Abstract
With an increasing world population of nearly eight billion which is expected to expand towards nine billion by 2050, future food demands will rise unavoidably. Primary productivity of crop is at the center of the food and feed value chain. Excessive and low efficiency fertilization cause severe environmental and ecological problems, along with economic wastage. Next to fertilizers, also pesticides, plant growth regulators and other agrochemicals (e.g., stored animal manure and hormones) pose environmental issues and require specific technologies to ensure security of human health and the global ecosystem while increasing food productions. There is an agronomic, legal and environmental ‘demand’ to develop controlled release solutions to optimize agricultural practices. In this regard, (polymer) chemistry can offer a wide range of strategies to cope with the current issues related to biodegradation, overfertilization, pesticide use, efficient precision agriculture etc. through tailored material design allowing controlled active components release. Therefore, this review focusses on (polymer) chemical strategies to design controlled release systems in the agricultural industry, covering specifically the state-of-the-art from the past four years.
Funding source: Agentschap Innoveren en Ondernemen
Award Identifier / Grant number: HBC.2018.0211
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: VLAIO is hereby acknowledged for the research grant given to accomplish this study (grant number HBC.2018.0211).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abeywardana, L., de Silva, M., Sandaruwan, C., Dahanayake, D., Priyadarshana, G., Chathurika, S., Karunaratne, V., and Kottegoda, N. (2021). Zinc-doped hydroxyapatite-urea nanoseed coating as an efficient macro-micro plant nutrient delivery agent. ACS Agric. Sci. Technol. 1: 230–239. https://doi.org/10.1021/acsagscitech.1c00033.Suche in Google Scholar
Aina, N., Hiola, S.F., Hala, Y., Djawad, Y.A., Iriany, N., Makkulawu, A.T., Inubushi, K., and Jumadi, O. (2020). Response of corn plants (Zea mays L.) to application of zeolite coated urea as nitrogen slow release fertilizer. In: International Conference on sustainable Cereals and crops production Systems in the Tropics, 23-25 September 2019. Makassar City, Indonesia.10.1088/1755-1315/484/1/012091Suche in Google Scholar
Alves, M.I., Macagnan, K.L., Rodrigues, A.A., de Assis, D.A., Torres, M.M., de Oliveira, P.D., Furlan, L., Vendruscolo, C.T., and Moreira, A.D.S. (2017). Poly(3-hydroxybutyrate)-P(3HB): review of production process technology. Indust. Biotechnol. 13: 192–208. https://doi.org/10.1089/ind.2017.0013.Suche in Google Scholar
An, X., Wu, Z., Yu, J., Cravotto, G., Liu, X., Li, Q., and Yu, B. (2020a). Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustain. Chem. Eng. 8: 3181–3190. https://doi.org/10.1021/acssuschemeng.9b06483.Suche in Google Scholar
An, X., Wu, Z., Yu, J., Ge, L., Li, T., Liu, X., and Yu, B. (2020b). High-efficiency reclaiming phosphate from an aqueous solution by bentonite modified biochars: a slow release fertilizer with a precise rate regulation. ACS Sustain. Chem. Eng. 8: 6090–6099. https://doi.org/10.1021/acssuschemeng.0c01112.Suche in Google Scholar
Arjona, J., Silva-Valenzuela, M.D.G., Wang, S.H., and Valenzuela-Diaz, F.R. (2021). Biodegradable nanocomposite microcapsules for controlled release of urea. Polymers 13: 1–12.10.3390/polym13050722Suche in Google Scholar PubMed PubMed Central
Aro, T. and Fatehi, P. (2017). Production and application of lignosulfonates and sulfonated lignin. ChemSusChem. 10: 1861–1877. https://doi.org/10.1002/cssc.201700082.Suche in Google Scholar PubMed
Artusio, F., Casà, D., Granetto, M., Tosco, T., and Pisano, R. (2021). Alginate nanohydrogels as a biocompatible platform for the controlled release of a hydrophilic herbicide. Processes 9: 1641. https://doi.org/10.3390/pr9091641.Suche in Google Scholar
Babadi, F.E., Yunus, R., Masoudi Soltani, S., and Shotipruk, A. (2021). Release mechanisms and kinetic models of gypsum-sulfur-zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega. 6: 11144–11154. https://doi.org/10.1021/acsomega.0c04353.Suche in Google Scholar PubMed PubMed Central
Barrère, F., Mahmood, T.A., de Groot, K., and van Blitterswijk, C.A. (2008). Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater. Sci. Eng. R: Rep. 59: 38–71.10.1016/j.mser.2007.12.001Suche in Google Scholar
Bruchet, M. and Melman, A. (2015). Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr. Polym. 131: 57–64. https://doi.org/10.1016/j.carbpol.2015.05.021.Suche in Google Scholar PubMed
Byrne, D., Boeije, G., Croft, I., Hüttmann, G., Luijkx, G., Meier, F., Parulekar, Y., and Stijntjes, G. (2021). Biodegradability of polyvinyl alcohol based film used for liquid detergent capsules. Tenside Surfactants Deterg. 58: 88–96. https://doi.org/10.1515/tsd-2020-2326.Suche in Google Scholar
Cao, L., Liu, Y., Xu, C., Zhou, Z., Zhao, P., Niu, S., and Huang, Q. (2019). Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity. Mater. Sci. Eng. C. 102: 134–141. https://doi.org/10.1016/j.msec.2019.04.050.Suche in Google Scholar PubMed
Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., and Auras, R. (2016). Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107: 333–366. https://doi.org/10.1016/j.addr.2016.03.010.Suche in Google Scholar PubMed
Cen, Z., Wei, L., Muthukumarappan, K., Sobhan, A., and Mcdaniel, R. (2021). Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid. J. Soil Sci. Plant Nutrition 21: 2007–2019.10.1007/s42729-021-00497-xSuche in Google Scholar
Cesari, A., Loureiro, M.V., Vale, M., Yslas, E.I., Dardanelli, M., and Marques, A.C. (2019). Polycaprolactone microcapsules containing citric acid and naringin for plant growth and sustainable agriculture: physico-chemical properties and release behavior. Sci. Total Environ. 703: 135548.10.1016/j.scitotenv.2019.135548Suche in Google Scholar PubMed
Chaisena, A., Narakaew, S., and Promanan, T. (2020). Rice straw-g-poly(acrylic acid)/nano-zeolite NaX superabsorbent nanocomposites with controlled release of fertilizer nutrients. J. Mater. Environ. Sci. 11: 1767–1780.Suche in Google Scholar
Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K., and Janssen, C.R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62: 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030.Suche in Google Scholar PubMed
Daitx, T.S., Giovanela, M., Carli, L.N., and Mauler, R.S. (2018). Biodegradable polymer/clay systems for highly controlled release of NPK fertilizer. Polym. Adv. Technol. 30: 631–639.10.1002/pat.4499Suche in Google Scholar
Datta, R., Holatko, J., Latal, O., Hammerschmiedt, T., Elbl, J., Pecina, V., Kintl, A., Balakova, L., Radziemska, M., Baltazar, T., et al.. (2020). Bentonite-based organic amendment enriches microbial activity in agricultural soils, Land. 9: 258. https://doi.org/10.3390/land9080258.Suche in Google Scholar
Diyanat, M., Saeidian, H., Baziar, S., and Mirjafary, Z. (2019). Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ. Sci. Pollut. Res. 26: 21579–21588. https://doi.org/10.1007/s11356-019-05257-0.Suche in Google Scholar PubMed
Diyanat, M. and Saeidian, H. (2019). The metribuzin herbicide in polycaprolactone nanocapsules shows less plant chromosome aberration than non-encapsulated metribuzin. Environ. Chem. Lett. 17: 1881–1888.10.1007/s10311-019-00912-xSuche in Google Scholar
Dong, J., He, Y., Zhang, J., and Wu, Z. (2021). Tuning alginate-bentonite microcapsule size and structure for the regulated release of P. putida Rs-198. Chin. J. Chem. Eng. 48: 12–20.10.1016/j.cjche.2021.03.056Suche in Google Scholar
Dubey, A. and Mailapalli, D.R. (2019). Zeolite coated urea fertilizer using different binders: fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 16: 100452. https://doi.org/10.1016/j.eti.2019.100452.Suche in Google Scholar
EU Nitrogen Expert Panel (2015). Nitrogen use efficiency (NUE) – an indicator for the utilization of nitrogen, Available at: www.eunep.com.Suche in Google Scholar
Elabasy, A., Shoaib, A., Waqas, M., Shi, Z., and Jiang, M. (2020). Cellulose nanocrystals loaded with thiamethoxam: fabrication, characterization, and evaluation of insecticidal activity against Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Nanomaterials 10: 788. https://doi.org/10.3390/nano10040788.Suche in Google Scholar PubMed PubMed Central
Elsayed, A.A.A., EL-Gohary, A., Taha, Z.K., Farag, H.M., Hussein, M.S., and AbouAitah, K. (2022). Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic. 295: 110851. https://doi.org/10.1016/j.scienta.2021.110851.Suche in Google Scholar
Eritsyan, M.L., Gyurdzhyan, L.A., Melkonyan, L.T., and Akopyan, G.V. (2006). Copolymers of acrylic acid with urea. Russian J. Appl. Chem. 79: 1666–1668. https://doi.org/10.1134/s1070427206100223.Suche in Google Scholar
European Commission (2008). New rules on pesticide residues in food, Available at: https://food.ec.europa.eu/index_en.Suche in Google Scholar
Feng, J., Dou, J., Wu, Z., Yin, D., and Wu, W. (2019). Controlled release of biological control agents for preventing aflatoxin contamination from starch-alginate beads. Molecules 24: 1858. https://doi.org/10.3390/molecules24101858.Suche in Google Scholar PubMed PubMed Central
Fernandes, B.S., Carlos Pinto, J., Cabral-Albuquerque, E.C.M., and Fialho, R.L. (2015). Free-radical polymerization of urea, acrylic acid, and glycerol in aqueous solutions. Polym. Eng. Sci. 55: 1219–1229. https://doi.org/10.1002/pen.24081.Suche in Google Scholar
Fishel, F.M. (2015). Plant growth regulators. American Society for Horticultural Science, Available at: www.ashs.org.Suche in Google Scholar
Giroto, A.S., Guimarães, G.G., Colnago, L.A., Klamczynski, A., Glenn, G., and Ribeiro, C. (2019). Controlled release of nitrogen using urea-melamine-starch composites. J. Clean. Prod. 217: 448–455.10.1016/j.jclepro.2019.01.275Suche in Google Scholar
Gonzales, J. (2022). Chemical defoliants sprayed on Amazon rainforest to facilitate deforestation in Brazil, Available at: https://news.mongabay.com/2022/01/pesticides-released-into-brazils-amazon-to-degrade-rainforest-and-facilitate-deforestation/ (Accessed 28 January 2023).Suche in Google Scholar
Graham, P.H. and Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res. 65: 93–106. https://doi.org/10.1016/s0378-4290(99)00080-5.Suche in Google Scholar
Green, B.W. (2015). Fertilizers in aquaculture. In: Feed and feeding practices in aquaculture. Woodhead Publishing, Oxford, pp. 27–52.10.1016/B978-0-08-100506-4.00002-7Suche in Google Scholar
Gritsch, L. and Motta, F.L. (2015). iMedPub Journals. J. Biomed. Sci. Hist. Appl. Hydro. 4: 2–13.Suche in Google Scholar
Gupta, R.C. (2011). Reproductive and developmental toxicology. Academic Press. eBook.Suche in Google Scholar
Hartmann, M.H. (1998). High molecular weight polylactic acid polymers. Berlin/Heidelberg, Springer, pp. 367–411.10.1007/978-3-662-03680-8_15Suche in Google Scholar
Hassan, W.Z. (2018). Preparation and properties of urea slow release coated with potassium humate, bentonite and polyacrylamide as compositely fertilizer which reflected on the productivity of wheat crop. J. Soil Sci. Agric. Eng., Mansoura Univ. 9: 627–635. https://doi.org/10.21608/jssae.2018.36477.Suche in Google Scholar
Hermida, L. and Agustian, J. (2019). Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ. Technol. Innov. 13: 113–121. https://doi.org/10.1016/j.eti.2018.11.005.Suche in Google Scholar
Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R., and Frey, H. (2016). Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 116: 2170–2243. https://doi.org/10.1021/acs.chemrev.5b00441.Suche in Google Scholar PubMed
Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., and Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46: 3060–3075. https://doi.org/10.1021/es2031505.Suche in Google Scholar PubMed
Hou, X., Pan, Y., Xiao, H., and Liu, J. (2019). Controlled release of agrochemicals using pH and redox dual-responsive cellulose nanogels. J. Agric. Food Chem. 67: 6700–6707. https://doi.org/10.1021/acs.jafc.9b00536.Suche in Google Scholar PubMed
Huang, A., Li, X., Liang, X., Zhang, Y., Hu, H., Yin, Y., and Huang, Z. (2018). Solid phase synthesis of cellulose acetate butyrate as microsphere wall materials for sustained release of emamectin benzoate. Polymers 10: 1381. https://doi.org/10.3390/polym10121381.Suche in Google Scholar PubMed PubMed Central
Hyon, S.-H., Jamshidi, K., and Ikada, Y. (1997). Synthesis of polylactides with different molecular weights. Biomaterials. 18: 1503–1508. https://doi.org/10.1016/s0142-9612(97)00076-8.Suche in Google Scholar PubMed
Ikeda, Y. (2014). Understanding network control by vulcanization for sulfur cross-linked natural rubber. Chemistry, manufacture and applications of natural rubber (NR). Woodhead Publishing Ltd., Cambridge.10.1533/9780857096913.1.119Suche in Google Scholar
Israni, N. and Shivakumar, S. (2019). Chapter 13. Polyhydroxybutyrate: development and applications as a biodegradable biotextile. In: Materials for biomedical engineering. Elsevier Inc., Amsterdam, pp. 405–444.10.1016/B978-0-12-816872-1.00014-5Suche in Google Scholar
Joshi, P.P., van Cleave, A., Held, D.W., Howe, J.A., and Auad, M.L. (2020). Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads. J. Appl. Polym. Sci. 137: 49177.10.1002/app.49177Suche in Google Scholar
Kabir, S.M.F., Sikdar, P.P., Rahman, B.H.M.A., and Ali, B.A. (2018). Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7: 153–174. https://doi.org/10.1007/s40204-018-0095-0.Suche in Google Scholar PubMed PubMed Central
Kartika, D., Dwiningsih, K., Savana, R.T., Manggala, P., and Andika, V. (2018). Usage of zeolite and chitosan composites as slow release fertilizer, Available at: https://www.atlantis-press.com/proceedings/icst-18/55910823 (Accessed 28 January 2023).Suche in Google Scholar
Kenawy, E.R., Seggiani, M., Cinelli, P., Elnaby, H.M.H., and Azaam, M.M. (2020). Swelling capacity of sugarcane bagasse-g-poly(acrylamide)/attapulgite superabsorbent composites and their application as slow release fertilizer. Eur. Polym. J. 133: 109769. https://doi.org/10.1016/j.eurpolymj.2020.109769.Suche in Google Scholar
Khandelwal, A., Singh, M., Singh, R., and Shrivastava, M. (2021). Dendritic polyurea microcapsule: a slow release nitrogenous fertilizer. Iran. Polym. J. 30: 1309–1316. https://doi.org/10.1007/s13726-021-00968-z.Suche in Google Scholar
King, N.S., Luster-Teasley, S., and Clark, C.J. (2021). Preliminary analyses of controlled release of potassium permanganate encapsulated in polycaprolactone. J. Water Resour. Prot. 13: 32–43. https://doi.org/10.4236/jwarp.2021.131003.Suche in Google Scholar
Kumar, R., Sharma, R.K., and Singh, A.P. (2018). Grafted cellulose: a bio-based polymer for durable applications. Polym. Bull. 75: 2213–2242. https://doi.org/10.1007/s00289-017-2136-6.Suche in Google Scholar
Labet, M. and Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38: 3484–3504. https://doi.org/10.1039/b820162p.Suche in Google Scholar PubMed
Liu, J., Yang, Y., Gao, B., Li, Y.C., and Xie, J. (2019a). Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J. Clean. Prod. 209: 528–537. https://doi.org/10.1016/j.jclepro.2018.10.263.Suche in Google Scholar
Liu, J., Zhao, Y., Diao, M., Wang, W., Hua, W., Wu, S., Chen, P., Ruan, R., and Cheng, Y. (2019b). Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Rhodospirillum rubrum using a two-step culture strategy. J. Chem. 2019: 8369179.10.1155/2019/8369179Suche in Google Scholar
Liu, S., Wu, Q., Sun, X., Yue, Y., Tubana, B., Yang, R., and Cheng, H.N. (2021). Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int. J. Biol. Macromol. 172: 330–340.10.1016/j.ijbiomac.2021.01.063Suche in Google Scholar PubMed
Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., and Zhang, Z. (2019c). A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci. Rep. 9: 9548. https://doi.org/10.1038/s41598-019-46065-3.Suche in Google Scholar PubMed PubMed Central
Lobo, A.O., Ding, J., Casalini, T., Rossi, F., Castrovinci, A., and Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7: 259. https://doi.org/10.3389/fbioe.2019.00259.Suche in Google Scholar PubMed PubMed Central
Maharani, D.K., Dwiningsih, K., Savana, R.T., and Andika, P.M.V. (2018). Proceedings of the international conference on science and technology: usage of zeolite and chitosan composites as slow release fertilizer. Atlantis Press, The Netherlands, France, China.10.2991/icst-18.2018.38Suche in Google Scholar
Maghsoodi, M.R., Ghodszad, L., and Asgari Lajayer, B. (2020a). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: potentials, challenges and effects on plants. Environ. Technol. Innov. 19: 100869. https://doi.org/10.1016/j.eti.2020.100869.Suche in Google Scholar
Maghsoodi, M.R., Najafi, N., Reyhanitabar, A., and Oustan, S. (2020b). Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma 379: 114664. https://doi.org/10.1016/j.geoderma.2020.114644.Suche in Google Scholar
Masutani, K. and Kimura, Y. (2014). Chapter 1. PLA synthesis. From the monomer to the polymer. In: Material science, pp. 1–36.10.1039/9781782624806-00001Suche in Google Scholar
Menendez, E. and Garcia-Fraile, P. (2017). Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol. 3: 502–524. https://doi.org/10.3934/microbiol.2017.3.502.Suche in Google Scholar PubMed PubMed Central
Mihok, F., Macko, J., Oriňak, A., Oriňaková, R., Kovaľ, K., Sisáková, K., Petruš, O., and Kostecká, Z. (2020). Controlled nitrogen release fertilizer based on zeolite clinoptilolite: study of preparation process and release properties using molecular dynamics. Curr. Res. Green Sust. Chem. 3: 100030. https://doi.org/10.1016/j.crgsc.2020.100030.Suche in Google Scholar
Nasatto, P.L., Pignon, F., Silveira, J.L.M., Duarte, M.E.R., Noseda, M.D., and Rinaudo, M. (2015). Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7: 777–803. https://doi.org/10.3390/polym7050777.Suche in Google Scholar
Neri-Badang, M.C. and Chakraborty, S. (2019). Carbohydrate polymers as controlled release devices for pesticides. J. Carbohydr. Chem. 38: 67–85. https://doi.org/10.1080/07328303.2019.1568449.Suche in Google Scholar
Nooeaid, P., Chuysinuan, P., Pitakdantham, W., Aryuwananon, D., Techasakul, S., and Dechtrirat, D. (2021). Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J. Polym. Environ. 29: 552–564.10.1007/s10924-020-01902-9Suche in Google Scholar
Nörnberg, A.B., Gehrke, V.R., Mota, H.P., Camargo, E.R., and Fajardo, A.R. (2019). Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide. Colloids Surf. A Physicochem. Eng. Asp. 583: 123970.10.1016/j.colsurfa.2019.123970Suche in Google Scholar
Official Journal of the European Union (2019). Regulation (EU) 2019/1009, Available at: https://eur-lex.europa.eu/eli/reg/2019/1009/oj.Suche in Google Scholar
Omran, A.A.B., Mohammed, A.A.B.A., Sapuan, S.M., Ilyas, R.A., Asyraf, M.R.M., Saeid, S., Koloor, R., Petrů, M., and Petrů, P. (2021). Micro-and nanocellulose in polymer composite materials: a review. Polymers 13: 231. https://doi.org/10.3390/polym13020231.Suche in Google Scholar PubMed PubMed Central
Ortiz-Ospina, E. (2017). World population growth [WWW Document]. First published in 2013; updated April, 2017, Available at: https://ourworldindata.org/world-population-growth (Accessed 28 January 2023).Suche in Google Scholar
Pang, L., Gao, Z., Feng, H., Wang, S., Cong, H., Yu, B., and Shen, Y. (2019a). Industrial crops & products preparation of pH-responsive cellulose derivative with surfactant-property for methyl 1-naphthylacetate controlled release. Ind. Crops Prod. 135: 57–63. https://doi.org/10.1016/j.indcrop.2019.04.027.Suche in Google Scholar
Pang, L., Gao, Z., Feng, H., Wang, S., and Wang, Q. (2019b). Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. J. Controlled Release 316: 105–115. https://doi.org/10.1016/j.jconrel.2019.11.004.Suche in Google Scholar PubMed
Patel, S., Bajpai, J., Saini, R., Bajpai, A.K., and Acharya, S. (2018). Sustained release of pesticide (Cypermethrin) from nanocarriers: an effective technique for environmental and crop protection. Process Saf. Environ. Prot. 117: 315–325. https://doi.org/10.1016/j.psep.2018.05.012.Suche in Google Scholar
Patil, M.D., Patil, V.D., Sapre, A.A., Ambone, T.S., Torris, A., Shukla, P.G., and Shanmuganathan, K. (2018). Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. Sustain. Chem. Eng. 6: 9208–9217. https://doi.org/10.1021/acssuschemeng.8b01545.Suche in Google Scholar
Pereira, A.E.S., Oliveira, H.C., Romero, J., and Fraceto, L.F. (2016). γ-polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr. Polym. 157: 1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073.Suche in Google Scholar PubMed
Pereira, A.E.S., Sousa, B.T., Iglesias, M.J., Alvarez, V.A., Casalongué, C.A., Oliveira, H.C., and Fraceto, L.F. (2019). Potential use of polymeric particles for the regulation of plant growth. In: Gutiérrez, T.J. (Ed.), Polymers for agri-food applications. Springer, Available at: http://hdl.handle.net/11449/183306.10.1007/978-3-030-19416-1_4Suche in Google Scholar
Pereira, T.S., Dias Neves Binotto, V.D., and Faez, R. (2020). Multilayer films of carboxymethylcellulose/zeolite as smart materials for macro and micronutrients delivery. Microporous Mesoporous Mater. 302: 110195. https://doi.org/10.1016/j.micromeso.2020.110195.Suche in Google Scholar
Piash, M.I., Iwabuchi, K., and Itoh, T. (2022). Synthesizing biochar-based fertilizer with sustained phosphorus and potassium release: co-pyrolysis of nutrient-rich chicken manure and Ca-bentonite. Sci. Total Environ. 822: 153509. https://doi.org/10.1016/j.scitotenv.2022.153509.Suche in Google Scholar PubMed
Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. J. Agric. Environ. Ethics. 8: 17–29. https://doi.org/10.1007/bf02286399.Suche in Google Scholar
Pohshna, C. and Mailapalli, D.R. (2022). Engineered urea-doped hydroxyapatite nanomaterials as nitrogen and phosphorus fertilizers for rice. ACS Agric. Sci. Technol. 2: 100–112. https://doi.org/10.1021/acsagscitech.1c00191.Suche in Google Scholar
Pouladchang, A., Tavanai, H., Morshed, M., Khajehali, J., and Shamsabadi, A.S. (2022). Controlled release of thiram pesticide from polycaprolactone micro and nanofibrous mat matrix. J. Appl. Polym. Sci. 139: 51641. https://doi.org/10.1002/app.51641.Suche in Google Scholar
Pradhan, S., Durgam, M., and Mailapalli, D.R. (2021). Urea loaded hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice. Arch. Agron Soil Sci. 67: 371–382. https://doi.org/10.1080/03650340.2020.1732940.Suche in Google Scholar
Qin, Y. (2008). Alginate fibers: an overview of the production processes and applications in wound management. Polym. Int. 57: 171–180. https://doi.org/10.1002/pi.2296.Suche in Google Scholar
Quinones, J.P., Brueggemann, O., Shahavi, M., Kjems, J., and Covas, C.P. (2018). Novel brassinosteroid-modified PEG micelles for controlled release of agrochemicals. J. Agric. Food Chem. 66: 1612–1619.10.1021/acs.jafc.7b05019Suche in Google Scholar PubMed
Rini, L., Prakash, C., Srivastava, Satya, P., Pachauri, Arvind, K., Shukla, Manoj, S., and Prashant, S. (2022). Valorisation of phyto-biochars as slow release micronutrients and sulphur carrier for agriculture. Environ. Technol.: 1–10.10.1080/09593330.2022.2029953Suche in Google Scholar PubMed
Rohily, K., El-Hamshary, H., Ghoneim, A., and Modaihsh, A. (2021). Controlled release of phosphorus from superabsorbent phosphate-bound alginate-graft-polyacrylamide: resistance to soil cations and release mechanism. ACS Omega 5: 32919–32929.10.1021/acsomega.0c03740Suche in Google Scholar PubMed PubMed Central
Rop, K., Karuku, G.N., Mbui, D., Michira, I., and Njomo, N. (2018). Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Annals Agric. Sci. 63: 163–172. https://doi.org/10.1016/j.aoas.2018.11.001.Suche in Google Scholar
Sabatier, P., Poulenard, J., Fangeta, B., Reyss, J.L., Develle, A.L., Wilhelm, B., Ployon, E., Pignol, C., Naffrechoux, E., Dorioz, J.M., et al.. (2014). Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. Proc. Natl. Acad. Sci. U. S. A. 111: 15647–15652. https://doi.org/10.1073/pnas.1411512111.Suche in Google Scholar PubMed PubMed Central
Sajadinia, H., Ghazanfari, D., Naghavii, K., Naghavi, H., and Tahamipur, B. (2021). A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 7: e06094.https://doi.org/10.1016/j.heliyon.2021.e06094.Suche in Google Scholar PubMed PubMed Central
Salimi, M., Motamedi, E., Motesharezedeh, B., Hosseini, H.M., and Alikhani, H.A. (2020). Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J. Environ. Chem. Eng. 8: 103765.10.1016/j.jece.2020.103765Suche in Google Scholar
Samavini, R., Sandaruwan, C., de Silva, M., Priyadarshana, G., Kottegoda, N., and Karunaratne, V. (2018). Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. J. Agric. Food Chem. 66: 3330–3337. https://doi.org/10.1021/acs.jafc.7b05544.Suche in Google Scholar PubMed
Sarkar, A., Biswas, D.R., Datta, S.C., Dwivedi, B.S., Bhattacharyya, R., Kumar, R., Bandyopadhyay, K.K., Saha, M., Chawla, G., Saha, J.K., et al.. (2021). Preparation of novel biodegradable starch/poly(vinyl alcohol)/bentonite grafted polymeric films for fertilizer encapsulation. Carbohydr. Polym. 259: 117679. https://doi.org/10.1016/j.carbpol.2021.117679.Suche in Google Scholar PubMed
Sarkar, K. and Sen, K. (2018). Polyvinyl alcohol based hydrogels for urea release and Fe(III) uptake from soil medium. J. Environ. Chem. Eng. 6: 736–744.10.1016/j.jece.2018.01.004Suche in Google Scholar
Schmücker, C., Stevens, G.W., and Mumford, K.A. (2018). Liquid marble formation and solvent vapor treatment of the biodegradable polymers polylactic acid and polycaprolactone. J. Colloid Interface Sci. 514: 349–356.10.1016/j.jcis.2017.12.033Suche in Google Scholar PubMed
Shaji, H., Chandran, V., and Mathew, L. (2021). Chapter 13: organic fertilizers as a route to controlled release of nutrients. In: Controlled release fertilizers for sustainable agriculture. Elsevier Inc., pp. 231–245.10.1016/B978-0-12-819555-0.00013-3Suche in Google Scholar
Shang, Y., Guo, K., Jiang, P., Xu, X., and Gao, B. (2018). Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil. Int. J. Biol. Macromol. 109: 524–534. https://doi.org/10.1016/j.ijbiomac.2017.12.118.Suche in Google Scholar PubMed
Sharma, B., Shrivastava, M., Afonso, L.O.B., Soni, U., and Cahill, D.M. (2022a). Zinc- and magnesium-doped hydroxyapatite nanoparticles modified with urea as smart nitrogen fertilizers. ACS Appl. Nano Mater. 5: 7288–7299. https://doi.org/10.1021/acsanm.2c01192.Suche in Google Scholar
Sharma, B., Shrivastava, M., Afonso, L.O.B., Soni, U., and Cahill, D.M. (2022b). Metal doped nitrogenous hydroxyapatite nanohybrids slowly release nitrogen to crops and mitigate ammonia volatilization: an impact assessment. NanoImpact 28: 100424. https://doi.org/10.1016/j.impact.2022.100424.Suche in Google Scholar PubMed
Sharma, P., Rohilla, D., Chaudhary, S., Kumar, R., and Singh, A.N. (2019). Nanosorbent of hydroxyapatite for atrazine: a new approach for combating agricultural runoffs. Sci. Total Environ. 653: 264–273. https://doi.org/10.1016/j.scitotenv.2018.10.352.Suche in Google Scholar PubMed
Singhvi, M. and Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). RSC Adv. 3: 13558–13568. https://doi.org/10.1039/c3ra41592a.Suche in Google Scholar
Singhvi, M.S., Zinjarde, S.S., Gokhale, D.V., and Singhvi, S. (2019). Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127: 1612–1626. https://doi.org/10.1111/jam.14290.Suche in Google Scholar PubMed
Sofyane, A., Ablouh, E., Lahcini, M., Elmeziane, A., Khouloud, M., Kaddami, H., and Raihane, M. (2021). Slow-release fertilizers based on starch acetate/glycerol/polyvinyl alcohol biocomposites for sustained nutrient release. Mater. Today Proc. 36: 74–81. https://doi.org/10.1016/j.matpr.2020.05.319.Suche in Google Scholar
Song, B., Liang, H., Sun, R., Peng, P., Jiang, Y., and She, D. (2020). Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 144: 219–230.10.1016/j.ijbiomac.2019.12.082Suche in Google Scholar PubMed
Song, Q., Zhao, J., Zhang, G., and Peruch, F. (2019). Ring-opening (co)polymerization of Î3-butyrolactone: a review. Polym. J. 52: 3–11. https://doi.org/10.1038/s41428-019-0265-5.Suche in Google Scholar
Sousa, S., Maia, M.L., Correira-s, L., Fernandes, V.C., Calhau, C., and Domingues, V.F. (2020). Chemistry and toxicology behind insecticides and herbicides. In: Controlled release of pesticides for sustainable agriculture. Springer.10.1007/978-3-030-23396-9_3Suche in Google Scholar
Stevens, C.J. (2019). Nitrogen in the environment. Science 363: 578–580. https://doi.org/10.1126/science.aav8215.Suche in Google Scholar PubMed
Szliszka, E., Czuba, Z.P., Domino, M., Mazur, B., Zydowicz, G., and Krol, W. (2009). Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells. Molecules 14: 738–754. https://doi.org/10.3390/molecules14020738.Suche in Google Scholar
Tan, H., Zhang, Y., Sun, L., Sun, Y., Dang, H., Yang, Y., and Jiang, D. (2021). Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. Int. J. Biol. Macromol. 193: 903–914.10.1016/j.ijbiomac.2021.10.181Suche in Google Scholar PubMed
TheoColborn, P.S. (1999). Pesticide use in the U.S. and policy implications: a focus on herbicides. Toxicol. Ind. Health 15: 241–276. https://doi.org/10.1177/074823379901500121.Suche in Google Scholar
Tosun, U.G., Sakhno, Y., and Jaisi, D.P. (2021). Synthesis of hydroxyapatite nanoparticles from phosphorus recovered from animal wastes. ACS Sustain. Chem. Eng. 9: 15117–15126.10.1021/acssuschemeng.1c01006Suche in Google Scholar
Umar, W., Czinkota, I., Gulyás, M., Aziz, T., and Hameed, M.K. (2022). Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. Environ. Technol. Innov. 26: 102250. https://doi.org/10.1016/j.eti.2021.102250.Suche in Google Scholar
Utsunomia, C., Ren, Q., and Zinn, M. (2020). Poly(4-hydroxybutyrate): current state and perspectives. Front. Bioeng. Biotechnol. 8: 257. https://doi.org/10.3389/fbioe.2020.00257.Suche in Google Scholar PubMed PubMed Central
Vermoesen, E., Cordeels, E., Schaubroeck, D., Brosens, G., Bodé, S., Boeckx, P., and van Vlierberghe, S. (2023). Photo-crosslinkable biodegradable polymer coating to control fertilizer release. Eur. Polym. J. 186: 111835. https://doi.org/10.1016/j.eurpolymj.2023.111835.Suche in Google Scholar
Versino, F., Urriza, M., and García, M.A. (2019). Eco-compatible cassava starch films for fertilizer controlled-release. Int. J. Biol. Macromol. 134: 302–307.10.1016/j.ijbiomac.2019.05.037Suche in Google Scholar PubMed
Wang, X., Hou, X., Zou, P., Zhang, M., and Ma, L. (2022). Development of cationic cellulose-modified bentonite–alginate nanocomposite gels for sustained release of alachlor. ACS Omega. 7: 20032–20043. https://doi.org/10.1021/acsomega.2c01805.Suche in Google Scholar PubMed PubMed Central
Wei, X., Chen, J., Gao, B., and Wang, Z. (2019). Chapter 39: role of controlled and slow release fertilizers in fruit crop nutrition. In: Fruit crops: diagnosis and management of nutrient constraints. Elsevier Inc., pp. 555–566.10.1016/B978-0-12-818732-6.00039-3Suche in Google Scholar
Woodruff, M.A. and Hutmacher, D.W. (2010). The return of a forgotten polymer – polycaprolactone in the 21st century. Progr. Polym. Sci. 35: 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002.Suche in Google Scholar
Wu, Q., Wang, Y.-H., Ding, Y.-F., Tao, W.-K., Gao, S., Li, Q.-X., Li, W.-W., Liu, Z.-H., and Li, G.-H. (2021). Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 20: 1503–1514. https://doi.org/10.1016/s2095-3119(20)63406-2.Suche in Google Scholar
Xiang, Y., Zhang, G., Chen, C., Liu, B., Cai, D., and Wu, Z. (2018). Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 6: 1192–1201. https://doi.org/10.1021/acssuschemeng.7b03469.Suche in Google Scholar
Xia, X., Zhang, F., Yang, L., Li, X., Wang, J., Linghu, C., and Luo, Z. (2020). Low-temperature flowable poly(lactic acid)/polycaprolactone blends for the solvent-free preparation of slow-released urea fertilizer in a thermal shear field. Ind. Eng. Chem. Res. 59: 20601–20611.10.1021/acs.iecr.0c04419Suche in Google Scholar
Xie, Y.-L., Jiang, W., Li, F., Zhang, Y., Liang, X.-Y., Wang, M., Zhou, X., Wu, S.-Y., and Zhang, C.-H. (2020). Controlled release of spirotetramat using starch-chitosan-alginate-encapsulation. Bull. Environ. Contam. Toxicol. 104: 149–155. https://doi.org/10.1007/s00128-019-02752-5.Suche in Google Scholar PubMed
Xiong, L., Wang, P., and Kopittke, P.M. (2018). Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma 323: 116–125. https://doi.org/10.1016/j.geoderma.2018.03.002.Suche in Google Scholar
Yadav, M.R., Kumar, R., Parihar, C.M., and Yadav, R.K. (2017). Strategies for improving nitrogen use efficiency: a review. Agric. Rev. 38: 29–40. https://doi.org/10.18805/ag.v0iof.7306.Suche in Google Scholar
Yoon, H.Y., Lee, J.G., Esposti, L.D., Iafisco, M., Kim, P.J., Shin, S.G., Jeon, J.R., and Adamiano, A. (2020). Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega. 5: 6598–6610. https://doi.org/10.1021/acsomega.9b04354.Suche in Google Scholar PubMed PubMed Central
Yuvaraj, M. and Subramanian, K.S. (2018). Development of slow release Zn fertilizer using nano-zeolite as carrier. J. Plant Nutr. 41: 311–320. https://doi.org/10.1080/01904167.2017.1381729.Suche in Google Scholar
Zafar, M.S., Ullah, R., Qamar, Z., Fareed, M.A., Amin, F., Khurshid, Z., and Sefat, F. (2019). Chapter 2: properties of dental biomaterials. In: Advanced dental biomaterials. Woodhead Publishing, pp. 7–35.10.1016/B978-0-08-102476-8.00002-5Suche in Google Scholar
Zeng, X., Zhong, B., Jia, Z., Zhang, Q., Chen, Y., and Jia, D. (2019). Halloysite nanotubes as nanocarriers for plant herbicide and its controlled release in biodegradable polymers composite film. Appl. Clay Sci. 171: 20–28. https://doi.org/10.1016/j.clay.2019.01.021.Suche in Google Scholar
Zhao, M., Wang, Y., Liu, L., Liu, L., Chen, M., Zhang, C., and Lu, Q. (2018). Green coatings from renewable modified bentonite and vegetable oil based polyurethane for slow release fertilizers. Polym. Compos. 39: 4355–4363. https://doi.org/10.1002/pc.24519.Suche in Google Scholar
Zhao, X., Qi, X., Chen, Q., Ao, X., and Guo, Y. (2020). Sulfur-odified coated slow-release fertilizer based on castor oil: synthesis and a controlled-release model. ACS Sustain. Chem. Eng. 8: 18044–18053. https://doi.org/10.1021/acssuschemeng.0c06056.Suche in Google Scholar
Zhao, Y., Wang, Z., Wang, J., Mai, H., Yan, B., and Yang, F. (2003). Direct synthesis of poly(d,l-lactic acid) by melt polycondensation and its application in drug delivery. Appl. Polym. Sci. 91: 2143–2150. https://doi.org/10.1002/app.13354.Suche in Google Scholar
Zhu, H., Shen, Y., Cui, J., Wang, A., Li, N., Wang, C., Cui, B., Sun, C., Zhao, X., Wang, C., et al.. (2020). Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Ind. Crops Prod. 152: 112497.10.1016/j.indcrop.2020.112497Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Modelling of fixed bed and slurry bubble column reactors for Fischer–Tropsch synthesis
- Role of La-based perovskite catalysts in environmental pollution remediation
- Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents
- Chemical strategies towards controlled release in agriculture
- An overview on the factors affecting enzymatic saccharification of lignocellulosic biomass into fermentable sugars
Artikel in diesem Heft
- Frontmatter
- Reviews
- Modelling of fixed bed and slurry bubble column reactors for Fischer–Tropsch synthesis
- Role of La-based perovskite catalysts in environmental pollution remediation
- Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents
- Chemical strategies towards controlled release in agriculture
- An overview on the factors affecting enzymatic saccharification of lignocellulosic biomass into fermentable sugars