Startseite An overview on the factors affecting enzymatic saccharification of lignocellulosic biomass into fermentable sugars
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An overview on the factors affecting enzymatic saccharification of lignocellulosic biomass into fermentable sugars

  • Wen Xuan Woo , Jian Ping Tan ORCID logo EMAIL logo , Ta Yeong Wu , Swee Keong Yeap , Abdullah Amru Indera Luthfi , Shareena Fairuz Abdul Manaf ORCID logo , Nur Syakina Jamali und Yew Woh Hui
Veröffentlicht/Copyright: 10. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Lignocellulosic biomass (LCB) is a widely available and sustainable energy resource that can be directly or indirectly converted to biofuels and value-added bioproducts. In such LCB conversion, enzymatic saccharification is commonly regarded as a green alternative to chemical hydrolysis due to less energy-intensive, less toxic, and more environment-benign for efficient fermentable sugar recovery. However, enzymatic saccharification faces substantial challenges, since the complex polymeric matrices of LCB necessitates a variety of enzymes for complete and adequate saccharification. Empirical evidence on enzymatic saccharification has paved the way for optimizing the processes and design for enhancing the performance in LCB. This review examines the enzymatic saccharification of LCB, focusing on the important parameters affecting the process, such as pH, temperature, agitation, enzyme/substrate loading, residence time, and the enzymes required to degrade various LCB components. Various strategies have been reported to improve the performance in saccharification and to address the non-productive adsorption of enzymes. A preliminary economic competency valuation of enzyme-derived fermentable sugars is proposed. Wheat straw, sugarcane bagasse and corn stalk appear, in this case, to be the most economic competent LCBs for commercial enzyme-derived fermentable sugar production. Lastly, practical challenges and future research directions on the enzymatic saccharification of LCB are discussed.


Corresponding author: Jian Ping Tan, School of Energy and Chemical Engineering, Xiamen University – Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, E-mail:

Funding source: Ministry of Higher Education Malaysia

Award Identifier / Grant number: FRGS/1/2020/TK0/XMU/03/2

Award Identifier / Grant number: TDF07211418

Funding source: Xiamen University Malaysia Research Fund

Award Identifier / Grant number: XMUMRF/2020-C5/IENG/0027

  1. Author contributions: Wen Xuan Woo conducted the literature search, analyzed the data, created the figures, and drafted the manuscript. Jian Ping Tan provided critical revisions to the manuscript. Ta Yeong Wu, Swee Keong Yeap, Abdullah Amru Indera Luthfi, Shareena Fairuz Abdul Manaf, Nur Syakina Jamali, and Yew Woh Hui reviewed and provided feedback on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

  2. Research funding: This research is supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme (FRGS), project number “FRGS/1/2020/TK0/XMU/03/2”. This research is also supported by Ministry of Science, Technology and Innovation (MOSTI), project number “TDF07211418” and Xiamen University Research Fund (XMUMRF), project number “XMUMRF/2020-C5/IENG/0027”.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Abdul, P.M., Jahim, Md.J., Harun, S., Markom, M., Hassan, O., Mohammad, A.W., and Asis, A.J. (2013). Biohydrogen production from pentose-rich oil palm empty fruit bunch molasses: a first trial. Int. J. Hydrogen Energy 38: 15693–15699, https://doi.org/10.1016/j.ijhydene.2013.05.050.Suche in Google Scholar

Abdul, P.M., Jahim, J.M., Harun, S., Markom, M., Lutpi, N.A., Hassan, O., Balan, V., Dale, B.E., and Mohd Nor, M.T. (2016). Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresour. Technol. 211: 200–208, https://doi.org/10.1016/j.biortech.2016.02.135.Suche in Google Scholar PubMed

Abraham, R.E. and Puri, M. (2020). Nano-immobilized cellulases for biomass processing with application in biofuel production. In: Methods in enzymology, 1st ed. Elsevier Inc, Amsterdam, pp. 327–346.10.1016/bs.mie.2019.09.006Suche in Google Scholar PubMed

Adewuyi, Y.G. and Deshmane, V.G. (2015). Intensification of enzymatic hydrolysis of cellulose using high-frequency ultrasound: an investigation of the effects of process parameters on glucose yield. Energy Fuels 29: 4998–5006, https://doi.org/10.1021/acs.energyfuels.5b00661.Suche in Google Scholar

Adsul, M., Sandhu, S.K., Singhania, R.R., Gupta, R., Puri, S.K., and Mathur, A. (2020). Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb. Technol. 133: 109442, https://doi.org/10.1016/j.enzmictec.2019.109442.Suche in Google Scholar PubMed

Agrawal, R., Verma, A., Singhania, R.R., Varjani, S., Di Dong, C., and Patel, A.K. (2021). Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour. Technol. 332: 125042, https://doi.org/10.1016/j.biortech.2021.125042.Suche in Google Scholar PubMed

Akhtar, J. and Idris, A. (2017). Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renewable Energy 114: 917–923, https://doi.org/10.1016/j.renene.2017.07.113.Suche in Google Scholar

Al-Battashi, H.S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B.N., Nguyen, Q.D., and Gupta, V.K. (2019). Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 18: 183–205, https://doi.org/10.1007/s11157-018-09488-4.Suche in Google Scholar

Alvarado-Morales, M., Gunnarsson, I.B., Fotidis, I.A., Vasilakou, E., Lyberatos, G., and Angelidaki, I. (2015). Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9: 126–132, https://doi.org/10.1016/j.algal.2015.03.008.Suche in Google Scholar

Ambatkar, N., Jadhav, D.D., Nandi, S., Kumbhar, P., and Kommoju, P.R. (2022). Optimized process for the production of fungal peroxidases and efficient saccharification of pre-treated rice straw. Bioresour. Technol. Rep. 17: 100913, https://doi.org/10.1016/j.biteb.2021.100913.Suche in Google Scholar

Amit, K., Nakachew, M., Yilkal, B., and Mukesh, Y. (2018). A review of factors affecting enzymatic hydrolysis of pretreated lignocellulosic biomass. Res. J. Chem. Environ. 22: 62–67.Suche in Google Scholar

Anu, Singh, B., and Kumar, A. (2020). Process development for sodium carbonate pretreatment and enzymatic saccharification of rice straw for bioethanol production. Biomass Bioenergy 138: 105574, https://doi.org/10.1016/j.biombioe.2020.105574.Suche in Google Scholar

Appiah-Nkansah, N.B., Li, J., Rooney, W., and Wang, D. (2019). A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew. Energy 143: 1121–1132, https://doi.org/10.1016/j.renene.2019.05.066.Suche in Google Scholar

Aramrueang, N., Zicari, S.M., and Zhang, R. (2017). Response surface optimization of enzymatic hydrolysis of sugar beet leaves into fermentable sugars for bioethanol production. Adv. Biosci. Biotechnol. 8: 51–67, https://doi.org/10.4236/abb.2017.82004.Suche in Google Scholar

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52: 858–875, https://doi.org/10.1016/j.enconman.2010.08.013.Suche in Google Scholar

Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C., and Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 6: 1–19, https://doi.org/10.3389/fenrg.2018.00141.Suche in Google Scholar

Bonenkamp, T.B., Middelburg, L.M., Hosli, M.O., and Wolffenbuttel, R.F. (2020). From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renew. Sustain. Energy Rev. 120: 109667, https://doi.org/10.1016/j.rser.2019.109667.Suche in Google Scholar

Boonwong, T., Karnnasuta, S., and Srinorakutara, T. (2014). Agricultural wastes potential (pineapple crown, durian peel and sugarcane leaves) on reducing sugar production by using sulfuric acid pretreatment following enzymatic hydrolysis. KKU Res. J. 19: 361–370.Suche in Google Scholar

Borges, D.G., Junior, A.B., Farinas, C.S., Giordano, R.L.C., and Tardioli, P.W. (2014). Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresour. Technol. 167: 206–213, https://doi.org/10.1016/j.biortech.2014.06.021.Suche in Google Scholar PubMed

Boussaid, A. and Saddler, J.N. (1999). Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas fir pulps. Enzyme Microb. Technol. 24: 138–143, https://doi.org/10.1016/s0141-0229(98)00096-9.Suche in Google Scholar

Brigham, C. (2017). Biopolymers: biodegradable alternatives to traditional plastics. In: Green chemistry: an inclusive approach. Elsevier Inc., Amsterdam, pp. 753–770.10.1016/B978-0-12-809270-5.00027-3Suche in Google Scholar

Bukhari, N.A., Jahim, J.M., Loh, S.K., Bakar, N.A., Luthfi, A.A.I., Chen, Z., Zhang, S., and Song, W. (2019). Response surface optimisation of enzymatically hydrolysed and dilute acid pretreated oil palm trunk bagasse for succinic acid production. BioResources 14: 1694–1707, https://doi.org/10.15376/biores.14.1.1694-1707.Suche in Google Scholar

Bulan, R., Mandang, T., and Hermawan, W. (2015). Physical and mechanical properties of palm frond for the development of palm oil waste chopper and pressing machine design. Int. J. Sci. Eng. Res. 6: 117–120.Suche in Google Scholar

de Carvalho Silvello, M.A., Martínez, J., and Goldbeck, R. (2019). Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment. Biomass Bioenergy 122: 481–489, https://doi.org/10.1016/j.biombioe.2019.01.032.Suche in Google Scholar

Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., and Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160: 196–206, https://doi.org/10.1016/j.fuproc.2016.12.007.Suche in Google Scholar

Chen, J., Yang, S., Alam, M.A., Wang, Z., Zhang, J., Huang, S., Zhuang, W., Xu, C., and Xu, J. (2021). Novel biorefining method for succinic acid processed from sugarcane bagasse. Bioresour. Technol. 324: 124615, https://doi.org/10.1016/j.biortech.2020.124615.Suche in Google Scholar PubMed

Chen, M., Zhao, J., and Xia, L. (2008). Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71: 411–415, https://doi.org/10.1016/j.carbpol.2007.06.011.Suche in Google Scholar

Chen, P., Tao, S., and Zheng, P. (2016). Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour. Technol. 211: 406–413, https://doi.org/10.1016/j.biortech.2016.03.108.Suche in Google Scholar PubMed

Chen, Y.A., Zhou, Y., Liu, D., Zhao, X., and Qin, Y. (2018). Evaluation of the action of Tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: pretreatment, hydrolysis conditions and lignin structure. Bioresour. Technol. 269: 329–338, https://doi.org/10.1016/j.biortech.2018.08.119.Suche in Google Scholar PubMed

Chundawat, S.P.S., Balan, V., and Dale, B.E. (2008). High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol. Bioeng. 99: 1281–1294, https://doi.org/10.1002/bit.21805.Suche in Google Scholar PubMed

Cintra, L.C., da Costab, I.C., de Oliveira, I.C.M., Fernandesa, A.G., Fariab, S.P., Jesuíno, R.S.A., Ravanal, M.C., Eyzaguirre, J., Ramos, L.P., de Faria, F.P., et al.. (2020). The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb. Technol. 133: 109447, https://doi.org/10.1016/j.enzmictec.2019.109447.Suche in Google Scholar PubMed

Cui, X., Zhao, X., Zeng, J., Loh, S.K., Choo, Y.M., and Liu, D. (2014). Robust enzymatic hydrolysis of formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol. Bioresour. Technol. 166: 584–591, https://doi.org/10.1016/j.biortech.2014.05.102.Suche in Google Scholar PubMed

Datta, S., Christena, L.R., Rajaram, Y.R.S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3: 1–9. https://doi.org/10.1007/s13205-012-0071-7.Suche in Google Scholar PubMed PubMed Central

Deshavath, N.N., Veeranki, V.D., and Goud, V.V. (2019). Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In: Sustainable bioenergy: advances and impacts. Elsevier Inc., Amsterdam, pp. 1–19.10.1016/B978-0-12-817654-2.00001-0Suche in Google Scholar

Du, J., Cao, Y., Liu, G., Zhao, J., Li, X., and Qu, Y. (2017). Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour. Technol. 229: 88–95, https://doi.org/10.1016/j.biortech.2017.01.011.Suche in Google Scholar

Eastick, B. (2022). Global sugar market report February 2022. Ragus. Available at: <https://www.ragus.co.uk/global-sugar-market-report-february-2022/> (Accessed 30 December 2022).Suche in Google Scholar

Ebringerová, A., Hromádková, Z., and Heinze, T. (2005). Hemicellulose. In: Heinze, T. (Ed.), Polysaccharides I: structure, characterization and use. Springer, Berlin/Heidelberg, pp. 1–67.10.1007/b136816Suche in Google Scholar

Eriksson, T., Börjesson, J., and Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31: 353–364, https://doi.org/10.1016/S0141-0229(02)00134-5.Suche in Google Scholar

Farahbakhsh, N., Roodposhti, P.S., Ayoub, A., Venditti, R.A., and Jur, J.S. (2015). Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 132: 1–10, https://doi.org/10.1002/app.41857.Suche in Google Scholar

Food and Agriculture Organization Statistical (2021). FAOSTAT statistical database. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed 23 May 2021).Suche in Google Scholar

Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., and Liu, Y. (2013). Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 144: 396–400, https://doi.org/10.1016/j.biortech.2013.06.036.Suche in Google Scholar

Gokhale, A.A., Lu, J., and Lee, I. (2013). Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Catal. B Enzym. 90: 76–86, https://doi.org/10.1016/j.molcatb.2013.01.025.Suche in Google Scholar

Gomez, L.D., Steele-King, C.G., and McQueen-Mason, S.J. (2008). Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol. 178: 473–485, https://doi.org/10.1111/j.1469-8137.2008.02422.x.Suche in Google Scholar

Gong, Z., Yang, G., Song, J., Zheng, P., Liu, J., Zhu, W., Huang, L., Chen, L., Luo, X., and Shuai, L. (2021). Understanding the promoting effect of non-catalytic protein on enzymatic hydrolysis efficiency of lignocelluloses. Bioresour. Bioprocess. 8: 1–14, https://doi.org/10.1186/s40643-021-00363-9.Suche in Google Scholar

Gregg, D.J. and Saddler, J.N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol. Bioeng. 51: 375–383, https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<375.AID-BIT1>3.0.CO;2-F.10.1002/(SICI)1097-0290(19960820)51:4<375::AID-BIT1>3.0.CO;2-FSuche in Google Scholar

Gu, H., An, R., and Bao, J. (2018). Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis. Chem. Eng. J. 352: 198–205, https://doi.org/10.1016/j.cej.2018.06.145.Suche in Google Scholar

Gunnarsson, I.B., Kuglarz, M., Karakashev, D., and Angelidaki, I. (2015). Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresour. Technol. 182: 58–66, https://doi.org/10.1016/j.biortech.2015.01.126.Suche in Google Scholar PubMed

Guzik, U., Hupert-Kocurek, K., and Wojcieszynska, D. (2014). Immobilization as a strategy for improving enzyme properties: application to oxidoreductases. Molecules 19: 8995–9018, https://doi.org/10.3390/molecules19078995.Suche in Google Scholar PubMed PubMed Central

Halder, P., Azad, K., Shah, S., and Sarker, E. (2019). Prospects and technological advancement of cellulosic bioethanol ecofuel production. In: Advances in eco-fuels for a sustainable environment. Elsevier Ltd., Amsterdam, pp. 211–236.10.1016/B978-0-08-102728-8.00008-5Suche in Google Scholar

Han, L., Feng, J., Zhang, S., Ma, Z., Wang, Y., and Zhang, X. (2012). Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz. J. Microbiol. 43: 53–61, https://doi.org/10.1590/S1517-83822012000100006.Suche in Google Scholar PubMed PubMed Central

Hodge, D.B., Karim, M.N., Schell, D.J., and McMillan, J.D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99: 8940–8948, https://doi.org/10.1016/j.biortech.2008.05.015.Suche in Google Scholar PubMed

Horton, F., and Crawford, J. (n.d.) How much does an acre of land cost? Leaf Nation. Available at: <https://leafnation.com/hemp/how-much-does-it-cost-to-plant-an-acre-of-hemp/> (Accessed 29 December 2022).Suche in Google Scholar

Houfani, A.A., Anders, N., Spiess, A.C., Baldrian, P., and Benallaoua, S. (2020). Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a review. Biomass Bioenergy 134: 105481, https://doi.org/10.1016/j.biombioe.2020.105481.Suche in Google Scholar

Hu, J., Mok, Y.K., and Saddler, J.N. (2018). Can we reduce the cellulase enzyme loading required to achieve efficient lignocellulose deconstruction by only using the initially absorbed enzymes? ACS Sustain. Chem. Eng. 6: 6233–6239, https://doi.org/10.1021/acssuschemeng.8b00004.Suche in Google Scholar

Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X., and Yong, Q. (2022). Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 154: 111822, https://doi.org/10.1016/j.rser.2021.111822.Suche in Google Scholar

Huang, W.B., Wachemo, A.C., Yuan, H.R., and Li, X.J. (2019). Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora. Bioresour. Technol. 283: 76–85, https://doi.org/10.1016/j.biortech.2019.02.035.Suche in Google Scholar PubMed

Hung, T.C., Fu, C.C., Su, C.H., Chen, J.Y., Wu, W.T., and Lin, Y.S. (2011). Immobilization of cellulase onto electrospun polyacrylonitrile (PAN) nanofibrous membranes and its application to the reducing sugar production from microalgae. Enzyme Microb. Technol. 49: 30–37, https://doi.org/10.1016/j.enzmictec.2011.04.012.Suche in Google Scholar PubMed

Imran, M., Bano, S., Nazir, S., and Javid, A. (2019). Cellulases production and application of cellulases and accessory enzymes in pulp and paper industry: a review. PSM Biol. Res. 4: 29–39.Suche in Google Scholar

Indera Luthfi, A.A., Jahim, J.M., Harun, S., Tan, J.P., and Mohammad, A.W. (2016). Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochem. 51: 1527–1537, https://doi.org/10.1016/j.procbio.2016.08.011.Suche in Google Scholar

Inoue, H., Yano, S., Endo, T., Sakaki, T., and Sawayama, S. (2008). Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol. Biofuels 9: 1–9, https://doi.org/10.1186/1754-6834-1-2.Suche in Google Scholar PubMed PubMed Central

Jeong, S.Y. and Lee, J.W. (2020). Catalytic effect of iron on sequential Fenton oxidation, hydrothermal treatment, and enzymatic hydrolysis to produce monosaccharide from lignocellulosic biomass. Ind. Crops Prod. 158: 112953, https://doi.org/10.1016/j.indcrop.2020.112953.Suche in Google Scholar

Jiang, L.-q., Wu, Y.-x., Wang, X.-b., Zheng, A.-q., Zhao, Z.-l., Li, H.-b., and Feng, X.-j. (2019). Crude glycerol pretreatment for selective saccharification of lignocellulose via fast pyrolysis and enzyme hydrolysis. Energy Convers. Manag. 199: 111894, https://doi.org/10.1016/j.enconman.2019.111894.Suche in Google Scholar

Jørgensen, H., Kristensen, J.B., and Felby, C. (2012). Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod. Biorefining 6: 246–256, https://doi.org/10.1002/bbb.Suche in Google Scholar

Junior, W.G.M., Pacheco, T.F., Gao, S., Martins, P.A., Guisán, J.M., and Caetano, N.S. (2021). Sugarcane bagasse saccharification by enzymatic hydrolysis using endocellulase and β-glucosidase immobilized on different supports. Catalysts 11: 1–13, https://doi.org/10.3390/catal11030340.Suche in Google Scholar

Kadić, A. and Lidén, G. (2017). Does sugar inhibition explain mixing effects in enzymatic hydrolysis of lignocellulose? J. Chem. Technol. Biotechnol. 92: 868–873, https://doi.org/10.1002/jctb.5071.Suche in Google Scholar

Kadić, A., Palmqvist, B., and Lidén, G. (2014). Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol. Biofuels 7: 1–10, https://doi.org/10.1186/1754-6834-7-77.Suche in Google Scholar PubMed PubMed Central

Kapoor, M., Panwar, D., and Kaira, G.S. (2016). Bioprocesses for enzyme production using agro-industrial wastes: technical challenges and commercialization potential, agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Elsevier Inc, Amsterdam, pp. 61–93.10.1016/B978-0-12-802392-1.00003-4Suche in Google Scholar

Khullar, E., Dien, B.S., Rausch, K.D., Tumbleson, M.E., and Singh, V. (2013). Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Ind. Crops Prod. 44: 11–17, https://doi.org/10.1016/j.indcrop.2012.10.015.Suche in Google Scholar

Kristensen, J.B., Felby, C., and Jørgensen, H. (2009). Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2: 1–10, https://doi.org/10.1186/1754-6834-2-11.Suche in Google Scholar PubMed PubMed Central

Kuglarz, M. and Grübel, K. (2018). Integrated production of biofuels and succinic acid from biomass after thermochemical pretreatments. Ecol. Chem. Eng. S 25: 521–536, https://doi.org/10.1515/eces-2018-0034.Suche in Google Scholar

Kuglarz, M., Alvarado-Morales, M., Dąbkowska, K., and Angelidaki, I. (2018). Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 265: 191–199, https://doi.org/10.1016/j.biortech.2018.05.099.Suche in Google Scholar PubMed

Kuhad, R.C., Singh, A., and Eriksson, K.E. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57: 45–125, https://doi.org/10.1007/bfb0102072.Suche in Google Scholar

Kumar, R. and Wyman, C.E. (2009). Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol. Bioeng. 102: 1544–1557, https://doi.org/10.1002/bit.22203.Suche in Google Scholar PubMed

Lai, C., Tu, M., Shi, Z., Zheng, K., Olmos, L.G., and Yu, S. (2014). Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 163: 320–327, https://doi.org/10.1016/j.biortech.2014.04.065.Suche in Google Scholar PubMed

Lai, C., Tu, M., Xia, C., Shi, Z., Sun, S., Yong, Q., and Yu, S. (2017). Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energy and Fuels 31: 12317–12326, https://doi.org/10.1021/acs.energyfuels.7b02405.Suche in Google Scholar

Lan, T.Q., Lou, H., and Zhu, J.Y. (2013). Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2. Bioenergy Res 6: 476–485, https://doi.org/10.1007/s12155-012-9273-4.Suche in Google Scholar

Larnaudie, V., Ferrari, M.D., and Lareo, C. (2019a). Enzymatic hydrolysis of liquid hot water-pretreated switchgrass at high solid content. Energy and Fuels 33: 4361–4368, https://doi.org/10.1021/acs.energyfuels.9b00513.Suche in Google Scholar

Larnaudie, V., Ferrari, M.D., and Lareo, C. (2019b). Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenergy 130: 105394, https://doi.org/10.1016/j.biombioe.2019.105394.Suche in Google Scholar

Leu, S.Y. and Zhu, J.Y. (2013). Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6: 405–415, https://doi.org/10.1007/s12155-012-9276-1.Suche in Google Scholar

Li, B.Z., Balan, V., Yuan, Y.J., and Dale, B.E. (2010). Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour. Technol. 101: 1285–1292, https://doi.org/10.1016/j.biortech.2009.09.044.Suche in Google Scholar PubMed

Li, X., Shi, Y., Kong, W., Wei, J., Song, W., and Wang, S. (2022). Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment: a review. Energy Rep. 8: 696–709, https://doi.org/10.1016/j.egyr.2021.12.015.Suche in Google Scholar

Li, Y., Qi, B., Feng, J., Zhang, Y., and Wan, Y. (2018). Effect of combined inorganic with organic acids pretreatment of rice straw on its structure properties and enzymatic hydrolysis. Environ. Prog. Sustain. Energy 37: 808–814, https://doi.org/10.1002/ep.12703.Suche in Google Scholar

Lin, X., Wu, L., Huang, S., Qin, Y., Qiu, X., and Lou, H. (2019). Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydr. Polym. 207: 52–58, https://doi.org/10.1016/j.carbpol.2018.11.070.Suche in Google Scholar PubMed

Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., and Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl. Biochem. Biotechnol. 162: 1872–1880, https://doi.org/10.1007/s12010-010-8965-5.Suche in Google Scholar PubMed

Liu, K., Du, H., Zheng, T., Liu, H., Zhang, M., Zhang, R., Li, H., Xie, H., Zhang, X., Ma, M., et al.. (2021). Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259: 117740, https://doi.org/10.1016/j.carbpol.2021.117740.Suche in Google Scholar PubMed

Liu, W., Wu, R., Hu, Y., Ren, Q., Hou, Q., and Ni, Y. (2020). Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment. Bioresour. Technol. 316: 123920, https://doi.org/10.1016/j.biortech.2020.123920.Suche in Google Scholar PubMed

Lo, E., Brabo-Catala, L., Dogaris, I., Ammar, E.M., and Philippidis, G.P. (2020). Biochemical conversion of sweet sorghum bagasse to succinic acid. J. Biosci. Bioeng. 129: 104–109, https://doi.org/10.1016/j.jbiosc.2019.07.003.Suche in Google Scholar PubMed

Lou, H., Zhu, J.Y., Lan, Q., Lai, H., and Qiu, X. (2013). pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6: 919–927, https://doi.org/10.1002/cssc.201200859.Suche in Google Scholar PubMed

Lou, H., Zhou, H., Li, X., Wang, M., Zhu, J.Y., and Qiu, X. (2014). Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose. Cellulose 21: 1351–1359, https://doi.org/10.1007/s10570-014-0237-z.Suche in Google Scholar

Lou, H., Zeng, M., Hu, Q., Cai, C., Lin, X., Qiu, X., Yang, D., and Pang, Y. (2018). Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresour. Technol. 249: 1–8, https://doi.org/10.1016/j.biortech.2017.07.066.Suche in Google Scholar PubMed

Lu, J., Lv, Y., Jiang, Y., Wu, M., Xu, B., Zhang, W., Zhou, J., Dong, W., Xin, F., and Jiang, M. (2020). Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system. ACS Sustain. Chem. Eng. 8: 9035–9045, https://doi.org/10.1021/acssuschemeng.0c01865.Suche in Google Scholar

Łukajtis, R., Kucharska, K., Hołowacz, I., Rybarczyk, P., Wychodnik, K., Słupek, E., Nowak, P., and Kamínski, M. (2018). Comparison and optimization of saccharification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies 11: 639, https://doi.org/10.3390/en11030639.Suche in Google Scholar

Luo, L., Yuan, X., Zhang, S., Wang, X., Li, M., and Wang, S. (2021). Effect of pretreatments on the enzymatic hydrolysis of high‐yield bamboo chemo‐mechanical pulp by changing the surface lignin content. Polymers (Basel) 13: 1–17, https://doi.org/10.3390/polym13050787.Suche in Google Scholar PubMed PubMed Central

Luo, X., Liu, J., Zheng, P., Li, M., Zhou, Y., Huang, L., Chen, L., and Shuai, L. (2019). Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnol. Biofuels 12: 1–13, https://doi.org/10.1186/s13068-019-1387-x.Suche in Google Scholar PubMed PubMed Central

Lynd, L.R., Weimer, P.J., Van Zyl, W.H., and Isak, S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577, https://doi.org/10.1128/MMBR.66.3.506.Suche in Google Scholar

Mais, U., Esteghlalian, A.R., Saddler, J.N., and Mansfield, S.D. (2002). Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl. Biochem. Biotechnol. 98: 815–832, https://doi.org/10.1385/ABAB:98-100:1-9:815.10.1007/978-1-4612-0119-9_66Suche in Google Scholar

Maleki, M., Ariaeenejad, S., and Salekdeh, G.H. (2022). Efficient saccharification of ionic liquid-pretreated rice straw in a one-pot system using novel metagenomics derived cellulases. Bioresour. Technol. 345: 126536, https://doi.org/10.1016/j.biortech.2021.126536.Suche in Google Scholar PubMed

Malhotra, M. and Suman, S.K. (2021). Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. Environ. Sci. Pollut. Res. 28: 58929–58944, https://doi.org/10.1007/s11356-021-13283-0.Suche in Google Scholar PubMed

Maryanty, Y., Adryati, T., and SuharjonoBambang Sumitro, S. (2020). Interaction of enzyme-substrate from indigenous cellulolytic bacteria by bioinformatics. IOP Conf. Ser. Mater. Sci. Eng. 854: 012068, https://doi.org/10.1088/1757-899X/854/1/012068.Suche in Google Scholar

Masran, R., Bahrin, E.K., Ibrahim, M.F., Phang, L.Y., and Abd-Aziz, S. (2020). Simultaneous pretreatment and saccharification of oil palm empty fruit bunch using laccase-cellulase cocktail. Biocatal. Agric. Biotechnol. 29: 101824, https://doi.org/10.1016/j.bcab.2020.101824.Suche in Google Scholar

Matura, Woatthichai and Nuanphan, N. (2013). Sugar production from durian (Durio zibethinus Murray) peel by acid hydrolysis. African J. Biotechnol. 12: 5244–5251, https://doi.org/10.5897/ajb2013.12141.Suche in Google Scholar

Maurya, D.P., Vats, S., Rai, S., and Negi, S. (2013). Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J. Exp. Biol. 51: 992–996.Suche in Google Scholar

Menegol, D., Scholl, A.L., Fontana, R.C., Dillon, A.J.P., and Camassola, M. (2014). Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers. Manag. 88: 1252–1256, https://doi.org/10.1016/j.enconman.2014.02.071.Suche in Google Scholar

Mesa, L., Martínez, Y., Barrio, E., and González, E. (2017). Desirability function for optimization of dilute acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl. Energy 198: 299–311, https://doi.org/10.1016/j.apenergy.2017.03.018.Suche in Google Scholar

Mihranyan, A. (2010). Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J. Appl. Polym. Sci. 119: 2449–2460, https://doi.org/10.1002/app.Suche in Google Scholar

Mohanty, P., Kumar, P., Tapan, S., Ritesh, K.A., and Snehasish, P. (2021). A critical review on prospects and challenges in production of biomethanol from lignocellulose biomass. Biomass Convers. Biorefinery 12: 1835–1849, https://doi.org/10.1007/s13399-021-01815-0.Suche in Google Scholar

Mohd Ali, M., Hashim, N., Aziz, S.A., and Lasekan, O. (2020). Exploring the chemical composition, emerging applications, potential uses, and health benefits of durian: a review. Food Control 113: 107189, https://doi.org/10.1016/j.foodcont.2020.107189.Suche in Google Scholar

Motamedi, E., Sadeghian Motahar, S.F., Maleki, M., Kavousi, K., Ariaeenejad, S., Moosavi-Movahedi, A.A., and Hosseini Salekdeh, G. (2021). Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose 28: 3485–3503, https://doi.org/10.1007/s10570-021-03727-8.Suche in Google Scholar

Neifar, M., Chouchane, H., Maktouf, S., Gara, J., and Cherif, A. (2016). Improved sugar yield for bioethanol production by modelling enzymatic hydrolysis of Peganum harmala biomass through response surface methodology. Int. J. Eng. Sci. 5: 22–28.Suche in Google Scholar

Niglio, S., Procentese, A., Russo, M.E., Sannia, G., and Marzocchella, A. (2019). Investigation of enzymatic hydrolysis of coffee silverskin aimed at the production of butanol and succinic acid by fermentative processes. Bioenergy Res 12: 312–324, https://doi.org/10.1007/s12155-019-09969-6.Suche in Google Scholar

Obeng, A.K., Premjet, D., and Premjet, S. (2018). Fermentable sugar production from the peels of two durian (Durio zibethinus Murr.) cultivars by phosphoric acid pretreatment. Resources 7: 60, https://doi.org/10.3390/resources7040060.Suche in Google Scholar

Ofori-Boateng, C. and Lee, K.T. (2013). Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochem. Rev. 12: 173–190, https://doi.org/10.1007/s11101-013-9270-z.Suche in Google Scholar

Okino, S., Ikeo, M., Ueno, Y., and Taneda, D. (2013). Effects of Tween 80 on cellulase stability under agitated conditions. Bioresour. Technol. 142: 535–539, https://doi.org/10.1016/j.biortech.2013.05.078.Suche in Google Scholar PubMed

Ong, K.L., Li, C., Li, X., Zhang, Y., Xu, J., and Lin, C.S.K. (2019). Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochem. Eng. J. 148: 108–115, https://doi.org/10.1016/j.bej.2019.05.004.Suche in Google Scholar

Pallapolu, V.R., Lee, Y.Y., Garlock, R.J., Balan, V., Dale, B.E., Kim, Y., Mosier, N.S., Ladisch, M.R., Falls, M., Holtzapple, M.T., et al.. (2011). Effects of enzyme loading and β-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies. Bioresour. Technol. 102: 11115–11120, https://doi.org/10.1016/j.biortech.2011.03.085.Suche in Google Scholar PubMed

Patel, A. and Shah, A.R. (2021). Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 6: 108–128, https://doi.org/10.1016/j.jobab.2021.02.001.Suche in Google Scholar

Paul, M., Panda, G., MohapatraDas, P.K., and Thatoi, H. (2020). Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J. Mol. Struct. 1204: 127547, https://doi.org/10.1016/j.molstruc.2019.127547.Suche in Google Scholar

Pengilly, C., Diedericks, D., Brienzo, M., Görgens, J.F., and Görgens, J. (2015). Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel 154: 352–360, https://doi.org/10.1016/j.fuel.2015.03.072.Suche in Google Scholar

Periyasamy, K. (2018). Bioethanol production from lignocellulosic biomass using immobilized cellulolytic enzymes, Ph.D. thesis. Chennai, Anna University.Suche in Google Scholar

Pollegioni, L., Tonin, F., and Rosini, E. (2015). Lignin-degrading enzymes. FEBS J. 282: 1190–1213, https://doi.org/10.1111/febs.13224.Suche in Google Scholar PubMed

Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., and Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 271: 462–472, https://doi.org/10.1016/j.biortech.2018.09.070.Suche in Google Scholar PubMed

Qing, Q., Yang, B., and Wyman, C.E. (2010). Impact of surfactants on pretreatment of corn stover. Bioresour. Technol. 101: 5941–5951, https://doi.org/10.1016/j.biortech.2010.03.003.Suche in Google Scholar PubMed

Rico, A., Rencoret, J., Del Río, J.C., Martínez, A.T., and Gutiérrez, A. (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels 7: 1–14, https://doi.org/10.1186/1754-6834-7-6.Suche in Google Scholar PubMed PubMed Central

Romero, R.A., Stromberg, B., and Locke, A. (2011). Study of the effect of different solids load on the optimum pH during enzymatic hydrolysis of steam exploded corn stover. J. Chem. Chem. Eng. 5: 880–889.Suche in Google Scholar

Rozenfelde, L., Puíe, M., Krûma, I., Poppele, I., Matjuðkova, N., Vederòikovs, N., and Rapoport, A. (2017). Enzymatic hydrolysis of lignocellulose for bioethanol production. Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci. 71: 275–279, https://doi.org/10.1515/prolas-2017-0046.Suche in Google Scholar

Ruan, Z., Wang, X., Liu, Y., and Liao, W. (2019). Corn. In: Integrated processing technologies for food and agricultural by-products. Elsevier Inc, Amsterdam, pp. 59–72.10.1016/B978-0-12-814138-0.00003-4Suche in Google Scholar

Sadhu, S. and Maiti, T.K. (2013). Cellulase production by bacteria: a review. Br. Microbiol. Res. J. 3: 235–258, https://doi.org/10.9734/bmrj/2013/2367.Suche in Google Scholar

Saini, J.K., Patel, A.K., Adsul, M., and Singhania, R.R. (2016). Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew. Energy 98: 29–42, https://doi.org/10.1016/j.renene.2016.03.089.Suche in Google Scholar

Samaniuk, J.R., Tim Scott, C., Root, T.W., and Klingenberg, D.J. (2011). The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions. Bioresour. Technol. 102: 4489–4494, https://doi.org/10.1016/j.biortech.2010.11.117.Suche in Google Scholar PubMed

dos Santos, A.C., Ximenes, E., Kim, Y., and Ladisch, M.R. (2019). Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol. 37: 518–531, https://doi.org/10.1016/j.tibtech.2018.10.010.Suche in Google Scholar PubMed

Sebayang, A.H., Hasan, M.H., Chyuan, O.H., Dharma, S., Bahar, A.H., Silitonga, A.S., and Kusumo, F. (2017). Enzymatic hydrolysis using ultrasound for bioethanol production from durian (Durio zibethinus) seeds as potential bio fuel. Chem. Eng. Trans. 56: 553–558, https://doi.org/10.3303/CET1756093.Suche in Google Scholar

Shang, Y., Su, R., Huang, R., Yang, Y., Qi, W., Li, Q., and He, Z. (2014). Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 98: 5765–5774, https://doi.org/10.1007/s00253-014-5761-0.Suche in Google Scholar PubMed

Shang, Y., Chen, M., Zhao, Q., Su, R., and Huang, R. (2017). Enhanced enzymatic hydrolysis of lignocellulose by ethanol-assisted FeCl3 pretreatment. Chem. Eng. Trans. 61: 781–786, https://doi.org/10.3303/CET1761128.Suche in Google Scholar

Shen, N., Zhang, H., Qin, Y., Wang, Q., Zhu, J., Li, Y., Jiang, M.G., and Huang, R. (2018). Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137. Bioresour. Technol. 250: 35–42, https://doi.org/10.1016/j.biortech.2017.09.208.Suche in Google Scholar PubMed

Sheng, Y., Lam, S.S., Wu, Y., Ge, S., Wu, J., Cai, L., Huang, Z., Van Le, Q., Sonne, C., and Xia, C. (2021). Enzymatic conversion of pretreated lignocellulosic biomass: a review on influence of structural changes of lignin. Bioresour. Technol. 324: 124631, https://doi.org/10.1016/j.biortech.2020.124631.Suche in Google Scholar PubMed

Siqueira, J.G.W., Rodrigues, C., Vandenberghe, L.P.de S., Woiciechowski, A.L., and Soccol, C.R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132: 105419, https://doi.org/10.1016/j.biombioe.2019.105419.Suche in Google Scholar

Sulaiman, A.Z., Ajit, A., and Chisti, Y. (2013). Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnol. Prog. 29: 1448–1457, https://doi.org/10.1002/btpr.1786.Suche in Google Scholar PubMed

Tan, J.P., Jahim, Md.J., Wu, T.Y., Harun, S., Kim, B.H., and Mohammad, A.W. (2014). Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind. Eng. Chem. Res. 53: 16123–16134, https://doi.org/10.1021/ie502178j.Suche in Google Scholar

Tan, J.P., Jahim, J.M., Harun, S., Wu, T.Y., and Mumtaz, T. (2016). Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int. J. Hydrogen Energy 41: 4896–4906, https://doi.org/10.1016/j.ijhydene.2015.08.034.Suche in Google Scholar

Tan, J.P., Jahim, J.M., Harun, S., and Wu, T.Y. (2017). Overview of the potential of bio-succinic acid production from oil palm fronds. J. Phys. Sci. 28: 53–72, https://doi.org/10.21315/jps2017.28.s1.4.Suche in Google Scholar

Tengborg, C., Galbe, M., and Zacchi, G. (2001). Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17: 110–117, https://doi.org/10.1021/bp000145+.10.1021/bp000145+Suche in Google Scholar PubMed

Thanapimmetha, A., Saisriyoot, M., Khomlaem, C., Chisti, Y., and Srinophakun, P. (2019). A comparison of methods of ethanol production from sweet sorghum bagasse. Biochem. Eng. J. 151: 107352, https://doi.org/10.1016/j.bej.2019.107352.Suche in Google Scholar

Townsend, P., Kars, S., Miller, R., 2019. Poplar (Populus spp.) Trees for Biofuel Production [WWW Document]. Wood-Energy. Available at: <https://wood-energy.extension.org/poplar-populus-spp-trees-for-biofuel-production/> (Accessed 29 December 2022).Suche in Google Scholar

Tu, M., Zhang, X., Paice, M., MacFarlane, P., and Saddler, J.N. (2009). The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour. Technol. 100: 6407–6415, https://doi.org/10.1016/j.biortech.2009.06.108.Suche in Google Scholar PubMed

Ukrainian Biofuel Portal. (2012). Empty fruit bunch, Available at <https://pellets-wood.com/empty-fruit-bunch-o8396.html> (Accesed 29 December 2022).Suche in Google Scholar

Uthandi, S., Kaliyaperumal, A., Srinivasan, N., Thangavelu, K., Muniraj, I.K., Zhan, X., Gathergood, N., and Gupta, V.K. (2022). Microbial biodiesel production from lignocellulosic biomass: new insights and future challenges. Crit. Rev. Environ. Sci. Technol. 52: 2197–2225, https://doi.org/10.1080/10643389.2021.1877045.Suche in Google Scholar

Van Dyk, J.S. and Pletschke, B.I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458–1480, https://doi.org/10.1016/j.biotechadv.2012.03.002.Suche in Google Scholar PubMed

Verma, M.L., Chaudhary, R., Tsuzuki, T., Barrow, C.J., and Puri, M. (2013). Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour. Technol. 135: 2–6, https://doi.org/10.1016/j.biortech.2013.01.047.Suche in Google Scholar PubMed

Wang, S., Su, P., Ding, F., and Yang, Y. (2013a). Immobilization of cellulase on polyamidoamine dendrimer-grafted silica. J. Mol. Catal. B Enzym. 89: 35–40, https://doi.org/10.1016/j.molcatb.2012.12.011.Suche in Google Scholar

Wang, Z.J., Lan, T.Q., and Zhu, J.Y. (2013b). Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol. Biofuels 6: 1–10, https://doi.org/10.1186/1754-6834-6-9.Suche in Google Scholar PubMed PubMed Central

Wang, W., Zhuang, X., Tan, X., Wang, Q., Chen, X., Yu, Q., Qi, W., Wang, Z., and Yuan, Z. (2018). Dual effect of nonionic surfactants on improving the enzymatic hydrolysis of lignocellulose. Energy and Fuels 32: 5951–5959, https://doi.org/10.1021/acs.energyfuels.8b00225.Suche in Google Scholar

Wang, W., Wang, C., ZahoorChen, X., Yu, Q., Wang, Z., Zhuang, X., and Yuan, Z. (2020). Effect of a nonionic surfactant on enzymatic hydrolysis of lignocellulose based on lignocellulosic features and enzyme adsorption. ACS Omega 5: 15812–15820, https://doi.org/10.1021/acsomega.0c00526.Suche in Google Scholar PubMed PubMed Central

Wang, Y., Gong, X., Hu, X., and Zhou, N. (2019). Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release. Bioresour. Technol. 276: 343–348, https://doi.org/10.1016/j.biortech.2019.01.008.Suche in Google Scholar PubMed

Wu, D., Li, Q., Wang, D., and Dong, Y. (2013). Enzymatic hydrolysis and succinic acid fermentation from steam-exploded corn stalk at high solid concentration by recombinant escherichia coli. Appl. Biochem. Biotechnol. 170: 1942–1949, https://doi.org/10.1007/s12010-013-0319-7.Suche in Google Scholar PubMed

Wu, Y., Ge, S., Xia, C., Mei, C., Kim, K.H., Cai, L., Smith, L.M., Lee, J., and Shi, S.Q. (2021). Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renew. Sustain. Energy Rev. 136: 110442, https://doi.org/10.1016/j.rser.2020.110442.Suche in Google Scholar

Wyman, C.E., Balan, V., Dale, B.E., Elander, R.T., Falls, M., Hames, B., Holtzapple, M.T., Ladisch, M.R., Lee, Y.Y., Mosier, N., et al.. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour. Technol. 102: 11052–11062, https://doi.org/10.1016/j.biortech.2011.06.069.Suche in Google Scholar PubMed

Xiao, Z., Zhang, X., Gregg, D.J., and Saddler, J.N. (2004). Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. In: Finkelstein, M., McMillan, J.D., Davison, B.H., and Evans, B. (Eds.), Proceedings of the 25th Symposium on Biotechnology for Fuels and chemicals, may 4-7, 2003. Breckenridge, CO. Humana Press, Totowa, NJ, pp. 1115–1126.10.1007/978-1-59259-837-3_90Suche in Google Scholar

Yan, J., Oyedeji, O., Leal, J.H., Donohoe, B.S., Semelsberger, T.A., Li, C., Hoover, A.N., Webb, E., Bose, E.A., Zeng, Y., et al.. (2020). Characterizing variability in lignocellulosic biomass: a review. ACS Sustain. Chem. Eng. 8: 8059–8085, https://doi.org/10.1021/acssuschemeng.9b06263.Suche in Google Scholar

Yang, B. and Wyman, C.E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94: 611–617, https://doi.org/10.1002/bit.20750.Suche in Google Scholar PubMed

Yang, J., Kim, J.E., Kim, H.E., Yu, J.H., Cha, Y.L., and Kim, K.H. (2017). Enhanced enzymatic hydrolysis of hydrothermally pretreated empty fruit bunches at high solids loadings by the synergism of hemicellulase and polyethylene glycol. Process Biochem. 58: 211–216, https://doi.org/10.1016/j.procbio.2017.04.019.Suche in Google Scholar

Yang, W., Fan, H., Zhou, M., Zhou, Z., Yan, L., Ju, X., and Li, L. (2020). Synergistic effect of ionic liquid and surfactant for enzymatic hydrolysis of lignocellulose by Paenibacillus sp. LLZ1 cellulase. Biomass Bioenergy 142: 105760, https://doi.org/10.1016/j.biombioe.2020.105760.Suche in Google Scholar

Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., Feng, C., and Dong, Y. (2013). Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind. Crops Prod. 46: 205–209, https://doi.org/10.1016/j.indcrop.2013.01.031.Suche in Google Scholar

Yildirim, O., Ozkaya, B., Altinbas, M., and Demir, A. (2021). Statistical optimization of dilute acid pretreatment of lignocellulosic biomass by response surface methodology to obtain fermentable sugars for bioethanol production. Int. J. Energy Res. 45: 8882–8899, https://doi.org/10.1002/er.6423.Suche in Google Scholar

Yoo, H.Y., Pradeep, G.C., Lee, S.K., Park, D.H., Cho, S.S., Choi, Y.H., Yoo, J.C., and Kim, S.W. (2015). Understanding β-mannanase from Streptomyces sp. CS147 and its potential application in lignocellulose based biorefining. Biotechnol. J. 10: 1894–1902, https://doi.org/10.1002/biot.201500150.Suche in Google Scholar PubMed

Yoon, L.W., Ngoh, G.C., May Chua, A.S., and Hashim, M.A. (2011). Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J. Chem. Technol. Biotechnol. 86: 1342–1348, https://doi.org/10.1002/jctb.2651.Suche in Google Scholar

Yu, Z., Jameel, H., Chang, H.m., Philips, R., and Park, S. (2013). Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose. Bioresour. Technol. 147: 369–377, https://doi.org/10.1016/j.biortech.2013.08.010.Suche in Google Scholar PubMed

Zakaria, M.R., Hirata, S., and Hassan, M.A. (2014). Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresour. Technol. 169: 236–243, https://doi.org/10.1016/J.BIORTECH.2014.06.095.Suche in Google Scholar

Zang, L., Qiu, J., Wu, X., Zhang, W., Sakai, E., and Wei, Y. (2014). Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind. Eng. Chem. Res. 53: 3448–3454, https://doi.org/10.1021/ie404072s.Suche in Google Scholar

Zhan, X., Cai, C., Pang, Y., Qin, F., Lou, H., Huang, J., and Qiu, X. (2019). Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 283: 112–119, https://doi.org/10.1016/j.biortech.2019.03.026.Suche in Google Scholar PubMed

Zhang, D.H., Yuwen, L.X., and Peng, L.J. (2013). Parameters affecting the performance of immobilized enzyme. J. Chem. 2013: 1–7, 946248, https://doi.org/10.1155/2013/946248.Suche in Google Scholar

Zhang, H., Fan, M., Li, X., Zhang, A., and Xie, J. (2018). Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour. Technol. 258: 295–301, https://doi.org/10.1016/j.biortech.2018.03.004.Suche in Google Scholar PubMed

Zhang, H., Huang, S., Wei, W., Zhang, J., and Xie, J. (2019). Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnol. Biofuels 12: 1–9, https://doi.org/10.1186/s13068-019-1454-3.Suche in Google Scholar PubMed PubMed Central

Zhang, M., Su, R., Qi, W., and He, Z. (2010). Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotechnol. Biotechnol 160: 1407–1414, https://doi.org/10.1007/s12010-009-8602-3.Suche in Google Scholar PubMed

Zheng, T., Jiang, J., and Yao, J. (2021). Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Process. Technol. 213: 106660, https://doi.org/10.1016/j.fuproc.2020.106660.Suche in Google Scholar

Zheng, W., Lan, T., Li, H., Yue, G., and Zhou, H. (2020). Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate – enzyme adsorption. Biotechnol. Biofuels 13: 1–12, https://doi.org/10.1186/s13068-020-1659-5.Suche in Google Scholar PubMed PubMed Central

Zhou, Y., Chen, H., Qi, F., Zhao, X., and Liu, D. (2015). Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose. Bioresour. Technol. 182: 136–143, https://doi.org/10.1016/j.biortech.2015.01.137.Suche in Google Scholar PubMed

Zhu, S., Wu, Y., Yu, Z., Zhang, X., Li, H., and Gao, M. (2006). The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 97: 1964–1968, https://doi.org/10.1016/j.biortech.2005.08.008.Suche in Google Scholar PubMed

Received: 2022-05-03
Accepted: 2023-03-15
Published Online: 2023-05-10
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revce-2022-0019/html?lang=de
Button zum nach oben scrollen