Startseite State-of-the-art in methane-reforming reactor modeling: challenges and new insights
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

State-of-the-art in methane-reforming reactor modeling: challenges and new insights

  • Michael Fabrik , Amgad Salama EMAIL logo und Hussameldin Ibrahim EMAIL logo
Veröffentlicht/Copyright: 7. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The reforming of methane is an important industrial process, and reactor modeling and simulation is frequently employed as a design and analysis tool in understanding this process. While much research work is devoted to catalyst formulations, reaction mechanisms, and reactor designs, this review aims to summarize the literature concerning the simulation of methane reforming. Applications in industrial practice are highlighted, and the three main approaches to representing the reactions are briefly discussed. An overview of simulation studies focusing on methane reforming is presented. The three central methods for fixed-bed reactor modeling are discussed. Various approaches and modern examples are discussed, presenting their modeling methods and key findings. The overall objective of this paper is to provide a dedicated review of simulation work done for methane reforming and provide a reference for understanding this field and identifying possible new paths.


Corresponding authors: Hussameldin Ibrahim and Amgad Salama, Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada, E-mail: ,

Funding source: University of Regina

Award Identifier / Grant number: Engineering Research Opportunities Fund

Award Identifier / Grant number: VP Research Cluster Grant

Funding source: Natural Sciences and Engineering Research Council of Canada

Award Identifier / Grant number: NSERC-DG

Funding source: Canada Foundation for Innovation

Award Identifier / Grant number: CFI-JELF

Funding source: Clean Energy Technologies Research Institute (CETRI)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to acknowledge the financial support from the Office of the VP Research at the University of Regina through the Research Cluster Grant, the Faculty of Engineering & Applied Science at the University of Regina through the Research Opportunities Fund, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and the Clean Energy Technologies Research Institute (CETRI).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjødt, N.C., Sehested, J., and Thomsen, S.G. (2011). Natural gas to synthesis gas – catalysts and catalytic processes. J. Nat. Gas Sci. Eng. 3: 423–459, https://doi.org/10.1016/j.jngse.2011.03.004.Suche in Google Scholar

Abbas, S.Z., Dupont, V., and Mahmud, T. (2017a). Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process. Int. J. Hydrogen Energy 42: 18910–18921, https://doi.org/10.1016/j.ijhydene.2017.05.222.Suche in Google Scholar

Abbas, S.Z., Dupont, V., and Mahmud, T. (2017b). Modelling of high purity H 2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor. Fuel 202: 271–286, https://doi.org/10.1016/j.fuel.2017.03.072.Suche in Google Scholar

Abbas, S.Z., Dupont, V., and Mahmud, T. (2019). Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications. Int. J. Hydrogen Energy 44: 1505–1513, https://doi.org/10.1016/j.ijhydene.2018.11.169.Suche in Google Scholar

Abdelkareem, M.A., Tanveer, W.H., Sayed, E.T., Assad, M.E.H., Allagui, A., and Cha, S.W. (2019). On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renew. Sustain. Energy Rev. 101: 361–375, https://doi.org/10.1016/j.rser.2018.10.025.Suche in Google Scholar

Abdullah, B., Abd Ghani, N.A., and Vo, D.V.N. (2017). Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 162: 170–185, https://doi.org/10.1016/j.jclepro.2017.05.176.Suche in Google Scholar

Abdulrasheed, A., Jalil, A.A., Gambo, Y., Ibrahim, M., Hambali, H.U., and Shahul Hamid, M.Y. (2019). A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew. Sustain. Energy Rev. 108: 175–193, https://doi.org/10.1016/j.rser.2019.03.054.Suche in Google Scholar

Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., and De Diego, L.F. (2012). Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 38: 215–282, https://doi.org/10.1016/j.pecs.2011.09.001.Suche in Google Scholar

Aguirre, A., Tran, A., Lao, L., Durand, H., Crose, M., and Christofides, P.D. (2017). CFD modeling of a pilot-scale steam methane reforming furnace. In: Kopanos, G.M., Liu, P., and Georgiadis, M.C. (Eds.), Advances in energy systems engineering. Cham, Switzerland: Springer International Publishing, pp. 75–117.10.1007/978-3-319-42803-1_4Suche in Google Scholar

Alatiqi, I.M., Meziou, A.M., and Gasmelseed, G.A. (1989). Modelling, simulation and sensitivity analysis of steam-methane reformers. Int. J. Hydrogen Energy 14: 241–256, https://doi.org/10.1016/0360-3199(89)90061-x.Suche in Google Scholar

Alberton, A.L., Schwaab, M., Fontes, C.E., Bittencourt, R.C., and Pinto, J.C. (2009). Hybrid modeling of methane reformers. 1. A metamodel for the effectiveness factor of a catalyst pellet with complex geometry. Ind. Eng. Chem. Res. 48: 9369–9375, https://doi.org/10.1021/ie801830q.Suche in Google Scholar

Aloisi, I., Jand, N., Stendardo, S., and Foscolo, P.U. (2016). Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem. Eng. Sci. 149: 22–34, https://doi.org/10.1016/j.ces.2016.03.042.Suche in Google Scholar

Aloisi, I., Di Giuliano, A., Di Carlo, A., Foscolo, P.U., Courson, C., and Gallucci, K. (2017). Sorption enhanced catalytic steam methane reforming: experimental data and simulations describing the behaviour of bi-functional particles. Chem. Eng. J. 314: 570–582, https://doi.org/10.1016/j.cej.2016.12.014.Suche in Google Scholar

Alstrup, I., Rostrup-Nielsen, J.R., and Røen, S. (1981). High temperature hydrogen sulfide chemisorption on nickel catalysts. Appl. Catal. 1: 303–314, https://doi.org/10.1016/0166-9834(81)80036-x.Suche in Google Scholar

Amin, N.A.S. and Yaw, T.C. (2007). Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas. Int. J. Hydrogen Energy 32: 1789–1798, https://doi.org/10.1016/j.ijhydene.2006.12.004.Suche in Google Scholar

Andersson, M., Yuan, J., and Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl. Energy 87: 1461–1476, https://doi.org/10.1016/j.apenergy.2009.11.013.Suche in Google Scholar

Aparicio, L.M. (1997). Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts. J. Catal. 165: 262–274, https://doi.org/10.1006/jcat.1997.1468.Suche in Google Scholar

Appari, S., Janardhanan, V.M., Bauri, R., Jayanti, S., and Deutschmann, O. (2014a). A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Appl. Catal. A Gen. 471: 118–125, https://doi.org/10.1016/j.apcata.2013.12.002.Suche in Google Scholar

Appari, S., Janardhanan, V.M., Bauri, R., and Jayanti, S. (2014b). Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: an experimental investigation. Int. J. Hydrogen Energy 39: 297–304, https://doi.org/10.1016/j.ijhydene.2013.10.056.Suche in Google Scholar

Arab Aboosadi, Z., Jahanmiri, A.H., and Rahimpour, M.R. (2011). Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Appl. Energy 88: 2691–2701, https://doi.org/10.1016/j.apenergy.2011.02.017.Suche in Google Scholar

Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N. (2018). Catalyst design for dry reforming of methane: analysis review. Renew. Sustain. Energy Rev. 82: 2570–2585, https://doi.org/10.1016/j.rser.2017.09.076.Suche in Google Scholar

Argyle, M. and Bartholomew, C.H. (2015). Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5: 145–269, https://doi.org/10.3390/catal5010145.Suche in Google Scholar

Atashi, H., Gholizadeh, J., Tabrizi, F.F., Tayebi, J., and Mousavi, S.A.H.S. (2017). Thermodynamic analysis of carbon dioxide reforming of methane to syngas with statistical methods. Int. J. Hydrogen Energy 42: 5464–5471, https://doi.org/10.1016/j.ijhydene.2016.07.184.Suche in Google Scholar

Ávila-Neto, C.N., Dantas, S.C., Silva, F.A., Franco, T.V., Romanielo, L.L., Hori, C.E., and Assis, A.J. (2009). Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design. J. Nat. Gas Sci. Eng. 1: 205–215, https://doi.org/10.1016/j.jngse.2009.12.003.Suche in Google Scholar

Ayodele, B.V. and Cheng, C.K. (2015). Process modelling, thermodynamic analysis and optimization of dry reforming, partial oxidation and auto-thermal methane reforming for hydrogen and syngas production. Chem. Prod. Process Model. 10: 211–220, https://doi.org/10.1515/cppm-2015-0027.Suche in Google Scholar

Aziz, M.A.A., Setiabudi, H.D., Teh, L.P., Annuar, N.H.R., and Jalil, A.A. (2019). A review of heterogeneous catalysts for syngas production via dry reforming. J. Taiwan Inst. Chem. Eng. 101: 139–158, https://doi.org/10.1016/j.jtice.2019.04.047.Suche in Google Scholar

Aziz, M.A.A., Setiabudi, H.D., Teh, L.P., Asmadi, M., Matmin, J., and Wongsakulphasatch, S. (2020). High-performance bimetallic catalysts for low-temperature carbon dioxide reforming of methane. Chem. Eng. Technol. 43: 661–671, https://doi.org/10.1002/ceat.201900514.Suche in Google Scholar

Barelli, L., Bidini, G., Gallorini, F., and Servili, S. (2008). Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33: 554–570, https://doi.org/10.1016/j.energy.2007.10.018.Suche in Google Scholar

Bartholomew, C.H. (1982). Carbon deposition in steam reforming and methanation. Catal. Rev. 24: 67–112, https://doi.org/10.1080/03602458208079650.Suche in Google Scholar

Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212: 17–60, https://doi.org/10.1016/s0926-860x(00)00843-7.Suche in Google Scholar

Bartholomew, C.H. and Farrauto, R.J. (2006). Fundamentals of industrial catalytic processes, 2nd ed. Hoboken, New Jersey: John Wiley & Sons.10.1002/9780471730071Suche in Google Scholar

Benguerba, Y., Dehimi, L., Virginie, M., Dumas, C., and Ernst, B. (2015). Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor. React. Kinet. Mech. Catal. 114: 109–119, https://doi.org/10.1007/s11144-014-0772-5.Suche in Google Scholar

Benguerba, Y., Virginie, M., Dumas, C., and Ernst, B. (2017). Computational fluid dynamics study of the dry reforming of methane over Ni/Al2O3 catalyst in a membrane reactor. Coke deposition. Kinet. Catal. 58: 328–338, https://doi.org/10.1134/s0023158417030028.Suche in Google Scholar

Bhat, S.A. and Sadhukhan, J. (2009). Process intensification aspects for steam methane reforming: an overview. AIChE J. 55: 408–422, https://doi.org/10.1002/aic.11687.Suche in Google Scholar

Bian, Z., Das, S., Wai, M.H., Hongmanorom, P., and Kawi, S. (2017). A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18: 3117–3134, https://doi.org/10.1002/cphc.201700529.Suche in Google Scholar

Bracconi, M., Maestri, M., and Cuoci, A. (2017). In situ adaptive tabulation for the CFD simulation of heterogeneous reactors based on operator-splitting algorithm. AIChE J. 63: 95–104, https://doi.org/10.1002/aic.15441.Suche in Google Scholar

Bradford, M.C.J. and Vannice, M.A. (1996). Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl. Catal. A Gen. 142: 97–122, https://doi.org/10.1016/0926-860x(96)00066-x.Suche in Google Scholar

Budiman, A.W., Song, S.H., Chang, T.S., Shin, C.H., and Choi, M.J. (2012). Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catal. Surv. Asia 16: 183–197, https://doi.org/10.1007/s10563-012-9143-2.Suche in Google Scholar

Carrara, C., Múnera, J., Lombardo, E.A., and Cornaglia, L.M. (2008). Kinetic and stability studies of Ru/La2O3 used in the dry reforming of methane. Top. Catal. 51: 98–106, https://doi.org/10.1007/s11244-008-9131-y.Suche in Google Scholar

Challiwala, M.S., Ghouri, M.M., Linke, P., El-Halwagi, M.M., and Elbashir, N.O. (2017). A combined thermo-kinetic analysis of various methane reforming technologies: comparison with dry reforming. J. CO2 Util. 17: 99–111, https://doi.org/10.1016/j.jcou.2016.11.008.Suche in Google Scholar

Chaouki, J., Farag, S., Attia, M., and Doucet, J. (2020). The development of industrial (thermal) processes in the context of sustainability: the case for microwave heating. Can. J. Chem. Eng. 98: 832–847, https://doi.org/10.1002/cjce.23710.Suche in Google Scholar

Chein, R.Y., Chen, Y.C., Yu, C.T., and Chung, J.N. (2015). Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures. J. Nat. Gas Sci. Eng. 26: 617–629, https://doi.org/10.1016/j.jngse.2015.07.001.Suche in Google Scholar

Chein, R.Y., Hsu, W.H., and Yu, C.T. (2017a). Parametric study of catalytic dry reforming of methane for syngas production at elevated pressures. Int. J. Hydrogen Energy 42: 14485–14500, https://doi.org/10.1016/j.ijhydene.2017.04.110.Suche in Google Scholar

Chein, R.Y., Wang, C.Y., and Yu, C.T. (2017b). Parametric study on catalytic tri-reforming of methane for syngas production. Energy 118: 1–17, https://doi.org/10.1016/j.energy.2016.11.147.Suche in Google Scholar

Chen, D., Lødeng, R., Anundskås, A., Olsvik, O., and Holmen, A. (2001). Deactivation during carbon dioxide reforming of methane over Ni catalyst: microkinetic analysis. Chem. Eng. Sci. 56: 1371–1379, https://doi.org/10.1016/s0009-2509(00)00360-2.Suche in Google Scholar

Chen, D., Lødeng, R., Svendsen, H., and Holmen, A. (2011). Hierarchical multiscale modeling of methane steam reforming reactions. Ind. Eng. Chem. Res. 50: 2600–2612, https://doi.org/10.1021/ie1006504.Suche in Google Scholar

Chen, Z., Yan, Y., and Elnashaie, S.S.E.H. (2004). Catalyst deactivation and engineering control for steam reforming of higher hydrocarbons in a novel membrane reformer. Chem. Eng. Sci. 59: 1965–1978, https://doi.org/10.1016/j.ces.2004.01.046.Suche in Google Scholar

Christiansen, L.J. and Andersen, S.L. (1980). Transient profiles in sulphur poisoning of steam performers. Chem. Eng. Sci. 35: 314–321, https://doi.org/10.1016/0009-2509(80)80102-3.Suche in Google Scholar

Cruz, B.M. and da Silva, J.D. (2017). A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the production of hydrogen. Int. J. Hydrogen Energy 42: 23670–23690, https://doi.org/10.1016/j.ijhydene.2017.03.019.Suche in Google Scholar

da Cruz, F.E., Karagöz, S., and Manousiouthakis, V.I. (2017). Parametric studies of steam methane reforming using a multiscale reactor model. Ind. Eng. Chem. Res. 56: 14123–14139, https://doi.org/10.1021/acs.iecr.7b03253.Suche in Google Scholar

Darvishi, P. and Zareie-Kordshouli, F. (2017). A rigorous mathematical model for online prediction of tube skin temperature in an industrial top-fired steam methane reformer. Chem. Eng. Res. Des. 126: 32–44, https://doi.org/10.1016/j.cherd.2017.08.005.Suche in Google Scholar

Dębek, R., Motak, M., Grzybek, T., Galvez, M.E., and Da Costa, P. (2017). A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane. Catalysts 7: 1–25.10.3390/catal7010032Suche in Google Scholar

De Deken, J.C., Devos, E.F., and Froment, G.F. (1982). Steam reforming of natural gas: intrinsic kinetics, diffusional influences, and reactor design. In: Wei, J. and Georgakis, C. (Eds.), Chemical reaction engineering. ACS symposium series, Vol. 196. Boston: American Chemical Society, pp. 181–197, https://doi.org/10.1021/bk-1982-0196.ch016.Suche in Google Scholar

Dehimi, L., Benguerba, Y., Virginie, M., and Hijazi, H. (2017). Microkinetic modelling of methane dry reforming over Ni/Al2O3catalyst. Int. J. Hydrogen Energy 42: 18930–18940, https://doi.org/10.1016/j.ijhydene.2017.05.231.Suche in Google Scholar

Demidov, D.V., Mishin, I.V., and Mikhailov, M.N. (2011). Gibbs free energy minimization as a way to optimize the combined steam and carbon dioxide reforming of methane. Int. J. Hydrogen Energy 36: 5941–5950, https://doi.org/10.1016/j.ijhydene.2011.02.053.Suche in Google Scholar

Devocht, B.R., Thybaut, J.W., Kageyama, N., Toch, K., Oyama, S.T., and Marin, G.B. (2019). Balance between model detail and experimental information in steam methane reforming over a Ni/MgO-SiO 2 catalyst. AIChE J. 65: 1222–1233, https://doi.org/10.1002/aic.16512.Suche in Google Scholar

Díez-Ramírez, J., Dorado, F., Martínez-Valiente, A., García-Vargas, J.M., and Sánchez, P. (2016). Kinetic, energetic and exergetic approach to the methane tri-reforming process. Int. J. Hydrogen Energy 41: 19339–19348, https://doi.org/10.1016/j.ijhydene.2016.04.229.Suche in Google Scholar

Diglio, G., Hanak, D.P., Bareschino, P., Pepe, F., Montagnaro, F., and Manovic, V. (2018). Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell. Appl. Energy 210: 1–15, https://doi.org/10.1016/j.apenergy.2017.10.101.Suche in Google Scholar

Dixon, A.G. (2012). Fixed bed catalytic reactor modelling-the radial heat transfer problem. Can. J. Chem. Eng. 90: 507–527, https://doi.org/10.1002/cjce.21630.Suche in Google Scholar

Dixon, A.G. and Partopour, B. (2020). Computational fluid dynamics for fixed bed reactor design. Annu. Rev. Chem. Biomol. Eng. 11: 109–130, https://doi.org/10.1146/annurev-chembioeng-092319-075328.Suche in Google Scholar PubMed

Donazzi, A., Beretta, A., Groppi, G., and Forzatti, P. (2008). Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst. Part I: kinetic study in annular reactor. J. Catal. 255: 241–258.10.1016/j.jcat.2008.02.009Suche in Google Scholar

Dong, Y., Sosna, B., Korup, O., Rosowski, F., and Horn, R. (2017). Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chem. Eng. J. 317: 204–214, https://doi.org/10.1016/j.cej.2017.02.063.Suche in Google Scholar

Dunn, A.J., Yustos, J., and Mujtaba, I.M. (2002). Modelling and simulation of a top-fired primary steam reformer using gPROMS. Dev. Chem. Eng. Miner. Process. 10: 77–87, https://doi.org/10.1016/s1569-190x(02)00098-9.Suche in Google Scholar

Dybkjaer, I. (1995). Tubular reforming and autothermal reforming of natural gas — an overview of available processes. Fuel Process. Technol. 42: 85–107, https://doi.org/10.1016/0378-3820(94)00099-f.Suche in Google Scholar

Eisfeld, B. and Schnitzlein, K. (2001). The influence of confining walls on the pressure drop in packed beds. Chem. Eng. Sci. 56: 4321–4329, https://doi.org/10.1016/s0009-2509(00)00533-9.Suche in Google Scholar

Elnashaie, S.S.E.H. and Elshishini, S.S. (1993). Modelling, simulation, and optimization of industrial fixed bed catalytic reactors. Yverdon, Switzerland: Gordon and Breach Science Publishers Inc.Suche in Google Scholar

Elnashaie, S.S.E.H., Alubaid, A.S., Soliman, M.A., and Adris, A.M. (1988). On the kinetics and reactor modeling of the steam reforming of methane – a review. J. Eng. Sci. 14: 247–273.Suche in Google Scholar

Elnashaie, S.S.E.H., Adris, A.M., Al-Ubaid, A.S., and Soliman, M.A. (1990). On the non-monotonic behaviour of methane-steam reforming kinetics. Chem. Eng. Sci. 45: 491–501, https://doi.org/10.1016/0009-2509(90)87036-r.Suche in Google Scholar

Eppinger, T., Wehinger, G.D., Jurtz, N., Aglave, R., and Kraume, M. (2016). A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor. Chem. Eng. Res. Des. 115: 374–381, https://doi.org/10.1016/j.cherd.2016.09.007.Suche in Google Scholar

Erekson, E.J. and Bartholomew, C.H. (1983). Sulfur poisoning of nickel methanation catalysts. II. Effects of H2S concentration, CO and H2O partial pressures and temperature on reactivation rates. Appl. Catal. 5: 323–336, https://doi.org/10.1016/0166-9834(83)80160-2.Suche in Google Scholar

Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Prog. 48: 89–93.Suche in Google Scholar

De Falco, M. (2011). Membrane reactors modeling. In: De Falco, M., Marrelli, L., and Iaquaniello, G. (Eds.), Membrane reactors for hydrogen production processes. London: Springer London, pp. 79–102.10.1007/978-0-85729-151-6_4Suche in Google Scholar

Fan, M.-S., Abdullah, A.Z., and Bhatia, S. (2009). Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem 1: 192–208, https://doi.org/10.1002/cctc.200900025.Suche in Google Scholar

Farniaei, M., Abbasi, M., Rahnama, H., Rahimpour, M.R., and Shariati, A. (2014). Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: modeling and simulation. J. Nat. Gas Sci. Eng. 20: 132–146, https://doi.org/10.1016/j.jngse.2014.06.010.Suche in Google Scholar

Di Felice, R. and Gibilaro, L.G. (2004). Wall effects for the pressure drop in fixed beds. Chem. Eng. Sci. 59: 3037–3040, https://doi.org/10.1016/j.ces.2004.03.030.Suche in Google Scholar

Fernandez, J.R., Abanades, J.C., and Grasa, G. (2012a). Modeling of sorption enhanced steam methane reforming. Part II: simulation within a novel Ca/Cu chemical loop process for hydrogen production. Chem. Eng. Sci. 84: 12–20, https://doi.org/10.1016/j.ces.2012.07.050.Suche in Google Scholar

Fernandez, J.R., Abanades, J.C., and Murillo, R. (2012b). Modeling of sorption enhanced steam methane reforming in an adiabatic fixed bed reactor. Chem. Eng. Sci. 84: 1–11, https://doi.org/10.1016/j.ces.2012.07.039.Suche in Google Scholar

Filla, M. (1984). An improved Roesler-type flux method for radiative heat transfer in one-dimensional furnaces. Chem. Eng. Sci. 39: 159–161, https://doi.org/10.1016/0009-2509(84)80141-4.Suche in Google Scholar

Fitzharris, W.D., Katzer, J.R., and Manogue, W.H. (1982). Sulfur deactivation of nickel methanation catalysts. J. Catal. 76: 369–384, https://doi.org/10.1016/0021-9517(82)90267-6.Suche in Google Scholar

Forzatti, P. and Lietti, L. (1999). Catalyst deactivation. Catal. Today 52: 165–181, https://doi.org/10.1016/s0920-5861(99)00074-7.Suche in Google Scholar

Franchi, G., Capocelli, M., De Falco, M., Piemonte, V., and Barba, D. (2020). Hydrogen production via steam reforming: a critical analysis of MR and RMM technologies. Membranes 10: 10, https://doi.org/10.3390/membranes10010010.Suche in Google Scholar

Froment, G.F. (1962). Design of fixed-bed catalytic reactors based on effective transport models. Chem. Eng. Sci. 17: 849–859, https://doi.org/10.1016/0009-2509(62)87017-1.Suche in Google Scholar

Froment, G.F. and Bischoff, K.B. (1961). Non-steady state behaviour of fixed bed catalytic reactors due to catalyst fouling. Chem. Eng. Sci. 16: 189–201, https://doi.org/10.1016/0009-2509(61)80030-4.Suche in Google Scholar

Froment, G.F. and Bischoff, K.B. (1962). Kinetic data and product distributions from fixed bed catalytic reactors subject to catalyst fouling. Chem. Eng. Sci. 17: 105–114, https://doi.org/10.1016/0009-2509(62)80022-0.Suche in Google Scholar

Froment, G.F., Bischoff, K.B., and De Wilde, J. (2011). Chemical reactor analysis and design, 3rd ed. Hoboken, New Jersey: John Wiley & Sons.Suche in Google Scholar

Fuentes, G.A. (1985). Catalyst deactivation and steady-state activity: a generalized power-law equation model. Appl. Catal. 15: 33–40, https://doi.org/10.1016/s0166-9834(00)81484-0.Suche in Google Scholar

Di Giuliano, A., Gallucci, K., Giancaterino, F., Courson, C., and Foscolo, P.U. (2019). Multicycle sorption enhanced steam methane reforming with different sorbent regeneration conditions: experimental and modelling study. Chem. Eng. J. 377: 119874, https://doi.org/10.1016/j.cej.2018.09.035.Suche in Google Scholar

Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., and Mondragón, F. (2008). Dual active-site mechanism for dry methane reforming over Ni/La 2O3 produced from LaNiO3 perovskite. Ind. Eng. Chem. Res. 47: 9272–9278.10.1021/ie800281tSuche in Google Scholar

Gao, Y., Jiang, J., Meng, Y., Yan, F., and Aihemaiti, A. (2018). A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 171: 133–155, https://doi.org/10.1016/j.enconman.2018.05.083.Suche in Google Scholar

García-Vargas, J.M., Valverde, J.L., Díez, J., Dorado, F., and Sánchez, P. (2015). Catalytic and kinetic analysis of the methane tri-reforming over a Ni–Mg/β-SiC catalyst. Int. J. Hydrogen Energy 40: 8677–8687, https://doi.org/10.1016/j.ijhydene.2015.05.032.Suche in Google Scholar

Ghouse, J.H. and Adams, T.A. (2013). A multi-scale dynamic two-dimensional heterogeneous model for catalytic steam methane reforming reactors. Int. J. Hydrogen Energy 38: 9984–9999, https://doi.org/10.1016/j.ijhydene.2013.05.170.Suche in Google Scholar

Ginsburg, J.M., Piña, J., El Solh, T., and De Lasa, H.I. (2005). Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models. Ind. Eng. Chem. Res. 44: 4846–4854, https://doi.org/10.1021/ie0496333.Suche in Google Scholar

Gopal Manoharan, K. and Buwa, V.V. (2019). Structure-resolved CFD simulations of different catalytic structures in a packed bed. Ind. Eng. Chem. Res. 58: 22363–22375, https://doi.org/10.1021/acs.iecr.9b03537.Suche in Google Scholar

Grevskott, S., Rusten, T., Hillestad, M., Edwin, E., and Olsvik, O. (2001). Modelling and simulation of a steam reforming tube with furnace. Chem. Eng. Sci. 56: 597–603, https://doi.org/10.1016/s0009-2509(00)00265-7.Suche in Google Scholar

De Groote, A.M. and Froment, G.F. (1996). Simulation of the catalytic partial oxidation of methane to synthesis gas. Appl. Catal. A Gen. 138: 245–264, https://doi.org/10.1016/0926-860x(95)00299-5.Suche in Google Scholar

De Groote, A.M. and Froment, G.F. (1997). The role of coke formation in catalytic partial oxidation for synthesis gas production. Catal. Today 37: 309–329, https://doi.org/10.1016/s0920-5861(97)00013-8.Suche in Google Scholar

Grossmann, I.E. and Westerberg, A.W. (2000). Research challenges in process systems engineering. AIChE J. 46: 1700–1703, https://doi.org/10.1002/aic.690460902.Suche in Google Scholar

Gür, T.M. (2016). Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas. Prog. Energy Combust. Sci. 54: 1–64, https://doi.org/10.1016/j.pecs.2015.10.004.Suche in Google Scholar

Hagen, J. (2015). Industrial catalysis, 3rd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH.10.1002/9783527684625Suche in Google Scholar

Hajimolana, S.A., Hussain, M.A., Daud, W.M.A.W., Soroush, M., and Shamiri, A. (2011). Mathematical modeling of solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 15: 1893–1917, https://doi.org/10.1016/j.rser.2010.12.011.Suche in Google Scholar

Halabi, M.H., de Croon, M.H.J.M., van der Schaaf, J., Cobden, P.D., and Schouten, J.C. (2008). Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem. Eng. J. 137: 568–578, https://doi.org/10.1016/j.cej.2007.05.019.Suche in Google Scholar

Halabi, M.H., de Croon, M.H.J.M., van der Schaaf, J., Cobden, P.D., and Schouten, J.C. (2010). Intrinsic kinetics of low temperature catalytic methane–steam reforming and water–gas shift over Rh/CeαZr1−αO2 catalyst. Appl. Catal. A Gen. 389: 80–91, https://doi.org/10.1016/j.apcata.2010.09.005.Suche in Google Scholar

Hansen, J., Storgaard, L., and Pedersen, P. (1992). Aspects of modern reforming technology and catalysts. Ammon. Plant Saf. 32: 52–62.Suche in Google Scholar

Hoang, D.L., and Chan, S.H. (2004). Modeling of a catalytic autothermal methane reformer for fuel cell applications. Appl. Catal. Gen. 268: 207–216, https://doi.org/10.1016/j.apcata.2004.03.056.Suche in Google Scholar

Hoang, D.L., Chan, S.H., and Ding, O.L. (2005). Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem. Eng. J. 112: 1–11, https://doi.org/10.1016/j.cej.2005.06.004.Suche in Google Scholar

Holladay, J.D. and Wang, Y. (2015). A review of recent advances in numerical simulations of microscale fuel processor for hydrogen production. J. Power Sources 282: 602–621, https://doi.org/10.1016/j.jpowsour.2015.01.079.Suche in Google Scholar

Hou, K. and Hughes, R. (2001). The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chem. Eng. J. 82: 311–328, https://doi.org/10.1016/s1385-8947(00)00367-3.Suche in Google Scholar

Hu, J., Galvita, V.V., Poelman, H., and Marin, G.B. (2018). Advanced chemical looping materials for CO2 utilization: a review. Materials 11, https://doi.org/10.3390/ma11071187.Suche in Google Scholar

Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A. (2016). Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review. Catal. Rev. Sci. Eng. 58: 1–35, https://doi.org/10.1080/01614940.2015.1099882.Suche in Google Scholar

Jafarbegloo, M., Tarlani, A., Mesbah, A.W., and Sahebdelfar, S. (2015). Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance. Int. J. Hydrogen Energy 40: 2445–2451, https://doi.org/10.1016/j.ijhydene.2014.12.103.Suche in Google Scholar

Jang, W.J., Jeong, D.W., Shim, J.O., Kim, H.M., Roh, H.S., Son, I.H., and Lee, S.J. (2016). Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application. Appl. Energy 173: 80–91, https://doi.org/10.1016/j.apenergy.2016.04.006.Suche in Google Scholar

Jarosch, K., El Solh, T., and De Lasa, H.I. (2002). Modelling the catalytic steam reforming of methane: discrimination between kinetic expressions using sequentially designed experiments. Chem. Eng. Sci. 57: 3439–3451, https://doi.org/10.1016/s0009-2509(02)00214-2.Suche in Google Scholar

Jokar, S.M., Parvasi, P., and Basile, A. (2018). The evaluation of methane mixed reforming reaction in an industrial membrane reformer for hydrogen production. Int. J. Hydrogen Energy 43: 15321–15329, https://doi.org/10.1016/j.ijhydene.2018.06.142.Suche in Google Scholar

Jun, H.J., Park, M.J., Baek, S.C., Bae, J.W., Ha, K.S., and Jun, K.W. (2011). Kinetics modeling for the mixed reforming of methane over Ni-CeO2/MgAl2O4catalyst. J. Nat. Gas Chem. 20: 9–17, https://doi.org/10.1016/s1003-9953(10)60148-x.Suche in Google Scholar

Jurtz, N., Kraume, M., and Wehinger, G.D. (2019). Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev. Chem. Eng. 35: 139–190, https://doi.org/10.1515/revce-2017-0059.Suche in Google Scholar

Kakaç, S., Pramuanjaroenkij, A., and Zhou, X.Y. (2007). A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrogen Energy 32: 761–786, https://doi.org/10.1016/j.ijhydene.2006.11.028.Suche in Google Scholar

Karthik, G.M. and Buwa, V.V. (2017). Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed. AIChE J. 63: 366–377, https://doi.org/10.1002/aic.15542.Suche in Google Scholar

Karthik, G.M. and Buwa, V.V. (2018). Particle-resolved simulations of methane steam reforming in multilayered packed beds. AIChE J. 64: 4162–4176.10.1002/aic.16386Suche in Google Scholar

Kathiraser, Y., Oemar, U., Saw, E.T., Li, Z., and Kawi, S. (2015). Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem. Eng. J. 278: 62–78, https://doi.org/10.1016/j.cej.2014.11.143.Suche in Google Scholar

Kawi, S., Kathiraser, Y., Ni, J., Oemar, U., Li, Z., and Saw, E.T. (2015). Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem 8: 3556–3575, https://doi.org/10.1002/cssc.201500390.Suche in Google Scholar PubMed

Kluczka, S., Eckstein, J., Alexopoulos, S., Vaeßen, C., and Roeb, M. (2014). Process simulation for solar steam and dry reforming. Energy Procedia 49: 850–859, https://doi.org/10.1016/j.egypro.2014.03.092.Suche in Google Scholar

Kolb, G. (2013). Review: microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem. Eng. Process. Process Intensif. 65: 1–44, https://doi.org/10.1016/j.cep.2012.10.015.Suche in Google Scholar

Kumar, A., Baldea, M., Edgar, T.F., and Ezekoye, O.A. (2015). Smart manufacturing approach for efficient operation of industrial steam-methane reformers. Ind. Eng. Chem. Res. 54: 4360–4370, https://doi.org/10.1021/ie504087z.Suche in Google Scholar

Kumar, A., Baldea, M., and Edgar, T.F. (2017a). A physics-based model for industrial steam-methane reformer optimization with non-uniform temperature field. Comput. Chem. Eng. 105: 224–236, https://doi.org/10.1016/j.compchemeng.2017.01.002.Suche in Google Scholar

Kumar, A., Edgar, T.F., and Baldea, M. (2017b). Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field. Comput. Chem. Eng. 107: 271–283, https://doi.org/10.1016/j.compchemeng.2017.02.040.Suche in Google Scholar

Kumar, S., Kumar, B., Kumar, S., and Jilani, S. (2017c). Comparative modeling study of catalytic membrane reactor configurations for syngas production by CO2 reforming of methane. J. CO2 Util. 20: 336–346, https://doi.org/10.1016/j.jcou.2017.06.004.Suche in Google Scholar

Kuncharam, B.V.R. and Dixon, A.G. (2020). Multi-scale two-dimensional packed bed reactor model for industrial steam methane reforming. Fuel Process. Technol. 200: 106314, https://doi.org/10.1016/j.fuproc.2019.106314.Suche in Google Scholar

Kyriakides, A.S., Rodríguez-García, L., Voutetakis, S., Ipsakis, D., Seferlis, P., and Papadopoulou, S. (2014). Enhancement of pure hydrogen production through the use of a membrane reactor. Int. J. Hydrogen Energy 39: 4749–4760, https://doi.org/10.1016/j.ijhydene.2014.01.093.Suche in Google Scholar

Kyriakides, A.S., Voutetakis, S., Papadopoulou, S., and Seferlis, P. (2016). Optimization of an experimental membrane reactor for low-temperature methane steam reforming. Clean Technol. Environ. Policy 18: 2065–2075, https://doi.org/10.1007/s10098-016-1167-2.Suche in Google Scholar

Latham, D.A., McAuley, K.B., Peppley, B.A., and Raybold, T.M. (2011). Mathematical modeling of an industrial steam-methane reformer for on-line deployment. Fuel Process. Technol. 92: 1574–1586, https://doi.org/10.1016/j.fuproc.2011.04.001.Suche in Google Scholar

Lavoie, J.M. (2014). Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front. Chem. 2: 1–17, https://doi.org/10.3389/fchem.2014.00081.Suche in Google Scholar PubMed PubMed Central

Lee, B., Lee, S., and Lim, H. (2016). Numerical modeling studies for a methane dry reforming in a membrane reactor. J. Nat. Gas Sci. Eng. 34: 1251–1261, https://doi.org/10.1016/j.jngse.2016.08.019.Suche in Google Scholar

Lee, B. and Lim, H. (2017). Parametric studies for CO2 reforming of methane in a membrane reactor as a new CO2 utilization process. Kor. J. Chem. Eng. 34: 199–205, https://doi.org/10.1007/s11814-016-0227-y.Suche in Google Scholar

Lee, S. and Lim, H. (2020). The effect of changing the number of membranes in methane carbon dioxide reforming: a CFD study. J. Ind. Eng. Chem. 87: 110–119, https://doi.org/10.1016/j.jiec.2020.03.020.Suche in Google Scholar

Li, D., Xu, R., Gu, Z., Zhu, X., Qing, S., and Li, K. (2020a). Chemical-looping conversion of methane: a review. Energy Technol. 8: 1–28, https://doi.org/10.1002/ente.201900925.Suche in Google Scholar

Li, D., Xu, R., Li, X., Li, Z., Zhu, X., and Li, K. (2020b). Chemical looping conversion of gaseous and liquid fuels for chemical production: a review. Energy Fuels 34: 5381–5413, https://doi.org/10.1021/acs.energyfuels.0c01006.Suche in Google Scholar

Li, Y., Wang, Y., Zhang, X., and Mi, Z. (2008). Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int. J. Hydrogen Energy 33: 2507–2514, https://doi.org/10.1016/j.ijhydene.2008.02.051.Suche in Google Scholar

Lu, N. and Xie, D. (2016). Novel membrane reactor concepts for hydrogen production from hydrocarbons: a review. Int. J. Chem. React. Eng. 14: 1–31, https://doi.org/10.1515/ijcre-2015-0050.Suche in Google Scholar

Luo, M., Yi, Y., Wang, S., Wang, Z., Du, M., Pan, J., and Wang, Q. (2018). Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev. 81: 3186–3214, https://doi.org/10.1016/j.rser.2017.07.007.Suche in Google Scholar

Ma, L., Trimm, D.L., and Jiang, C. (1996). The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons. Appl. Catal. A Gen. 138: 275–283, https://doi.org/10.1016/0926-860x(95)00301-0.Suche in Google Scholar

Ma, R., Xu, B., and Zhang, X. (2019). Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—a review. Catal. Today 338: 18–30, https://doi.org/10.1016/j.cattod.2019.06.025.Suche in Google Scholar

Maciel, L., de Souza, A., Cavalcanti-Filho, V., Knoechelmann, A., and de Abreu, C. (2010). Kinetic evaluation of the tri-reforming process of methane for syngas production. React. Kinet. Mech. Catal. 101: 407–416, https://doi.org/10.1007/s11144-010-0232-9.Suche in Google Scholar

Maestri, M. and Cuoci, A. (2013). Coupling CFD with detailed microkinetic modeling in heterogeneous catalysis. Chem. Eng. Sci. 96: 106–117, https://doi.org/10.1016/j.ces.2013.03.048.Suche in Google Scholar

Maestri, M., Vlachos, D.G., Beretta, A., Groppi, G., and Tronconi, E. (2008). Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models. J. Catal. 259: 211–222, https://doi.org/10.1016/j.jcat.2008.08.008.Suche in Google Scholar

Maffei, T., Gentile, G., Rebughini, S., Bracconi, M., Manelli, F., Lipp, S., Cuoci, A., and Maestri, M. (2016). A multiregion operator-splitting CFD approach for coupling microkinetic modeling with internal porous transport in heterogeneous catalytic reactors. Chem. Eng. J. 283: 1392–1404, https://doi.org/10.1016/j.cej.2015.08.080.Suche in Google Scholar

Martinez, O.M., Pereira Duarte, S.I., and Lemcoff, N.O. (1985). Modeling of fixed bed catalytic reactors. Comput. Chem. Eng. 9: 535–545, https://doi.org/10.1016/0098-1354(85)80028-4.Suche in Google Scholar

Mattisson, T., Keller, M., Linderholm, C., Moldenhauer, P., Rydén, M., Leion, H., and Lyngfelt, A. (2018). Chemical-looping technologies using circulating fluidized bed systems: status of development. Fuel Process. Technol. 172: 1–12, https://doi.org/10.1016/j.fuproc.2017.11.016.Suche in Google Scholar

Maxted, E.B. (1951). The poisoning of metallic catalysts. In: Frankenburg, W.G., Komarewsky, V.I., Rideal, E.K., Emmett, P.H., and Taylor, H.S. (Eds.), Advances in catalysis, Vol. 3. Academic Press, New York, pp. 129–178.10.1016/S0360-0564(08)60106-6Suche in Google Scholar

McGuire, N.E., Sullivan, N.P., Deutschmann, O., Zhu, H., and Kee, R.J. (2011). Dry reforming of methane in a stagnation-flow reactor using Rh supported on strontium-substituted hexaaluminate. Appl. Catal. A Gen. 394: 257–265, https://doi.org/10.1016/j.apcata.2011.01.009.Suche in Google Scholar

Mendiara, T., García-Labiano, F., Abad, A., Gayán, P., de Diego, L.F., Izquierdo, M.T., and Adánez, J. (2018). Negative CO2 emissions through the use of biofuels in chemical looping technology: a review. Appl. Energy 232: 657–684, https://doi.org/10.1016/j.apenergy.2018.09.201.Suche in Google Scholar

Miao, C., Pasel, C., Luckas, M., and Herbell, J.-D. (2009). Thermodynamics on landfill gas reforming. Chem. Eng. Technol. 32: 1617–1624, https://doi.org/10.1002/ceat.200800582.Suche in Google Scholar

Mohamedali, M., Henni, A., and Ibrahim, H. (2018). Recent advances in supported metal catalysts for syngas production from methane. ChemEngineering 2: 9, https://doi.org/10.3390/chemengineering2010009.Suche in Google Scholar

Mohammadzadeh, J.S.S. and Zamaniyan, A. (2002). Catalyst shape as a design parameter – optimum shape for methane-steam reforming catalyst. Chem. Eng. Res. Des. 80: 383–390, https://doi.org/10.1205/026387602317446425.Suche in Google Scholar

Mokheimer, E.M.A., Ibrar Hussain, M., Ahmed, S., Habib, M.A., and Al-Qutub, A.A. (2015). On the modeling of steam methane reforming. J. Energy Resour. Technol. 137: 012001, https://doi.org/10.1115/1.4027962.Suche in Google Scholar

Monzón, A., Romeo, E., and Borgna, A. (2003). Relationship between the kinetic parameters of different catalyst deactivation models. Chem. Eng. J. 94: 19–28, https://doi.org/10.1016/s1385-8947(03)00002-0.Suche in Google Scholar

Moradi, G.R., Rahmanzadeh, M., and Sharifnia, S. (2010). Kinetic investigation of CO2 reforming of CH4 over La-Ni based perovskite. Chem. Eng. J. 162: 787–791, https://doi.org/10.1016/j.cej.2010.06.006.Suche in Google Scholar

Mota, N., Alvarez-Galvan, C., Navarro, R.M., and Fierro, J.L.G. (2011). Biogas as a source of renewable syngas production: advances and challenges. Biofuels 2: 325–343, https://doi.org/10.4155/bfs.11.15.Suche in Google Scholar

Moulijn, J.A., Van Diepen, A.E., and Kapteijn, F. (2001). Catalyst deactivation: is it predictable? What to do? Appl. Catal. A Gen. 212: 3–16, https://doi.org/10.1016/s0926-860x(00)00842-5.Suche in Google Scholar

Murray, A.P. and Snyder, T.S. (1985). Steam-methane reformer kinetic computer model with heat transfer and geometry options. Ind. Eng. Chem. Process Des. Dev. 24: 286–294, https://doi.org/10.1021/i200029a012.Suche in Google Scholar

Murty, C.V.S. and Murthy, M.V.K. (1988). Modeling and simulation of a top-fired reformer. Ind. Eng. Chem. Res. 27: 1832–1840, https://doi.org/10.1021/ie00082a016.Suche in Google Scholar

Nematollahi, B., Rezaei, M., Lay, E.N., and Khajenoori, M. (2012). Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: in view of solid carbon formation. J. Nat. Gas Chem. 21: 694–702, https://doi.org/10.1016/s1003-9953(11)60421-0.Suche in Google Scholar

Nguyen, H.M., Sunarso, J., Li, C., Pham, G.H., Phan, C., and Liu, S. (2020). Microwave-assisted catalytic methane reforming: a review. Appl. Catal. A Gen. 599: 117620, https://doi.org/10.1016/j.apcata.2020.117620.Suche in Google Scholar

Nikoo, M.K. and Amin, N.A.S. (2011). Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 92: 678–691, https://doi.org/10.1016/j.fuproc.2010.11.027.Suche in Google Scholar

Numaguchi, T. and Kikuchi, K. (1988). Intrinsic kinetics and design simulation in a complex reaction network: steam-methane reforming. Chem. Eng. Sci. 43: 2295–2301, https://doi.org/10.1016/0009-2509(88)87118-5.Suche in Google Scholar

Oliveira, E.L.G., Grande, C.A., and Rodrigues, A.E. (2010). Methane steam reforming in large pore catalyst. Chem. Eng. Sci. 65: 1539–1550, https://doi.org/10.1016/j.ces.2009.10.018.Suche in Google Scholar

Olsbye, U., Wurzel, T., and Mleczko, L. (1997). Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 Catalyst. Ind. Eng. Chem. Res. 36: 5180–5188, https://doi.org/10.1021/ie970246l.Suche in Google Scholar

Özkara-Aydnolu, Ş. (2010). Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. Int. J. Hydrogen Energy 35: 12821–12828.10.1016/j.ijhydene.2010.08.134Suche in Google Scholar

Pakhare, D. and Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43: 7813–7837, https://doi.org/10.1039/c3cs60395d.Suche in Google Scholar

Pantoleontos, G., Kikkinides, E.S., and Georgiadis, M.C. (2012). A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. Int. J. Hydrogen Energy 37: 16346–16358, https://doi.org/10.1016/j.ijhydene.2012.02.125.Suche in Google Scholar

Pantoleontos, G., Skevis, G., Karagiannakis, G., and Konstandopoulos, A.G. (2016). A Heterogeneous multiscale dynamic model for simulation of catalytic reforming reactors. Int. J. Chem. Kinet. 48: 239–252, https://doi.org/10.1002/kin.20985.Suche in Google Scholar

Park, N., Park, M.-J., Baek, S.-C., Ha, K.-S., Lee, Y.-J., Kwak, G., Park, H.-G., and Jun, K.-W. (2014). Modeling and optimization of the mixed reforming of methane: maximizing CO2 utilization for non-equilibrated reaction. Fuel 115: 357–365, https://doi.org/10.1016/j.fuel.2013.07.035.Suche in Google Scholar

Pashchenko, D. (2018). Effect of the geometric dimensionality of computational domain on the results of CFD-modeling of steam methane reforming. Int. J. Hydrogen Energy 43: 8662–8673, https://doi.org/10.1016/j.ijhydene.2018.03.183.Suche in Google Scholar

Pedernera, M.N., Piña, J., Borio, D.O., and Bucalá, V. (2003). Use of a heterogeneous two-dimensional model to improve the primary steam reformer performance. Chem. Eng. J. 94: 29–40, https://doi.org/10.1016/s1385-8947(03)00004-4.Suche in Google Scholar

Pedernera, M.N., Piña, J., and Borio, D.O. (2007). Kinetic evaluation of carbon formation in a membrane reactor for methane reforming. Chem. Eng. J. 134: 138–144, https://doi.org/10.1016/j.cej.2007.03.051.Suche in Google Scholar

Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Bunyakiat, K. (2002). Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis. Appl. Catal. A Gen. 234: 221–233, https://doi.org/10.1016/s0926-860x(02)00230-2.Suche in Google Scholar

Piña, J., Bucalá, V., and Borio, D.O. (2003). Influence of the sulfur poisoning on the performance of a primary steam reformer. Int. J. Chem. React. Eng. 1, Article A11, https://doi.org/10.2202/1542-6580.1015.Suche in Google Scholar

Ping, H. and Wu, S. (2019). The coupling performance during reactive sorption enhanced reforming (ReSER) process: simulation and experimental studies. Int. J. Hydrogen Energy 44: 26943–26954, https://doi.org/10.1016/j.ijhydene.2019.08.152.Suche in Google Scholar

Pino, L., Italiano, C., Laganà, M., Vita, A., and Recupero, V. (2020). Kinetic study of the methane dry (CO2) reforming reaction over the Ce0.70La0.20Ni0.10O2−δ catalyst. Catal. Sci. Technol. 10: 2652–2662, https://doi.org/10.1039/c9cy02192b.Suche in Google Scholar

Plehiers, P.M. and Froment, G.F. (1989). Coupled simulation of heat transfer and reaction in a steam reforming furnace. Chem. Eng. Technol. 12: 20–26, https://doi.org/10.1002/ceat.270120105.Suche in Google Scholar

Quirino, P.P.S., Amaral, A., Pontes, K.V., Rossi, F., and Manenti, F. (2020). Modeling and simulation of an industrial top-fired methane steam reforming unit. Ind. Eng. Chem. Res. 59: 11250–11264, https://doi.org/10.1021/acs.iecr.0c00456.Suche in Google Scholar

Rahimpour, M.R., Jafari, M., and Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: a review. Appl. Energy 109: 79–93, https://doi.org/10.1016/j.apenergy.2013.03.080.Suche in Google Scholar

Richardson, J.T. and Paripatyadar, S.A. (1990). Carbon dioxide reforming of methane with supported rhodium. Appl. Catal. 61: 293–309, https://doi.org/10.1016/s0166-9834(00)82152-1.Suche in Google Scholar

Rostrup-Nielsen, J.R. (1982). Sulfur poisoning. In: Figueiredo, J.L. (Ed.), Progress in catalyst deactivation. Dordrecht: Springer Netherlands, pp. 209–227.10.1007/978-94-009-7597-2_11Suche in Google Scholar

Rostrup-Nielsen, J.R. (1984). Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J. Catal. 85: 31–43, https://doi.org/10.1016/0021-9517(84)90107-6.Suche in Google Scholar

Rostrup-Nielsen, J.R. (1993). Production of synthesis gas. Catal. Today 18: 305–324, https://doi.org/10.1016/0920-5861(93)80059-a.Suche in Google Scholar

Rostrup-Nielsen, J.R. and Christiansen, L.J. (2011). Concepts in syngas manufacture. London: Imperial College Press, https://doi.org/10.1142/p717.Suche in Google Scholar

Rostrup-Nielsen, J.R. and Pedersen, K. (1979). Sulfur poisoning of Boudouard and methanation reactions on nickel catalysts. J. Catal. 59: 395–404, https://doi.org/10.1016/s0021-9517(79)80008-1.Suche in Google Scholar

Rout, K.R. and Jakobsen, H.A. (2015). A numerical study of fixed bed reactor modelling for steam methane reforming process. Can. J. Chem. Eng. 93: 1222–1238, https://doi.org/10.1002/cjce.22202.Suche in Google Scholar

de Smet, C.R.H., de Croon, M.H.J.M., Berger, R.J., Marin, G.B., and Schouten, J.C. (2001). Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chem. Eng. Sci. 56: 4849–4861, https://doi.org/10.1016/s0009-2509(01)00130-0.Suche in Google Scholar

de Souza, T.L., Rossi, C., Alonso, C.G., Guirardello, R., Cabral, V.F., Fernandes-Machado, N.R.C., Specchia, S., Zabaloy, M.S., and Cardozo-Filho, L. (2014). Thermodynamic analysis of autothermal reforming of methane via entropy maximization: hydrogen production. Int. J. Hydrogen Energy 39: 8257–8270, https://doi.org/10.1016/j.ijhydene.2014.03.078.Suche in Google Scholar

El Solh, T., Jarosch, K., and De Lasa, H. (2003). Catalytic dry reforming of methane in a CREC riser simulator kinetic modeling and model discrimination. Ind. Eng. Chem. Res. 42: 2507–2515, https://doi.org/10.1021/ie020749d.Suche in Google Scholar

Saadabadi, S.A., Thallam Thattai, A., Fan, L., Lindeboom, R.E.F., Spanjers, H., and Aravind, P.V. (2019). Solid oxide fuel cells fuelled with biogas: potential and constraints. Renew. Energy 134: 194–214, https://doi.org/10.1016/j.renene.2018.11.028.Suche in Google Scholar

Sadooghi, P. and Rauch, R. (2013a). Mathematical modeling of sulfur deactivation effects on steam reforming of producer gas produced by biomass gasification. Fuel Process. Technol. 110: 46–52, https://doi.org/10.1016/j.fuproc.2013.01.007.Suche in Google Scholar

Sadooghi, P. and Rauch, R. (2013b). Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. J. Nat. Gas Sci. Eng. 11: 46–51, https://doi.org/10.1016/j.jngse.2012.12.002.Suche in Google Scholar

Sadooghi, P. and Rauch, R. (2015). Experimental and modeling study of hydrogen production from catalytic steam reforming of methane mixture with hydrogen sulfide. Int. J. Hydrogen Energy 40: 10418–10426, https://doi.org/10.1016/j.ijhydene.2015.06.143.Suche in Google Scholar

Said, S.A.M., Waseeuddin, M., and Simakov, D.S.A. (2016). A review on solar reforming systems. Renew. Sustain. Energy Rev. 59: 149–159, https://doi.org/10.1016/j.rser.2015.12.072.Suche in Google Scholar

Saidi, M. (2018). Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach. Int. J. Hydrogen Energy 43: 14834–14847, https://doi.org/10.1016/j.ijhydene.2018.05.156.Suche in Google Scholar

Sanusi, Y.S. and Mokheimer, E.M.A. (2019). Performance analysis of a membrane-based reformer-combustor reactor for hydrogen generation. Int. J. Energy Res. 43: 189–203, https://doi.org/10.1002/er.4250.Suche in Google Scholar

Schwaab, M., Alberton, A.L., Fontes, C.E., Bittencourt, R.C., and Pinto, J.C. (2009). Hybrid modeling of methane reformers. 2. Modeling of the industrial reactors. Ind. Eng. Chem. Res. 48: 9376–9382, https://doi.org/10.1021/ie801831m.Suche in Google Scholar

Shah, Y.T. and Gardner, T.H. (2014). Dry reforming of hydrocarbon feedstocks. Catal. Rev. Sci. Eng. 56: 476–536, https://doi.org/10.1080/01614940.2014.946848.Suche in Google Scholar

Shahkarami, P. and Fatemi, S. (2015). Mathematical modeling and optimization of combined steam and dry reforming of methane process in catalytic fluidized bed membrane reactor. Chem. Eng. Commun. 202: 774–786, https://doi.org/10.1080/00986445.2013.867257.Suche in Google Scholar

Shayegan, J., Motamed Hashemi, M.M.Y., and Vakhshouri, K. (2008). Operation of an industrial steam reformer under severe condition: a simulation study. Can. J. Chem. Eng. 86: 747–755, https://doi.org/10.1002/cjce.20082.Suche in Google Scholar

Sheu, E.J., Mokheimer, E.M.A., and Ghoniem, A.F. (2015). A review of solar methane reforming systems. Int. J. Hydrogen Energy 40: 12929–12955, https://doi.org/10.1016/j.ijhydene.2015.08.005.Suche in Google Scholar

Shrestha, S., Ali, B.S., and Binti Hamid, M.D. (2016). Cold flow model of dual fluidized bed: a review. Renew. Sustain. Energy Rev. 53: 1529–1548, https://doi.org/10.1016/j.rser.2015.09.034.Suche in Google Scholar

Silva, J.D. and de Abreu, C.A.M. (2016). Modelling and simulation in conventional fixed-bed and fixed-bed membrane reactors for the steam reforming of methane. Int. J. Hydrogen Energy 41: 11660–11674, https://doi.org/10.1016/j.ijhydene.2016.01.083.Suche in Google Scholar

Singh, C.P.P. and Saraf, D.N. (1979). Simulation of side fired steam-hydrocarbon reformers. Ind. Eng. Chem. Process Des. Dev. 18: 1–7, https://doi.org/10.1021/i260069a001.Suche in Google Scholar

Singh, R., Dhir, A., Mohapatra, S.K., and Mahla, S.K. (2020). Dry reforming of methane using various catalysts in the process: review. Biomass Convers. Biorefinery 10: 567–587, https://doi.org/10.1007/s13399-019-00417-1.Suche in Google Scholar

Smith, J.M., Van Ness, H.C., Abbott, M.M., and Swihart, M.T. (2018). Introduction to chemical engineering thermodynamics, 8th ed. Boston: McGraw-Hill.Suche in Google Scholar

Snoeck, J.-W., Froment, G.F., and Fowles, M. (1997a). Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 169: 240–249, https://doi.org/10.1006/jcat.1997.1634.Suche in Google Scholar

Snoeck, J.-W., Froment, G.F., and Fowles, M. (1997b). Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst. J. Catal. 169: 250–262, https://doi.org/10.1006/jcat.1997.1635.Suche in Google Scholar

Snoeck, J.-W., Froment, G.F., and Fowles, M. (2002). Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: kinetic study. Ind. Eng. Chem. Res. 41: 4252–4265, https://doi.org/10.1021/ie010666h.Suche in Google Scholar

Soliman, M.A., El-Nashaie, S.S.E.H., Al-Ubaid, A.S., and Adris, A. (1988). Simulation of steam reformers for methane. Chem. Eng. Sci. 43: 1801–1806, https://doi.org/10.1016/b978-0-08-036969-3.50012-9.Suche in Google Scholar

Soliman, M.A., Adris, A.M., Al-Ubaid, A.S., and El-Nashaie, S.S.E.H. (1992). Intrinsic kinetics of nickel/calcium aluminate catalyst for methane steam reforming. J. Chem. Technol. Biotechnol. 55: 131–138.10.1002/jctb.280550206Suche in Google Scholar

Stegehake, C., Riese, J., and Grünewald, M. (2019). Modeling and validating fixed-bed reactors: a state-of-the-art review. ChemBioEng Rev. 6: 28–44, https://doi.org/10.1002/cben.201900002.Suche in Google Scholar

Sunny, A., Solomon, P.A., and Aparna, K. (2016). Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. J. Nat. Gas Sci. Eng. 30: 176–181, https://doi.org/10.1016/j.jngse.2016.02.013.Suche in Google Scholar

Tavazzi, I., Beretta, A., Groppi, G., and Forzatti, P. (2006). Development of a molecular kinetic scheme for methane partial oxidation over a Rh/α-Al2O3 catalyst. J. Catal. 241: 1–13, https://doi.org/10.1016/j.jcat.2006.03.018.Suche in Google Scholar

Thomas, J.M. and Thomas, W.J. (2015). Principles and practice of heterogeneous catalysis, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH.Suche in Google Scholar

Tran, A., Aguirre, A., Crose, M., Durand, H., and Christofides, P.D. (2017a). Temperature balancing in steam methane reforming furnace via an integrated CFD/data-based optimization approach. Comput. Chem. Eng. 104: 185–200, https://doi.org/10.1016/j.compchemeng.2017.04.013.Suche in Google Scholar

Tran, A., Aguirre, A., Durand, H., Crose, M., and Christofides, P.D. (2017b). CFD modeling of a industrial-scale steam methane reforming furnace. Chem. Eng. Sci. 171: 576–598, https://doi.org/10.1016/j.ces.2017.06.001.Suche in Google Scholar

Tran, A., Pont, M., Aguirre, A., Durand, H., Crose, M., and Christofides, P.D. (2018a). Bayesian model averaging for estimating the spatial temperature distribution in a steam methane reforming furnace. Chem. Eng. Res. Des. 131: 465–487, https://doi.org/10.1016/j.cherd.2017.09.027.Suche in Google Scholar

Tran, A., Pont, M., Crose, M., and Christofides, P.D. (2018b). Real-time furnace balancing of steam methane reforming furnaces. Chem. Eng. Res. Des. 134: 238–256, https://doi.org/10.1016/j.cherd.2018.03.032.Suche in Google Scholar

Trimm, D.L. and Lam, C.W. (1980). The combustion of methane on platinum-alumina fibre catalysts-I. Kinetics and mechanism. Chem. Eng. Sci. 35: 1405–1413, https://doi.org/10.1016/0009-2509(80)85134-7.Suche in Google Scholar

Tsipouriari, V.A. and Verykios, X.E. (2001). Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal. Today 64: 83–90, https://doi.org/10.1016/s0920-5861(00)00511-3.Suche in Google Scholar

Uglietti, R., Bracconi, M., and Maestri, M. (2018). Coupling CFD-DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems. React. Chem. Eng. 3: 527–539, https://doi.org/10.1039/c8re00050f.Suche in Google Scholar PubMed PubMed Central

Usman, M., Wan Daud, W.M.A., and Abbas, H.F. (2015). Dry reforming of methane: influence of process parameters – a review. Renew. Sustain. Energy Rev. 45: 710–744, https://doi.org/10.1016/j.rser.2015.02.026.Suche in Google Scholar

Venvik, H.J. and Yang, J. (2017). Catalysis in microstructured reactors: short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catal. Today 285: 135–146, https://doi.org/10.1016/j.cattod.2017.02.014.Suche in Google Scholar

De Wilde, J. and Froment, G.F. (2012). Computational fluid dynamics in chemical reactor analysis and design: application to the ZoneFlowTM reactor for methane steam reforming. Fuel 100: 48–56, https://doi.org/10.1016/j.fuel.2011.08.068.Suche in Google Scholar

Wang, H., Duan, X., Liu, X., Ye, G., Gu, X., Zhu, K., Zhou, X., and Yuan, W. (2018). Influence of tubular reactor structure and operating conditions on dry reforming of methane. Chem. Eng. Res. Des. 139: 39–51, https://doi.org/10.1016/j.cherd.2018.09.019.Suche in Google Scholar

Wehinger, G.D., Eppinger, T., and Kraume, M. (2015a). Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane. Chem. Eng. Sci. 122: 197–209, https://doi.org/10.1016/j.ces.2014.09.007.Suche in Google Scholar

Wehinger, G.D., Eppinger, T., and Kraume, M. (2015b). Evaluating catalytic fixed-bed reactors for dry reforming of methane with detailed CFD. Chem. Ing. Tech. 87: 734–745, https://doi.org/10.1002/cite.201400153.Suche in Google Scholar

Wehinger, G.D., Kraume, M., Berg, V., Korup, O., Mette, K., Schlögl, R., Behrens, M., and Horn, R. (2016). Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J. 62: 4436–4452, https://doi.org/10.1002/aic.15520.Suche in Google Scholar

Wei, J. and Iglesia, E. (2004a). Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal. 224: 370–383, https://doi.org/10.1016/j.jcat.2004.02.032.Suche in Google Scholar

Wei, J. and Iglesia, E. (2004b). Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 225: 116–127, https://doi.org/10.1016/j.jcat.2003.09.030.Suche in Google Scholar

Wesenberg, M.H. and Svendsen, H.F. (2007). Mass and heat transfer limitations in a heterogeneous model of a gas-heated steam reformer. Ind. Eng. Chem. Res. 46: 667–676, https://doi.org/10.1021/ie060324h.Suche in Google Scholar

Wolf, M., Schüler, C., and Hinrichsen, O. (2019). Sulfur poisoning of co-precipitated Ni–Al catalysts for the methanation of CO2. J. CO2 Util. 32: 80–91, https://doi.org/10.1016/j.jcou.2019.03.003.Suche in Google Scholar

Wu, Y.J., Li, P., Yu, J.G., Cunha, A.F., and Rodrigues, A.E. (2016). Progress on sorption-enhanced reaction process for hydrogen production. Rev. Chem. Eng. 32: 271–303.10.1515/revce-2015-0043Suche in Google Scholar

Xu, J.G. and Froment, G.F. (1989a). Methane steam reforming, methanation and water-gas shift. 1. Intrinsic kinetics. AIChE J. 35: 88–96, https://doi.org/10.1002/aic.690350109.Suche in Google Scholar

Xu, J.G. and Froment, G.F. (1989b). Methane steam reforming: II. Diffusional limitations and reactor simulation. AIChE J. 35: 97–103, https://doi.org/10.1002/aic.690350110.Suche in Google Scholar

Yancheshmeh, M.S., Radfarnia, H.R., and Iliuta, M.C. (2016). High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chem. Eng. J. 283: 420–444.10.1016/j.cej.2015.06.060Suche in Google Scholar

Yang, K.H. and Hougen, O.A. (1950). Determination of mechanism of catalyzed gaseous reactions. Chem. Eng. Prog. 46: 146–157.Suche in Google Scholar

Yeo, T.Y., Ashok, J., and Kawi, S. (2019). Recent developments in sulphur-resilient catalytic systems for syngas production. Renew. Sustain. Energy Rev. 100: 52–70, https://doi.org/10.1016/j.rser.2018.10.016.Suche in Google Scholar

York, A.P.E., Xiao, T.C., Green, M.L.H., and Claridge, J.B. (2007). Methane oxyforming for synthesis gas production. Catal. Rev. Sci. Eng. 49: 511–560, https://doi.org/10.1080/01614940701583315.Suche in Google Scholar

Yu, W., Ohmori, T., Yamamoto, T., Endo, A., Nakaiwa, M., Hayakawa, T., and Itoh, N. (2005). Simulation of a porous ceramic membrane reactor for hydrogen production. Int. J. Hydrogen Energy 30: 1071–1079, https://doi.org/10.1016/j.ijhydene.2004.09.013.Suche in Google Scholar

Yu, W., Ohmori, T., Kataoka, S., Yamamoto, T., Endo, A., Nakaiwa, M., and Itoh, N. (2008). A comparative simulation study of methane steam reforming in a porous ceramic membrane reactor using nitrogen and steam as sweep gases. Int. J. Hydrogen Energy 33: 685–692, https://doi.org/10.1016/j.ijhydene.2007.10.015.Suche in Google Scholar

Yücel, Ö. and Hastaoglu, M.A. (2016). Comprehensive study of steam reforming of methane in membrane reactors. J. Energy Resour. Technol. Trans. ASME 138: 1–8, https://doi.org/10.1115/1.4032733.Suche in Google Scholar

Zahedi Nezhad, M., Rowshanzamir, S., and Eikani, M.H. (2009). Autothermal reforming of methane to synthesis gas: modeling and simulation. Int. J. Hydrogen Energy 34: 1292–1300, https://doi.org/10.1016/j.ijhydene.2008.11.091.Suche in Google Scholar

Zamaniyan, A., Ebrahimi, H., and Mohammadzadeh, J.S.S. (2008a). A unified model for top fired methane steam reformers using three-dimensional zonal analysis. Chem. Eng. Process. Process Intensif. 47: 946–956, https://doi.org/10.1016/j.cep.2007.03.005.Suche in Google Scholar

Zamaniyan, A., Zoghi, A.T., and Ebrahimi, H. (2008b). Software development for design and simulation of terraced wall and top fired primary steam reformers. Comput. Chem. Eng. 32: 1433–1446, https://doi.org/10.1016/j.compchemeng.2007.06.011.Suche in Google Scholar

Zambrano, D., Soler, J., Herguido, J., and Menéndez, M. (2019). Kinetic study of dry reforming of methane over Ni–Ce/Al2O3 catalyst with deactivation. Top. Catal. 62: 456–466, https://doi.org/10.1007/s11244-019-01157-2.Suche in Google Scholar

Zhang, J., Wang, H., and Dalai, A.K. (2009). Kinetic studies of carbon dioxide reforming of methane over Ni−Co/Al−Mg−O bimetallic catalyst. Ind. Eng. Chem. Res. 48: 677–684, https://doi.org/10.1021/ie801078p.Suche in Google Scholar

Zhang, Z.L. and Verykios, X.E. (1994). Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today 21: 589–595, https://doi.org/10.1016/0920-5861(94)80183-5.Suche in Google Scholar

Zhao, X., Joseph, B., Kuhn, J., and Ozcan, S. (2020). Biogas reforming to syngas: a review. iScience 23: 101082, https://doi.org/10.1016/j.isci.2020.101082.Suche in Google Scholar

Ziółkowski, D. and Szustek, S. (1991). Mathematical simulation of the performance of a single tube of a commercial reactor for methane steam catalytic conversion: comparison of one- and two-dimensional pseudo-homogeneous models. Chem. Eng. Process. Process Intensif. 30: 3–10.10.1016/0255-2701(91)80002-7Suche in Google Scholar

Received: 2020-05-23
Accepted: 2021-03-06
Published Online: 2021-06-07
Published in Print: 2022-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revce-2020-0038/html
Button zum nach oben scrollen