Home Comprehensive and in-depth insights into photo-assisted halogenation reactions: a pharmaceutical industry perspective
Article
Licensed
Unlicensed Requires Authentication

Comprehensive and in-depth insights into photo-assisted halogenation reactions: a pharmaceutical industry perspective

  • Aditi Prabhu , Pradip Mali , Satyapaul A. Singh and Inkollu Sreedhar ORCID logo EMAIL logo
Published/Copyright: November 18, 2024
Become an author with De Gruyter Brill

Abstract

Halogenation reactions are a vital area of study for the pharmaceutical industry. The study of the reaction conditions along with the reactors and their scale-up is a thrust area in drug synthesis and manufacturing. There is a shift in the research community towards accommodating renewable energy sources which has driven scientists to include energy sources that are sustainable and aid in making the overall process efficient. This review provides a comprehensive overview of the challenges in selecting the best catalyst, light source and reaction conditions for the fluorination, chlorination and bromination reactions. This paper goes a step further to explain the photoreactors’ design and modelling as well as the scale-up of the same. Overall, it provides a comprehensive view of diverse scientific areas, from halogenation in drug synthesis to the potential of photochemical batch and flow approaches in halogenation reactions.


Corresponding author: Inkollu Sreedhar, Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India, E-mail:

Acknowledgments

The authors extend their appreciation to BITS Pilani Hyderabad Campus for facilitating this project.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: AP: Conceptualization, Methodology; Investigation; Drafting-Original and revised version. PM: Conceptualization, Methodology; Investigation; Drafting-Original and revised version. SS: Drafting-Revised version and editing. IS: Conceptualization; Project Administration; Supervision; Writing-Review and editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Abdel-Maksoud, Y.K., Imam, E., and Ramadan, A.R. (2018). TiO2 water-bell photoreactor for wastewater treatment. Sol. Energy 170: 323–335, https://doi.org/10.1016/j.solener.2018.05.053.Search in Google Scholar

Abutalib, M.M. and Yahia, I.S. (2018). Selective CUT-OFF laser filters using brilliant green-doped PMMA polymeric composite films: sensing approach. J. Mater. Sci.: Mater. Electron. 29: 19798–19804, https://doi.org/10.1007/s10854-018-0106-x.Search in Google Scholar

Agarwal, V., Miles, Z.D., Winter, J.M., Eustáquio, A.S., El Gamal, A.A., and Moore, B.S. (2017). Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117: 5619–5674, https://doi.org/10.1021/acs.chemrev.6b00571.Search in Google Scholar PubMed PubMed Central

Albini, A. and Fagnoni, M. (2004). Green chemistry and photochemistry were born at the same time. Green Chem. 6: 1–6, https://doi.org/10.1039/b309592d.Search in Google Scholar

Albini, A. and Fagnoni, M. (2009). Handbook of synthetic photochemistry. Verlag, GmbH & Co, KGaA, Weinheim.10.1002/9783527628193Search in Google Scholar

Amara, Z., Bellamy, J.F.B., Horvath, R., Miller, S.J., Beeby, A., Burgard, A., Rossen, K., Poliakoff, M., and George, M.W. (2015). Applying green chemistry to the photochemical route to artemisinin. Nat. Chem. 7: 489–495, https://doi.org/10.1038/nchem.2261.Search in Google Scholar PubMed

Araujo, G.R., Pollmann, T., and Ulrich, A. (2019). Photoluminescence response of acrylic (PMMA) and polytetrafluoroethylene (PTFE) to ultraviolet light: limits on low-intensity photoluminescence in support materials of rare-event search experiments. Eur. Phys. J. C 79: 1–8, https://doi.org/10.1140/epjc/s10052-019-7152-2.Search in Google Scholar

Arbuj, S.S., Waghmode, S.B., and Ramaswamy, A.V. (2007). Photochemical α-bromination of ketones using N-bromosuccinimide: a simple, mild and efficient method. Tetrahedron Lett. 48: 1411–1415, https://doi.org/10.1002/chin.200720037.Search in Google Scholar

Attwood, D. (1999). Soft X-rays and extreme ultraviolet radiation principles and applications. Cambridge University Press, Cambridge, England.10.1017/CBO9781139164429Search in Google Scholar

Bacon, R.G.R. and Hill, H.A.O. (1964). Metal ions and complexes in organic reactions. Part I.1 substitution reactions between aryl halides and cuprous salts in organic solvants. J. Chem. Soc. (Resumed): 1097–1107, https://doi.org/10.1039/jr9640001097.Search in Google Scholar

Balaydin, H.T., Gülçin, I., Menzek, A., Göksu, S., and Şahin, E. (2010). Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzyme Inhib. Med. Chem. 25: 685–695, https://doi.org/10.3109/14756360903514164.Search in Google Scholar PubMed

Balzani, V., Ceroni, P., and Juris, A. (2014). Photochemistry and photophysics: concepts, research, applications. Verlag, GmbH & Co, KGaA, Weinheim.Search in Google Scholar

Bazin, M.J., Buzdygon, R.S., and Hepatochem Inc. (2024). Photochemistry device with a plurality of UV and visible light sources that carry out photocatalytic reactions, application no. 11,992,819.Search in Google Scholar

Bedford, R.B., Engelhart, J.U., Haddow, M.F., Mitchell, C.J., and Webster, R.L. (2010). Solvent-free aromatic C–H functionalisation/halogenation reactions. Dalton Trans. 39: 10464–10472, https://doi.org/10.1039/c0dt00385a.Search in Google Scholar PubMed

Bedford, R.B., Haddow, M.F., Mitchell, C.J., and Webster, R.L. (2011). Mild C–H halogenation of anilides and the isolation of an unusual palladium(I)-palladium(II) species. Angewandte Chemie – International Edition 50: 5524–5527, https://doi.org/10.1002/anie.201101606.Search in Google Scholar PubMed

Benoy, D.A., Broersma, R.C., Sweegers, N.A.M., and Signify Holding B.V. (2023). Integrated photochemical flow reactor with led light source, application no. PCT/EP2023/054321.Search in Google Scholar

Biswas, N.N., Kutty, S.K., Iskander, G.M., Mielczarek, M., Bhadbhade, M.M., Gardner, C.R., Black, D.S.C., and Kumar, N. (2016). Synthesis of brominated novel N-heterocycles: new scaffolds for antimicrobial discovery. Tetrahedron 72: 539–546, https://doi.org/10.1016/j.tet.2015.12.018.Search in Google Scholar

Bloom, S., Pitts, C.R., Miller, D.C., Haselton, N., Holl, M.G., Urheim, E., and Lectka, T. (2012). A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination. Angewandte Chemie – International Edition 51: 10580–10583, https://doi.org/10.1002/anie.201203642.Search in Google Scholar PubMed

Bloom, S., Knippel, J.L., and Lectka, T. (2014). A photocatalyzed aliphatic fluorination. Chem. Sci. 5: 1175–1178, https://doi.org/10.1039/c3sc53261e.Search in Google Scholar

Bloom, S., Bume, D.D., Pitts, C.R., and Lectka, T. (2015). Site-selective approach to β-fluorination: photocatalyzed ring opening of cyclopropanols. Chem. – Eur. J. 21: 8060–8063, https://doi.org/10.1002/chem.201501081.Search in Google Scholar PubMed

Boyjoo, Y., Ang, M., and Pareek, V. (2014). CFD simulation of a pilot scale slurry photocatalytic reactor and design of multiple-lamp reactors. Chem. Eng. Sci. 111: 266–277, https://doi.org/10.1016/j.ces.2014.02.022.Search in Google Scholar

Brammer, L., Bruton, E.A., and Sherwood, P. (2001). Understanding the behavior of halogens as hydrogen bond acceptors. Cryst. Growth Des. 1: 277–290, https://doi.org/10.1021/cg015522k.Search in Google Scholar

Braun, M.G. and Doyle, A.G. (2013). Palladium-catalyzed allylic C–H fluorination. J. Am. Chem. Soc. 135: 12990–12993, https://doi.org/10.1021/ja407223g.Search in Google Scholar PubMed

Butler’, A. and Walker, J.V. (1998). Marine haloperoxidases. Chem. Rev. 93: 1937–1944, https://doi.org/10.1021/cr00021a014.Search in Google Scholar

Cabrera-Reina, A., Miralles-Cuevas, S., Soriano-Molina, P., and Sánchez-Pérez, J.A. (2021). A critical evaluation of the use of accumulated energy as a parameter for the scale-up of solar photoreactors during the treatment of simulated industrial wastewater by solar photo-Fenton. J. Chem. Technol. Biotechnol. 96: 1593–1602, https://doi.org/10.1002/jctb.6678.Search in Google Scholar

Cantillo, D. and Kappe, C.O. (2017). Halogenation of organic compounds using continuous flow and microreactor technology. React. Chem. Eng. 2: 7–19, https://doi.org/10.1039/c6re00186f.Search in Google Scholar

Capilato, J.N., Pitts, C.R., Rowshanpour, R., Dudding, T., and Lectka, T. (2020). Site-selective photochemical fluorination of ketals: unanticipated outcomes in selectivity and stability. J. Org. Chem. 85: 2855–2864, https://doi.org/10.1021/acs.joc.9b03047.Search in Google Scholar PubMed

Chan, K.S.L., Wasa, M., Wang, X., and Yu, J.Q. (2011). Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach. Angewandte Chemie – International Edition 50: 9081–9084, https://doi.org/10.1002/anie.201102985.Search in Google Scholar PubMed

Chen, X., Hao, X.S., Goodhue, C.E., and Yu, J.Q. (2006). Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128: 6790–6791, https://doi.org/10.1002/chin.200639082.Search in Google Scholar

Crowe, C., Molyneux, S., Sharma, S.V., Zhang, Y., Gkotsi, D.S., Connaris, H., and Goss, R.J.M. (2021). Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C–H functionalisation. Chem. Soc. Rev. 50: 9443–9481, https://doi.org/10.1039/d0cs01551b.Search in Google Scholar PubMed PubMed Central

Dauncey, E.M., Morcillo, S.P., Douglas, J.J., Sheikh, N.S., and Leonori, D. (2018). Photoinduced remote functionalisations by iminyl radical promoted C−C and C−H bond cleavage cascades. Angewandte Chemie – International Edition 57: 744–748, https://doi.org/10.1002/anie.201710790.Search in Google Scholar PubMed PubMed Central

Davies, K.R., Jones, B., Terashima, C., Fujishima, A., and Pitchaimuthu, S. (2021). Photocatalytic water pollutant treatment: fundamental, analysis and benchmarking. Nanostruct. Mater. Environ. Appl.: 401–431, https://doi.org/10.1007/978-3-030-72076-6_16.Search in Google Scholar

De Almeida, L.S., De Mattos, M.S., and Esteves, P.M. (2013). Tribromoisocyanuric acid in trifluoroacetic acid: an efficient system for smooth brominating of moderately deactivated arenes. Synlett 24: 603–606, https://doi.org/10.1055/s-0032-1317795.Search in Google Scholar

De La Cruz, J.A., Liu, Q., Senyuk, B., Frazier, A.W., Peddireddy, K., and Smalyukh, I.I. (2018). Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5: 2468–2477, https://doi.org/10.1021/acsphotonics.8b00289.Search in Google Scholar

Deng, B., Jiang, Y., Gao, L., and Zhao, B. (2023). CFD modeling of ethylene degradation in gas-phase photocatalytic reactors. Environ. Sci. Pollut. Res. 30: 24132–24142, https://doi.org/10.1007/s11356-022-23737-8.Search in Google Scholar PubMed

Djerassi, C. (1948). Brominations with N-bromosuccinimide and related compounds. The Wohl-Ziegler reaction. Chem. Rev. 43: 271–317, https://doi.org/10.1021/cr60135a004.Search in Google Scholar PubMed

Düsel, S.J.S. and König, B. (2020). Oxidative photochlorination of electron-rich arenes via in situ bromination. Eur. J. Org Chem. 2020: 1491–1495, https://doi.org/10.1002/ejoc.201900411.Search in Google Scholar

Eigoro Murayama, B., Kohda, A., and Sato, T. (1980). Metal-catalysed organic photoreactions. Evidence for the long-range electron-transfer mechanism in the uranyl-or iron(iii)-catalysed photo-reactions of olefins. J. Chem. Soc., Perkin Trans. 1: 947–949, https://doi.org/10.1039/p19800000947.Search in Google Scholar

El-Mekkawi, D.M., Nady, N., Abdelwahab, N.A., Mohamed, W.A.A., and Abdel-Mottaleb, M.S.A. (2016). Flexible bench-scale recirculating flow CPC photoreactor for solar photocatalytic degradation of methylene blue using removable tioimmobilized on pet sheets. Int. J. Photoenergy 2016: 1–9, https://doi.org/10.1155/2016/9270492.Search in Google Scholar

Emsley, J. (2011). Nature’s building block. Oxford University Press, Oxford, UK.Search in Google Scholar

Enesca, A. (2021). The influence of photocatalytic reactors design and operating parameters on the wastewater organic pollutants removal – a mini-review. Catalysts 11, https://doi.org/10.3390/catal11050556.Search in Google Scholar

Epp, K., Last, W., Peschl, A., and Ekato Ruhr-Und Mischtechnik GMBH and Peschl Ultraviolet GMBH. (2023). Photoreactor device and method for operating a photoreactor device, application no. PCT/EP2022/084512.Search in Google Scholar

Espíndola, J.C., Cristóvão, R.O., Araújo, S.R.F., Neuparth, T., Santos, M.M., Montes, R., Quintana, J.B., Rodil, R., Boaventura, R.A.R., and Vilar, V.J.P. (2019). An innovative photoreactor, FluHelik, to promote UVC/H2O2 photochemical reactions: tertiary treatment of an urban wastewater. Sci. Total Environ. 667: 197–207, https://doi.org/10.1016/j.scitotenv.2019.02.335.Search in Google Scholar PubMed

Espíndola, J.C., Caianelo, M., Scaccia, N., Rodrigues-Silva, C., Guimarães, J.R., and Vilar, V.J.P. (2021). Trace organic contaminants removal from municipal wastewater using the FluHelik reactor: from laboratory-scale to pre-pilot scale. J. Environ. Chem. Eng. 9, https://doi.org/10.1016/j.jece.2021.105060.Search in Google Scholar

Esteban Duran, J., Mohseni, M., and Taghipour, F. (2015). Computational modeling of UV photocatalytic reactors: model development, evaluation, and application. Water Qual. Res. J. Can. 50: 21–33, https://doi.org/10.2166/wqrjc.2014.031.Search in Google Scholar

Fan, J., Wei, Q., Zhu, E., Gao, J., Cheng, X., Lu, Y., and Loh, T.P. (2021). Visible light-induced mono-bromination of arenes with BrCCl3. Chem. Commun. 57: 5977–5980, https://doi.org/10.1039/d1cc01721g.Search in Google Scholar PubMed

Fang, J., Wang, Z.K., Wu, S.W., Shen, W.G., Ao, G.Z., and Liu, F. (2017). Photoredox-catalysed chloro-bromo- and trifluoromethylthio-trifluoromethylation of unactivated alkenes with sodium triflinate. Chem. Commun. 53: 7638–7641, https://doi.org/10.1039/c7cc01903c.Search in Google Scholar PubMed

Fang, W.Y., Ravindar, L., Rakesh, K.P., Manukumar, H.M., Shantharam, C.S., Alharbi, N.S., and Qin, H.L. (2019). Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur. J. Med. Chem. 173: 117–153, https://doi.org/10.1016/j.ejmech.2019.03.063.Search in Google Scholar PubMed PubMed Central

Fournier, K., Marina, N., Joshi, N., Berthiaume, V.R., Currie, S., Lanterna, A.E., and Scaiano, J.C. (2021). Scale-up of a photochemical flow reactor for the production of lignin-coated titanium dioxide as a sunscreen ingredient. J. Photochem. Photobiol. 7, https://doi.org/10.1016/j.jpap.2021.100040.Search in Google Scholar

Friedmann, D., Hakki, A., Kim, H., Choi, W., and Bahnemann, D. (2016). Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chem. 18: 5391–5411, https://doi.org/10.1039/c6gc01582d.Search in Google Scholar

Fujita, M., Lévêque, J.M., Komatsu, N., and Kimura, T. (2015). Sono-bromination of aromatic compounds based on the ultrasonic advanced oxidation processes. Ultrason. Sonochem. 27: 247–251, https://doi.org/10.1016/j.ultsonch.2015.04.030.Search in Google Scholar PubMed

Furuya, T., Kamlet, A.S., and Ritter, T. (2011). Catalysis for fluorination and trifluoromethylation. Nature 473: 470–477, https://doi.org/10.1038/nature10108.Search in Google Scholar PubMed PubMed Central

Genovino, J., Sames, D., Hamann, L.G., and Touré, B.B. (2016). Accessing drug metabolites via transition-metal catalyzed C−H oxidation: the liver as synthetic inspiration. Angewandte Chemie – International Edition 55: 14218–14238, https://doi.org/10.1002/anie.201602644.Search in Google Scholar PubMed

Gentry, C.L., Egleton, R.D., Gillespie, T., Abbruscato, T.J., Bechowski, H.B., Hruby, V.J., and Davis, T.P. (1999). The effect of halogenation on blood-brain barrier permeability of a novel peptide drug. Peptides 20, https://doi.org/10.1016/s0196-9781(99)00127-8.Search in Google Scholar PubMed

George, B.K. and Rajasekharan Pillai, V.N. (1989). Poly-N-haloacrylamides as polymeric solid phase synthetic reagents for α-halogenation of ketones. Polymer 30: 178–181, https://doi.org/10.1016/0032-3861(89)90400-x.Search in Google Scholar

Ghorbani-Vaghei, R. and Jalili, H. (2005). Mild and regioselective bromination of aromatic compounds with N,N,N′,N′-Tetrabromobenzene-1,3-disulfonylamide and poly(N-bromobenzene-1,3-disulfonylamide). Synthesis 7: 1099–1102, https://doi.org/10.1002/chin.200542051.Search in Google Scholar

Gouverneur, K. and Muller, K. (2012). Fluorine in pharmaceutical and medicinal chemistry: from biophysical aspects to clinical applications. World Scientific 11: 1–525.10.1142/9781848166363_bmatterSearch in Google Scholar

Grushin, V.V. (2010). The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination. Acc. Chem. Res. 43: 160–171, https://doi.org/10.1021/ar9001763.Search in Google Scholar PubMed

Gustafson, J.L., Lim, D., and Mille, S.J. (2010). Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetrie bromination. Science 328: 1251–1255.10.1126/science.1188403Search in Google Scholar PubMed PubMed Central

Halperin, S.D., Fan, H., Chang, S., Martin, R.E., and Britton, R. (2014). A convenient photocatalytic fluorination of unactivated C–H bonds. Angewandte Chemie – International Edition 53: 4690–4693, https://doi.org/10.1002/anie.201400420.Search in Google Scholar PubMed

Harper, K., Grieme, T., Towne, T., Mack, D., Diwan, M., Ku, Y.-Y., Griffin, J., Miller, R., Zhang, E., Liu, Z., et al.. (2021). Commercial-scale visible-light trifluoromethylation of 2-chlorothiophenol using CF3I gas. Org. Process Res. Dev. 26: 404–412, https://doi.org/10.1021/acs.oprd.1c00436.Search in Google Scholar

Harry, S.A., Xiang, M.R., Holt, E., Zhu, A., Ghorbani, F., Patel, D., and Lectka, T. (2022). Hydroxy-directed fluorination of remote unactivated C(sp3)-H bonds: a new age of diastereoselective radical fluorination. Chem. Sci. 13: 7007–7013, https://doi.org/10.1039/d2sc01907h.Search in Google Scholar PubMed PubMed Central

Hering, T. and König, B. (2016). Photocatalytic activation of N-chloro compounds for the chlorination of arenes. Tetrahedron 72: 7821–7825, https://doi.org/10.1016/j.tet.2016.06.028.Search in Google Scholar

Hering, T., Mühldorf, B., Wolf, R., and König, B. (2016). Halogenase-inspired oxidative chlorination using Flavin photocatalysis. Angewandte Chemie – International Edition 55: 5342–5345, https://doi.org/10.1002/anie.201600783.Search in Google Scholar PubMed PubMed Central

Heropoulos, G.A., Cravotto, G., Screttas, C.G., and Steele, B.R. (2007). Contrasting chemoselectivities in the ultrasound and microwave assisted bromination reactions of substituted alkylaromatics with N-bromosuccinimide. Tetrahedron Lett. 48: 3247–3250, https://doi.org/10.1016/j.tetlet.2007.03.023.Search in Google Scholar

Hirbawi, N., Lin, P.C., and Jarvo, E.R. (2022). Halogenation reactions of alkyl alcohols employing methyl Grignard reagents. J. Org. Chem. 87: 12352–12369, https://doi.org/10.1021/acs.joc.2c01590.Search in Google Scholar PubMed PubMed Central

Hong, X., Zhou, Q., Huang, S., Cui, H.Z., Li, Z.M., and Hou, X.F. (2019). Transition metal catalysed C7 and: ortho-selective halogenation of 2-arylbenzo [d] oxazoles. Org. Chem. Front. 6: 2226–2233, https://doi.org/10.1039/c9qo00429g.Search in Google Scholar

Hornbrook, L.F., Reed, C.D., and Lamar, A.A. (2023). Bromination of indazoles enhanced by organic-dye, visible-light photoredox catalysis. Tetrahedron 142, https://doi.org/10.1016/j.tet.2023.133523.Search in Google Scholar

Hou, J., Li, Z., Jia, X.D., and Liu, Z.Q. (2014). Bromination of arenes using I2O5-KBr in water. Synth. Commun. 44: 181–187, https://doi.org/10.1080/00397911.2013.796523.Search in Google Scholar

Huang, F.Q., Xie, J., Sun, J.G., Wang, Y.W., Dong, X., Qi, L.W., and Zhang, B. (2016). Regioselective synthesis of carbonyl-containing alkyl chlorides via silver-catalyzed ring-opening chlorination of cycloalkanols. Org. Lett. 18: 684–687, https://doi.org/10.1021/acs.orglett.5b03649.Search in Google Scholar PubMed

Hull, K.L., Anani, W.Q., and Sanford, M.S. (2006). Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc. 128: 7134–7135, https://doi.org/10.1021/ja061943k.Search in Google Scholar PubMed

Jin, J., Zhao, Y., Kyne, S.H., Farshadfar, K., Ariafard, A., and Chan, P.W.H. (2021). Copper(I)-catalysed site-selective C(sp3)–H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-23988-y.Search in Google Scholar PubMed PubMed Central

Jitareanu, A., Caba, I.C., Agoroaei, L., Jităreanu, A., and Cezara Caba, I. (2019). Halogenation-A versatile tool for drug synthesis-the importance of developing effective and eco-friendly reaction protocols. Curr. Anal. Biotechnol.: 2019–2030.Search in Google Scholar

Jităreanu, A., Tătărîngă, G., Zbancioc, A.-M., and Trifan, A. (2018). Bromination-A versatile tool for drugs optimization. Pharm. Rev. 122.Search in Google Scholar

Johnson, M., Schmidt, J.A., Pugliese, S., and Ambient Carbon Methane Holding Aps. (2024). Photochemical method and device for volatile organic compound pollution control, application no. 18/044,399.Search in Google Scholar

Kalyani, D., Dick, A.R., Anani, W.Q., and Sanford, M.S. (2006). Scope and selectivity in palladium-catalyzed directed C–H bond halogenation reactions. Tetrahedron 62: 11483–11498, https://doi.org/10.1016/j.tet.2006.06.075.Search in Google Scholar

Kee, C.W., Chan, K.M., Wong, M.W., and Tan, C.H. (2014a). Selective bromination of sp3 C–H bonds by organophotoredox catalysis. Asian J. Org. Chem. 3: 536–544, https://doi.org/10.1002/ajoc.201300169.Search in Google Scholar

Kee, C.W., Chin, K.F., Wong, M.W., and Tan, C.H. (2014b). Selective fluorination of alkyl C–H bonds via photocatalysis. Chem. Commun. 50: 8211–8214, https://doi.org/10.1039/c4cc01848f.Search in Google Scholar PubMed

Kim, S., Khomutnyk, Y., Bannykh, A., and Nagorny, P. (2021). Synthesis of glycosyl fluorides by photochemical fluorination with sulfur(VI) hexafluoride. Org. Lett. 23: 190–194, https://doi.org/10.1021/acs.orglett.0c03915.Search in Google Scholar PubMed PubMed Central

Kirsch, P. (2004). Front matter. In: Modern fluoroorganic chemistry. Verlag, GmbH & Co, KGaA, Weinheim.10.1002/352760393XSearch in Google Scholar

Kortmann, F.A., Hermsen, P., and De Vries, A.H.M. (2021). Photoinduced decarboxylative borylation: scaling visible light photochemistry. Chimica Oggi-Chem. Today 39.Search in Google Scholar

Kour, J., Khajuria, P., Sharma, A., and Sawant, S.D. (2022). TBAX/Oxone-Mediated halogenation of pyrazoles and other heterocycles: an entry to important cross-coupling reactions. Chem. – Asian J. 17, https://doi.org/10.1002/asia.202200778.Search in Google Scholar PubMed

Kramer, J.J.P., Yildiz, C., Nieger, M., and Bräse, S. (2014). Direct access to 4,5-disubstituted [2.2]paracyclophanes by selective ortho-halogenation with Pd-catalyzed C–H activation. Eur. J. Org Chem. 2014: 1287–1295, https://doi.org/10.1002/ejoc.201301723.Search in Google Scholar

Lai, C. and Mallouk, T.E. (1993). A new approach to the photochemical trifluoromethylation of aromatic compounds. J. Chem. Soc. Chem. Commun. 17: 1359–1361, https://doi.org/10.1039/c39930001359.Search in Google Scholar

Lapierre, R., Le, T.M.T., Schiavi, B., Thevenet, D., Bazin, M., Buzdygon, R., Jubault, P., and Poisson, T. (2023). Photocatalytic and photoinduced phosphonylation of aryl iodides: a batch and flow study. Org. Process Res. Dev. 28: 1436–1446, https://doi.org/10.1021/acs.oprd.2c00379.Search in Google Scholar

Lee, J.H., Jung, H.I., and Kim, D.Y. (2020). Visible light-mediated photocatalytic bromination of 2-arylimidazo[1,2-a]pyridines using CBr4 as bromine source. Synth. Commun. 50: 197–206, https://doi.org/10.1080/00397911.2019.1691738.Search in Google Scholar

Lee, Y., Lutze, H., and Allard, S. (2022) Photochemistry of water treatment oxidants for advanced oxidation processes. Springer handbook of inorganic photochemistry: 1685–1718.10.1007/978-3-030-63713-2_58Search in Google Scholar

Leng, Y., Yang, F., Zhu, W., Zou, D., Wu, Y., and Cai, R. (2011). Facile synthesis of arylboronic esters by palladacycle-catalyzed bromination of 2-arylbenzoxazoles and subsequent borylation of the brominated products. Tetrahedron 67: 6191–6196, https://doi.org/10.1016/j.tet.2011.06.057.Search in Google Scholar

Leung, J.C.T., Chatalova-Sazepin, C., West, J.G., Rueda-Becerril, M., Paquin, J.F., and Sammis, G.M. (2012). Photo-fluorodecarboxylation of 2-aryloxy and 2-aryl carboxylic acids. Angewandte Chemie – International Edition 51: 10804–10807, https://doi.org/10.1002/anie.201206352.Search in Google Scholar PubMed

Li, X.L., Wu, W., Fan, X.H., and Yang, L.M. (2013). A facile, regioselective and controllable bromination of aromatic amines using a CuBr2/Oxone® system. RSC Adv. 3: 12091–12095, https://doi.org/10.1039/c3ra41664j.Search in Google Scholar

Li, R., Wang, Z.J., Wang, L., Ma, B.C., Ghasimi, S., Lu, H., Landfester, K., and Zhang, K.A.I. (2016). Photocatalytic selective bromination of electron-rich aromatic compounds using microporous organic polymers with visible light. ACS Catal. 6: 1113–1121, https://doi.org/10.1021/acscatal.5b02490.Search in Google Scholar

Li, R., Gehrig, D.W., Ramanan, C., Blom, P.W.M., Kohl, F.F., Wagner, M., Landfester, K., and Zhang, K.A.I. (2019). Visible light-mediated conversion of alcohols to bromides by a benzothiadiazole-containing organic photocatalyst. Adv. Synth. Catal. 361: 3852–3859, https://doi.org/10.1002/adsc.201900416.Search in Google Scholar

Li, M.F., Wang, J., Ke, Y.X., Pan, S.C., Yin, H., Du, W., and Li, J.H. (2020). A metal-free aerobic oxidative bromination of anilines and aryl ketones with 2-methylpyridinium nitrate as a reusable ionic liquid. J. Chem. Res. 44: 267–270, https://doi.org/10.1177/1747519819895978.Search in Google Scholar

Liu, W. and Groves, J.T. (2010). Manganese porphyrins catalyze selective C–H bond halogenations. J. Am. Chem. Soc. 132: 12847–12849, https://doi.org/10.1021/ja105548x.Search in Google Scholar PubMed

Liu, W. and Groves, J.T. (2013). Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions. Angewandte Chemie – International Edition 52: 6024–6027, https://doi.org/10.1002/anie.201301097.Search in Google Scholar PubMed

Liu, W. and Groves, J.T. (2015). Manganese catalyzed C–H halogenation. Acc. Chem. Res. 48: 1727–1735, https://doi.org/10.1021/acs.accounts.5b00062.Search in Google Scholar PubMed

Liu, W., Huang, X., Cheng, M.J., Nielsen, R.J., Goddard, W.A., and Groves, J.T. (2012). Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337: 1322–1325, https://doi.org/10.1126/science.1222327.Search in Google Scholar PubMed

Lu, Y., Wang, Y., Xu, Z., Yan, X., Luo, X., Jiangs, H., and Zhu, W. (2009). C-X-H contacts in biomolecular systems: how they contribute to protein – ligand binding affinity. J. Phys. Chem. B 113: 12615–12621, https://doi.org/10.1021/jp906352e.Search in Google Scholar PubMed

Lu, Y., Liu, Y., Xu, Z., Li, H., Liu, H., and Zhu, W. (2012). Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discovery 7: 375–383, https://doi.org/10.1517/17460441.2012.678829.Search in Google Scholar PubMed

Luo, H., Zhang, G., Hashisho, Z., and Zhong, L. (2020). An improved numerical model of a UV-PCO reactor for air purification applications. Build. Simul. 13: 1095–1110, https://doi.org/10.1007/s12273-020-0659-5.Search in Google Scholar

Lyalin, B.V., Petrosyan, V.A., and Zelinsky, N.D. (2012). Effect of ‘anomalous’ electrochemical halogenation of pyrazoles and its reasons. Russ. Chem. Bull. 61: 209–210.10.1007/s11172-012-0030-9Search in Google Scholar

Ma, B., Lu, F., Yang, H., Gu, X., Li, Z., Li, R., Pei, H., Luo, D., Zhang, H., and Lei, A. (2019). Visible light mediated external oxidant free selective C5 bromination of 8-aminoquinoline amides under ambient conditions. Asian J. Org. Chem. 8: 1136–1140, https://doi.org/10.1002/ajoc.201900293.Search in Google Scholar

Maddox, S.M., Nalbandian, C.J., Smith, D.E., and Gustafson, J.L. (2015). A practical lewis base catalyzed electrophilic chlorination of arenes and heterocycles. Org. Lett. 17: 1042–1045, https://doi.org/10.1021/acs.orglett.5b00186.Search in Google Scholar PubMed

Marimuthu, S., Antonisamy, A.J., Malayandi, S., Rajendran, K., Tsai, P.C., Pugazhendhi, A., and Ponnusamy, V.K. (2020). Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B: Biol. 205: 111823, https://doi.org/10.1016/j.jphotobiol.2020.111823.Search in Google Scholar PubMed

Mazierski, P., Bajorowicz, B., Grabowska, E., and Zaleska-Medynska, A. (2016) Photoreactor design aspects and modeling of light. In: Heterogeneous photocatalysis: from fundamentals to green applications. Springer, Berlin Heidelberg, pp. 211–248.10.1007/978-3-662-48719-8_7Search in Google Scholar

McMurtrey, K.B., Racowski, J.M., and Sanford, M.S. (2012). Pd-catalyzed C–H fluorination with nucleophilic fluoride. Org. Lett. 14: 4094–4097, https://doi.org/10.1021/ol301739f.Search in Google Scholar PubMed PubMed Central

Meng, X. and Zhang, Z. (2019). Experimental analysis of a photoreactor packed with Pd-BiVO4-coated glass beads. AIChE J. 65: 132–139, https://doi.org/10.1002/aic.16388.Search in Google Scholar

Menzel, J.P., Noble, B.B., Blinco, J.P., and Barner-Kowollik, C. (2021). Predicting wavelength-dependent photochemical reactivity and selectivity. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-21797-x.Search in Google Scholar PubMed PubMed Central

Mitchell, P.S.R., Sengul, I.F., Kandemir, H., Nugent, S.J., Chen, R., Bowyer, P.K., Kumar, N., and Black, D.S. (2012). Bromination of 4,6-dimethoxyindoles. Tetrahedron 68: 8163–8171, https://doi.org/10.1016/j.tet.2012.07.077.Search in Google Scholar

Mo, F., Yan, J.M., Qiu, D., Li, F., Zhang, Y., and Wang, J. (2010). Gold-catalyzed halogenation of aromatics by N-halosuccinimides. Angewandte Chemie – International Edition 49: 2028–2032, https://doi.org/10.1002/anie.200906699.Search in Google Scholar PubMed

Mo, S., Zhu, Y., and Shen, Z. (2013). Copper-catalyzed aromatic C–H bond halogenation with lithium halides under aerobic conditions. Org. Biomol. Chem. 11: 2756–2760, https://doi.org/10.1039/c3ob40185e.Search in Google Scholar PubMed

Molinari, R. (2015) Photoreactor. In: Encyclopedia of membranes. Springer, Berlin Heidelberg, pp. 1–2.10.1007/978-3-642-40872-4_969-4Search in Google Scholar

Morgenthaler, M., Schweizer, E., Hoffmann-Röder, A., Benini, F., Martin, R.E., Jaeschke, G., Wagner, B., Fischer, H., Bendels, S., Zimmerli, D., et al.. (2007). Predicting and tuning physicochemical properties in lead optimization: amine basicities. ChemMedChem 2: 1100–1115, https://doi.org/10.1002/cmdc.200700059.Search in Google Scholar PubMed

Mori, K., Ichikawa, Y., Kobayashi, M., Shibata, Y., Yamanaka, M., and Akiyama, T. (2013). Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalyzed desymmetrization/kinetic resolution sequence. J. Am. Chem. Soc. 135: 3964–3970, https://doi.org/10.1021/ja311902f.Search in Google Scholar PubMed

Motegh, Mahsa. (2013). Design of photocatalytic reactors, Boxpress. Doctoral thesis. Delft, Netherlands, TU Delft.Search in Google Scholar

Munjal, G., Bhaskarwar, A.N., and Chaudhary, A. (2021). Kinetic-invariant analysis of dye degradation in an annular slurry bubble-column photo reactor. Int. J. Chem. React. Eng. 19: 839–849, https://doi.org/10.1515/ijcre-2021-0004.Search in Google Scholar

Nagib, D.A. and Macmillan, D.W.C. (2011). Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480: 224–228, https://doi.org/10.1038/nature10647.Search in Google Scholar PubMed PubMed Central

Nagib, D.A., Scott, M.E., and MacMillan, D.W.C. (2009). Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131: 10875–10877, https://doi.org/10.1021/ja9053338.Search in Google Scholar PubMed PubMed Central

Narayanam, J.M.R. and Stephenson, C.R.J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40: 102–113, https://doi.org/10.1039/b913880n.Search in Google Scholar PubMed

Nath, J. and Chaudhuri, M.K. (2008). Boric acid catalyzed bromination of a variety of organic substrates: an eco-friendly and practical protocol. Green Chem. Lett. Rev. 1: 223–230, https://doi.org/10.1080/17518250902758887.Search in Google Scholar

Naumann, K. (2000). Review Influence of chlorine substituents on biological activity of chemicals: a review. Pest Manage. Sci. 56: 3–21, https://doi.org/10.1002/(sici)1526-4998(200001)56:1<3::aid-ps107>3.3.co;2-g.10.1002/(SICI)1526-4998(200001)56:1<3::AID-PS107>3.3.CO;2-GSearch in Google Scholar

Navarra, W., Sacco, O., Rescigno, R., Daniel, C., Vaiano, V., Pisano, D., Brancato, B., Casertano, F., Raiola, M., and Venditto, V. (2023). Remediation of perchloroethylene contaminated groundwater using Fe0/ZnS embedded in a highly porous polymer: experimental results on pilot-scale photoreactor and kinetic modeling analysis for industrial scale-up. Catal. Commun. 180, https://doi.org/10.1016/j.catcom.2023.106699.Search in Google Scholar

Neyt, N.C. and Riley, D.L. (2021). Application of reactor engineering concepts in continuous flow chemistry: a review. React. Chem. Eng. 6: 1295–1326, https://doi.org/10.1039/d1re00004g.Search in Google Scholar

Nosaka, Y. and Nosaka, A. (2016). Kinetics and mechanism in photocatalysis. In: Introduction to photocatalysis: from basic science to applications. Royal Society Of Chemistry, London, UK, pp. 111–141.10.1039/BK9781782623205-00111Search in Google Scholar

O’Hagan, D. (2008). Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37: 308–319, https://doi.org/10.1039/b711844a.Search in Google Scholar

Ollis, D.F. (2018). Kinetics of photocatalyzed reactions: five lessons learned. Front. Chem. 6, https://doi.org/10.3389/fchem.2018.00378.Search in Google Scholar

Paghaleh, E., Dashtian, K., Yousefi, J., Seidi, F., and Kolvari, E. (2023). Green synthesis of stable CuFe2O4/CuO-rGO heterostructure photocatalyst using Basil seeds as chemo-reactors for improved oxytetracycline degradation. J. Environ. Chem. Eng. 11: 110676, https://doi.org/10.1016/j.jece.2023.110676.Search in Google Scholar

Patil, D.V., Kim, H.Y., and Oh, K. (2020). Visible light-promoted Friedel-Crafts-type chloroacylation of alkenes to β-chloroketones. Org. Lett. 22: 3018–3022, https://doi.org/10.1021/acs.orglett.0c00788.Search in Google Scholar

Paulini, R., Müller, K., and Diederich, F. (2005). Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie – International Edition 44: 1788–1805, https://doi.org/10.1002/anie.200462213.Search in Google Scholar

Pitts, C.R., Bume, D.D., Harry, S.A., Siegler, M.A., and Lectka, T. (2017). Multiple enone-directed reactivity modes lead to the selective photochemical fluorination of polycyclic terpenoid derivatives. J. Am. Chem. Soc. 139: 2208–2211, https://doi.org/10.1021/jacs.7b00335.Search in Google Scholar

Protti, S. and Fagnoni, M. (2009). The sunny side of chemistry: green synthesis by solar light. Photochem. Photobiol. Sci. 8: 1499–1516, https://doi.org/10.1039/b909128a.Search in Google Scholar PubMed

Purser, S., Moore, P.R., Swallow, S., and Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chem. Soc. Rev. 37: 320–330, https://doi.org/10.1039/b610213c.Search in Google Scholar PubMed

Querci, C., Strologo, S., and Ricci, M. (1990). Nickel(Salen) catalysed chlorination of saturated hydrocarbons by sodium hypochlorite. Tetrahedron Lett. 31: 6577–6580, https://doi.org/10.1016/s0040-4039(00)97121-1.Search in Google Scholar

Quinn, R.K., Könst, Z.A., Michalak, S.E., Schmidt, Y., Szklarski, A.R., Flores, A.R., Nam, S., Horne, D.A., Vanderwal, C.D., and Alexanian, E.J. (2016). Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138: 696–702, https://doi.org/10.1021/jacs.5b12308.Search in Google Scholar PubMed PubMed Central

Rabelo Hollanda, L., Brito Ferreira Santos, S., Gabriela Araújo Arruda Faustino, J., Luiz Dotto, G., Luiz Foletto, E., and Chiavone-Filho, O. (2021). Oil field-produced water treatment: characterization, photochemical systems, and combined processes. Environ. Sci. Pollut. Res. Int. 28: 52744–52763, https://doi.org/10.1007/s11356-021-16222-1.Search in Google Scholar PubMed

Rancaño, L., Rivero, M.J., Mueses, M.Á., and Ortiz, I. (2021). Comprehensive kinetics of the photocatalytic degradation of emerging pollutants in a LED-assisted photoreactor. S-metolachlor as case study. Catalysts 11: 1–13, https://doi.org/10.3390/catal11010048.Search in Google Scholar

Rehm, T.H. (2016). Photochemical fluorination reactions – a promising research field for continuous-flow synthesis. Chem. Eng. Technol. 39: 66–80, https://doi.org/10.1002/ceat.201500195.Search in Google Scholar

Roegiers, J., van Walsem, J., and Denys, S. (2018). CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor. Chem. Eng. J. 338: 287–299, https://doi.org/10.1016/j.cej.2018.01.047.Search in Google Scholar

Rogers, D.A., Brown, R.G., Brandeburg, Z.C., Ko, E.Y., Hopkins, M.D., Leblanc, G., and Lamar, A.A. (2018). Organic dye-catalyzed, visible-light photoredox bromination of arenes and heteroarenes using N-bromosuccinimide. ACS Omega 3: 12868–12877, https://doi.org/10.1021/acsomega.8b02320.Search in Google Scholar PubMed PubMed Central

Rogers, D.A., Bensalah, A.T., Espinosa, A.T., Hoerr, J.L., Refai, F.H., Pitzel, A.K., Alvarado, J.J., and Lamar, A.A. (2019a). Amplification of trichloroisocyanuric acid (TCCA) reactivity for chlorination of arenes and heteroarenes via catalytic organic dye activation. Org. Lett. 21: 4229–4233, https://doi.org/10.1021/acs.orglett.9b01414.Search in Google Scholar PubMed

Rogers, D.A., Gallegos, J.M., Hopkins, M.D., Lignieres, A.A., Pitzel, A.K., and Lamar, A.A. (2019b). Visible-light photocatalytic activation of N-chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes. Tetrahedron 75, https://doi.org/10.1016/j.tet.2019.130498.Search in Google Scholar

Rogers, D.A., Hopkins, M.D., Rajagopal, N., Varshney, D., Howard, H.A., Leblanc, G., and Lamar, A.A. (2020). U.S. food and drug administration-certified food dyes as organocatalysts in the visible light-promoted chlorination of aromatics and heteroaromatics. ACS Omega 5: 7693–7704, https://doi.org/10.1021/acsomega.0c00631.Search in Google Scholar PubMed PubMed Central

Roibu, A., Morthala, R.B., Leblebici, M.E., Koziej, D., Van Gerven, T., and Kuhn, S. (2018). Design and characterization of visible-light LED sources for microstructured photoreactors. React. Chem. Eng. 3: 849–865, https://doi.org/10.1039/c8re00165k.Search in Google Scholar

Romero, N.A. and Nicewicz, D.A. (2016). Organic photoredox catalysis. Chem. Rev. 116: 10075–10166, https://doi.org/10.1021/acs.chemrev.6b00057.Search in Google Scholar PubMed

Rosso, C., Gisbertz, S., Williams, J.D., Gemoets, H.P.L., Debrouwer, W., Pieber, B., and Kappe, C.O. (2020). An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. React. Chem. Eng. 5: 597–604, https://doi.org/10.1039/d0re00036a.Search in Google Scholar

Rueda-Becerril, M., Mahé, O., Drouin, M., Majewski, M.B., West, J.G., Wolf, M.O., Sammis, G.M., and Paquin, J.F. (2014). Direct C–F bond formation using photoredox catalysis. J. Am. Chem. Soc. 136: 2637–2641, https://doi.org/10.1021/ja412083f.Search in Google Scholar PubMed

Ruskin, J., Sachs, R.K., Wang, M., Dekeyser, R., Lew, Z., Williams, P., Hwang, H., Majumdar, A., Dudding, T., and Lectka, T. (2024). Metal ion-induced large fragment deactivation: a different strategy for site-selectivity in a complex molecule. Angewandte Chemie – International Edition 63, https://doi.org/10.1002/anie.202317070.Search in Google Scholar PubMed

Saikia, I., Chakraborty, P., Sarma, M.J., Goswami, M., and Phukan, P. (2015). Rapid and total bromination of aromatic compounds using TsNBr2 without any catalyst. Synth. Commun. 45: 211–217, https://doi.org/10.1080/00397911.2014.956367.Search in Google Scholar

Schröder, N., Wencel-Delord, J., and Glorius, F. (2012). High-yielding, versatile, and practical [Rh(III)Cp*]-catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc. 134: 8298–8301, https://doi.org/10.1021/ja302631j.Search in Google Scholar PubMed

Schröder, N., Lied, F., and Glorius, F. (2015). Dual role of Rh(III) catalyst enables regioselective halogenation of (electron-rich) heterocycles. J. Am. Chem. Soc. 137: 1448–1451, https://doi.org/10.1021/jacs.5b00283.Search in Google Scholar PubMed

Seel, C.J., Králík, A., Hacker, M., Frank, A., König, B., and Gulder, T. (2018). Atom-economic electron donors for photobiocatalytic halogenations. ChemCatChem 10: 3960–3963, https://doi.org/10.1002/cctc.201800886.Search in Google Scholar

Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 32: 751–767, https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

Shi, L., Zhang, D., Lin, R., Zhang, C., Li, X., and Jiao, N. (2014). The direct C–H halogenations of indoles. Tetrahedron Lett. 55: 2243–2245, https://doi.org/10.1016/j.tetlet.2014.02.071.Search in Google Scholar

Šima, J. (2017). Photochemistry – development and achievements. Acta Chim. Slovaca 10: 84–90, https://doi.org/10.1515/acs-2017-0015.Search in Google Scholar

Smith, K., El-Hiti, G.A., Hammond, M.E.W., Bahzad, D., Li, Z., and Siquet, C. (2000). Highly efficient and selective electrophilic and free radical catalytic bromination reactions of simple aromatic compounds in the presence of reusable zeolites. J. Chem. Soc., Perkin Trans. 1: 2745–2752, https://doi.org/10.1039/b002157l.Search in Google Scholar

Song, S., Sun, X., Li, X., Yuan, Y., and Jiao, N. (2015). Efficient and practical oxidative bromination and iodination of arenes and heteroarenes with DMSO and hydrogen halide: a mild protocol for late-stage functionalization. Org. Lett. 17: 2886–2889, https://doi.org/10.1021/acs.orglett.5b00932.Search in Google Scholar PubMed

Steiner, A., Williams, J.D., De Frutos, O., Rincón, J.A., Mateos, C., and Kappe, C.O. (2020). Continuous photochemical benzylic bromination using: in situ generated Br2: process intensification towards optimal PMI and throughput. Green Chem. 22: 448–454, https://doi.org/10.1039/c9gc03662h.Search in Google Scholar

Su, Y.M., Hou, Y., Yin, F., Xu, Y.M., Li, Y., Zheng, X., and Wang, X.S. (2014). Visible light-mediated C–H difluoromethylation of electron-rich heteroarenes. Org. Lett. 16: 2958–2961, https://doi.org/10.1021/ol501094z.Search in Google Scholar PubMed

Sun, X., Shan, G., Sun, Y., and Rao, Y. (2013). Regio- and chemoselective C–H chlorination/bromination of electrondeficient arenes by weak coordination and study of relative directing-group abilities. Angew. Chem. 125: 4536–4540, https://doi.org/10.1002/ange.201300176.Search in Google Scholar

Tratnyek, P.G., Edwards, E., Carpenter, L., and Blossom, S. (2020). Environmental occurrence, fate, effects, and remediation of halogenated (semi)volatile organic compounds. Environmental Science: Processes and Impacts 22: 465–471, https://doi.org/10.1039/d0em90008g.Search in Google Scholar PubMed

Wang, L. and Ackermann, L. (2014). Ruthenium-catalyzed ortho-C–H halogenations of benzamides. Chem. Commun. 50: 1083–1085, https://doi.org/10.1039/c3cc47852a.Search in Google Scholar PubMed

Wang, C.M. and Mallouk, T.E. (1990). New photochemical method for selective fluorination of organic molecules. J. Am. Chem. Soc. 112: 2016–2018, https://doi.org/10.1021/ja00161a066.Search in Google Scholar

Wang, X., Mei, T.S., and Yu, J.Q. (2009). Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter. J. Am. Chem. Soc. 131: 7520–7521, https://doi.org/10.1021/ja901352k.Search in Google Scholar PubMed

Wang, Z., Zhu, L., Yin, F., Su, Z., Li, Z., and Li, C. (2012). Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids. J. Am. Chem. Soc. 134: 4258–4263, https://doi.org/10.1021/ja210361z.Search in Google Scholar PubMed

Wang, N., Zeisberger, M., Hübner, U., and Schmidt, M.A. (2019). Boosting light collection efficiency of optical fibers using metallic nanostructures. ACS Photonics 6: 691–698, https://doi.org/10.1021/acsphotonics.8b01560.Search in Google Scholar

Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4: 26–32, https://doi.org/10.1016/j.jmrt.2014.10.009.Search in Google Scholar

Wengryniuk, S.E., Weickgenannt, A., Reiher, C., Strotman, N.A., Chen, K., Eastgate, M.D., and Baran, P.S. (2013). Regioselective bromination of fused heterocyclic N-oxides. Org. Lett. 15: 792–795, https://doi.org/10.1021/ol3034675.Search in Google Scholar PubMed

Wienkers, L.C. and Heath, T.G. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discovery 4: 825–833, https://doi.org/10.1038/nrd1851.Search in Google Scholar PubMed

Williams, J.A., Hyland, R., Jones, B.C., Smith, D.A., Hurst, S., Goosen, T.C., Peterkin, V., Koup, J.R., and Ball, S.E. (2004). Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC 1/AUC) ratios. Drug Metab. Dispos. 32: 1201–1208, https://doi.org/10.1124/dmd.104.000794.Search in Google Scholar PubMed

Wu, M.C., Li, M.Z., Chen, J.Y., Xiao, J.A., Xiang, H.Y., Chen, K., and Yang, H. (2022). Photoredox-catalysed chlorination of quinoxalin-2(1H)-ones enabled by using CHCl3 as a chlorine source. Chem. Commun. 58: 11591–11594, https://doi.org/10.1039/d2cc04520f.Search in Google Scholar PubMed

Wu, J., Shu, C., Li, Z., Noble, A., and Aggarwal, V.K. (2023). Photoredox-Catalyzed decarboxylative bromination, chlorination and thiocyanation using inorganic salts. Angewandte Chemie – International Edition 62, https://doi.org/10.1002/anie.202309684.Search in Google Scholar PubMed PubMed Central

Xia, J.B., Zhu, C., and Chen, C. (2013). Visible light-promoted metal-free C–H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. J. Am. Chem. Soc. 135: 17494–17500, https://doi.org/10.1021/ja410815u.Search in Google Scholar PubMed PubMed Central

Xia, J.B., Zhu, C., and Chen, C. (2014). Visible light-promoted metal-free sp3-C–H fluorination. Chem. Commun. 50: 11701–11704, https://doi.org/10.1039/c4cc05650g.Search in Google Scholar PubMed PubMed Central

Xiang, M., Zhou, C., Yang, X.L., Chen, B., Tung, C.H., and Wu, L.Z. (2020). Visible light-catalyzed benzylic C–H bond chlorination by a combination of organic dye (Acr+-Mes) and N-chlorosuccinimide. J. Org. Chem. 85: 9080–9087, https://doi.org/10.1021/acs.joc.0c01000.Search in Google Scholar PubMed

Xu, P., Guo, S., Wang, L., and Tang, P. (2014). Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes. Angewandte Chemie – International Edition 53: 5955–5958, https://doi.org/10.1002/anie.201400225.Search in Google Scholar PubMed

Yang, L., Lu, Z., and Stahl, S.S. (2009). Regioselective copper-catalyzed chlorination and bromination of arenes with O2 as the oxidant. Chem. Commun. 42: 6460–6462, https://doi.org/10.1039/b915487f.Search in Google Scholar PubMed

Yu, J.Q., Giri, R., and Chen, X. (2006). σ-Chelation-directed C–H functionalizations using Pd(ii) and Cu(ii) catalysts: regioselectivity, stereoselectivity and catalytic turnover. Org. Biomol. Chem. 4: 4041–4047, https://doi.org/10.1039/b611094k.Search in Google Scholar PubMed

Yu, D.G., Gensch, T., De Azambuja, F., Vásquez-Céspedes, S., and Glorius, F. (2014). Co(III)-catalyzed C–H activation/formal SN-type reactions: selective and efficient cyanation, halogenation, and allylation. J. Am. Chem. Soc. 136: 17722–17725, https://doi.org/10.1021/ja511011m.Search in Google Scholar PubMed

Yue, P.L. (1985). Introduction to the modelling and design of photoreactors. In: Photoelectrochemistry, photocatalysis and photoreactors. Springer Link, Dordrecht, Netherlands, pp. 527–547.10.1007/978-94-015-7725-0_23Search in Google Scholar

Zaldini Hernandes, M., Melo Cavalcanti, S.T., Rodrigo Moreira, D.M., Filgueira de Azevedo Junior, W., and Cristina Lima Leite, A. (2010). Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets 11: 303–314, https://doi.org/10.2174/138945010790711996.Search in Google Scholar PubMed

Zhang, L. and Hu, X. (2017). Room temperature C(sp2)-H oxidative chlorination: via photoredox catalysis. Chem. Sci. 8: 7009–7013, https://doi.org/10.1039/c7sc03010j.Search in Google Scholar PubMed PubMed Central

Zhang, K. and Parker, K.M. (2018). Halogen radical oxidants in natural and engineered aquatic systems. Environ. Sci. Technol. 52: 9579–9594, https://doi.org/10.1021/acs.est.8b02219.Search in Google Scholar PubMed

Zhao, Y., Li, Z., Yang, C., Lin, R., and Xia, W. (2014). Visible-light photoredox catalysis enabled bromination of phenols and alkenes. Beilstein J. Org. Chem. 10: 622–627, https://doi.org/10.3762/bjoc.10.53.Search in Google Scholar PubMed PubMed Central

Zhu, Y., Wang, J.J., Wu, D., and Yu, W. (2020). Visible-light-driven remote C−H chlorination of aliphatic sulfonamides with sodium hypochlorite. Asian J. Org. Chem. 9: 1650–1654, https://doi.org/10.1002/ajoc.202000354.Search in Google Scholar

Ziegenbalg, D., Kreisel, G., Weiß, D., and Kralisch, D. (2014). OLEDs as prospective light sources for microstructured photoreactors. Photochem. Photobiol. Sci. 13: 1005–1015, https://doi.org/10.1039/c3pp50302j.Search in Google Scholar PubMed

Received: 2024-04-05
Accepted: 2024-09-24
Published Online: 2024-11-18
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2024-0021/html
Scroll to top button