioengineering6010012.Search in Google Scholar PubMed PubMed Central
Tuunila, R. and Nyström, L. (1998). Effects of grinding parameters on product fineness in jet mill grinding. Miner. Eng. 11: 1089–1094, https://doi.org/10.1016/s0892-6875(98)00095-8.Search in Google Scholar
Vatsaraj, N.B., Gao, D., and Kowalski, D.L. (2003). Optimization of the operating conditions of a lab scale Aljet mill using lactose and sucrose: a technical note. AAPS PharmSciTech 4, https://doi.org/10.1208/pt040227.Search in Google Scholar PubMed PubMed Central
Vegt, O., Vromans, H., Toonder, J., and Maarschalk, K. (2009). Influence of flaws and crystal properties on particle fracture in a jet mill. Powder Technol. 191: 72–77.10.1016/j.powtec.2008.09.014Search in Google Scholar
Verma, S., Gokhale, R., and Burgess, D.J. (2009). A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 380: 216–222, https://doi.org/10.1016/j.ijpharm.2009.07.005.Search in Google Scholar PubMed
Vikash, V., Nigam, K.D.P., and Kumar, V. (2021). Design and development of high shear mixers: fundamentals, applications and recent progress. Chem. Eng. Sci. 232: 116296, https://doi.org/10.1016/j.ces.2020.116296.Search in Google Scholar
Villalobos-Castillejos, F., Granillo-Guerrero, V.G., Leyva-Daniel, D.E., Alamilla-Beltrán, L., Gutiérrez-López, G.F., Monroy-Villagrana, A., and Jafari, S.M. (2018). Fabrication of nanoemulsions by microfluidization. In: Jafari, S. and McClements, D. (Eds.). Nanoemulsions: formulation, applications, and characterization. Elsevier Inc., London, pp. 207–232.10.1016/B978-0-12-811838-2.00008-4Search in Google Scholar
Ward, G.H. and Schultz, R.K. (1995). Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm. Res. 12: 773–779, https://doi.org/10.1023/a:1016232230638.10.1023/A:1016232230638Search in Google Scholar
Wilson, E.M., Luft, J.C., and DeSimone, J.M. (2018). Formulation of high-performance dry powder aerosols for pulmonary protein delivery. Pharm. Res. 35: 195, https://doi.org/10.1007/s11095-018-2452-z.Search in Google Scholar PubMed
Xu, L.M., Zhang, Q.X., Zhou, Y., Zhao, H., Wang, J.X., and Chen, J.F. (2012). Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int. J. Pharm. 436: 1–9, https://doi.org/10.1016/j.ijpharm.2012.06.038.Search in Google Scholar PubMed
Yadav, K.S. and Kale, K. (2020). High pressure homogenizer in pharmaceuticals: understanding its critical processing parameters and applications. J. Pharm. Innov. 15: 690–701, https://doi.org/10.1007/s12247-019-09413-4.Search in Google Scholar
Yang, M., Kang, J., Kim, D., and Park, C. (2024). Recent developments in dry powder inhalation (DPI) formulations for lung – targeted drug delivery. J. Pharm. Investig. 54: 113–130, https://doi.org/10.1007/s40005-023-00635-w.Search in Google Scholar
Yin, L. and Zhong, Z. (2020). Nanoparticles. In: Wagner, W., Zhang, G., Sakiyama-Elbert, S., and Yaszemski, M. (Eds.). Biomaterials science. Elsevier Inc., London, pp. 453–483.10.1016/B978-0-12-816137-1.00031-3Search in Google Scholar
Yokoyama, T. and Inoue, Y. (2007). Selection of fine grinding mills. In: Salman, A., Ghadiri, M., and Hounslow, M. (Eds.). Handbook of powder technology. Elsevier B.V., Amsterdam, pp. 487–508.10.1016/S0167-3785(07)12013-3Search in Google Scholar
Yuan, J. and Murray, H.H. (1997). The importance of crystal morphology on the viscosity of concentrated suspensions of kaolins. Appl. Clay Sci. 12: 209–219, https://doi.org/10.1016/s0169-1317(97)00006-9.Search in Google Scholar
Zamora, A. and Guamis, B. (2015). Opportunities for ultra-high-pressure homogenisation (UHPH) for the food industry. Food Eng. Rev. 7: 130–142, https://doi.org/10.1007/s12393-014-9097-4.Search in Google Scholar
Zhang, J., Wu, L., Chan, H.K., and Watanabe, W. (2011). Formation, characterization, and fate of inhaled drug nanoparticles. Adv. Drug. Deliv. Rev. 63: 441–455, https://doi.org/10.1016/j.addr.2010.11.002.Search in Google Scholar PubMed
Zhang, J., Xu, S., and Li, W. (2012). High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chem. Eng. Process.: 25–41, https://doi.org/10.1016/j.cep.2012.04.004.Search in Google Scholar
Zhang, Y., Chan, H.F., and Leong, K.W. (2013). Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65: 104–120, https://doi.org/10.1016/j.addr.2012.10.003.Search in Google Scholar PubMed PubMed Central
Zhang, J., Xie, Z., Zhang, N., and Zhong, J. (2017). Nanosuspension drug delivery system: preparation, characterization, postproduction processing, dosage form, and application. In: Andronescu, E. and Grumezescu, A.M. (Eds.). Nanostructures for drug delivery. Elsevier Inc., Oxford, pp. 413–443.10.1016/B978-0-323-46143-6.00013-0Search in Google Scholar
Zheng, Y., Fu, Z., Li, D., and Wu, M. (2018). Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive. Materials 11: 1057, https://doi.org/10.3390/ma11071057.Search in Google Scholar PubMed PubMed Central
Zügner, S., Marquardt, K., and Zimmermann, I. (2006). Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills. Eur. J. Pharm. Biopharm. 62: 194–201, https://doi.org/10.1016/j.ejpb.2005.08.002.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/revce-2024-0059).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Comprehensive and in-depth insights into photo-assisted halogenation reactions: a pharmaceutical industry perspective
- Gas–liquid upflow packed bed reactors: a comprehensive review focused on heat transport
- Research progress of jet washing technology and its exploratory decoking application in delayed coking process
- Comminution technologies in the pharmaceutical industry: a comprehensive review with recent advances
Articles in the same Issue
- Frontmatter
- Reviews
- Comprehensive and in-depth insights into photo-assisted halogenation reactions: a pharmaceutical industry perspective
- Gas–liquid upflow packed bed reactors: a comprehensive review focused on heat transport
- Research progress of jet washing technology and its exploratory decoking application in delayed coking process
- Comminution technologies in the pharmaceutical industry: a comprehensive review with recent advances