Abstract
The industry of iron and steel production is considered as one of the global economic backbones, and has been worldwide ranked as one of the largest industrial sources of environmental contamination. The radiometric measurements by γ- and α-spectroscopy indicated that the steel waste samples contain natural radionuclides (226Ra and 228Ra) below the exemption safe limits set by the ICRP and IAEA. The estimated radiological hazard indices as external hazards (Iγ1, Iγ2 & Iγ3) and internal hazard (I α ) were below the maximum safe limit (i.e., <1). The estimated ecological risk indices of Cr, Fe, Mn and Ni in the steel waste as single indices (EF, CF and Er) and integrated indices (CD, PLI and RI) revealed that the accumulated steel waste in its physical state has low ecological risk to the surrounded environment (RI < 150). Moreover, the mobilization behavior of radionuclides and heavy metals in steel waste was investigated using two standard leaching methods (TCLP and EU) to simulate the natural wetting conditions such as rain or groundwater. It is found that natural γ-emitters (e.g., 228Ra, 226Ra, 214Pb, 214Bi and 210Pb) and α-emitters (e.g., 232Th, 238U, 226Ra, 210Po and 222Rn) are detected in the extraction solution@1 of TCLP test with low activity levels below the safe limits (<10 Bq/L). Also, the concentrations of Fe and Cr were 17.5 and 2.2-folds above the recommended safe limits in drinking water set by the WHO, respectively. Regarding to speciation diagrams, 226Ra in the steel waste samples can be mobilized out as soluble acetate species (CH3COO–226Ra–OH and/or 226Ra(CH3COO)2), while the highly toxic Cr6+ is leached out as soluble anionic species of chromates (HCrO4− and CrO42−) and/or dichromate (HCr2O7−) and Cr2O72−. Thus, these wastes can be managed to prevent or minimize their hazards; either long-term storage in designated landfills (i.e., engineered), or recycled in civil engineering applications as additives in the cement industry, and roadbed construction…etc.
Acknowledgments
Authors are thankful to the Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center for kind cooperation and help in providing necessary laboratory facilities to carry out this work.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Ahmed M. Shahr El-Din, Yasser T. Mohamed, and Elsayed M. El Afifi put the idea of research points and the conceptualization. Ahmed M. Shahr El-Din is conducting a research and investigation process, specifically performing the experiments. Ahmed M. Shahr El-Din, Yasser T. Mohamed, and Elsayed M. El Afifi writing, review, editing and visualization.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Competing interests: The authors declare no conflicts of interest.
-
Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
-
Data availability: Not applicable.
Highlights
The iron and steel industry is one of the sources of environmental contamination.
Nuclear and non-nuclear evaluation was performed for the TENORM waste samples.
The steel waste contains an enhanced concentration of highly toxic heavy metals.
Activity concentrations of the natural radionuclides are below the permitted safe limits.
Steel wastes can be utilized in civil engineering applications.
References
1. UNCTAD. United Nations Conference on Trade and Development. Investment Policy Review – the Sudan; United Nations Publications, UNCTAD/DIAE/PCB/2014/5: Geneva, 2015.Suche in Google Scholar
2. Khater, A. E. M.; Bakr, W. F. Technologically Enhanced 210Pb and 210Po in Iron and Steel Industry. J. Environ. Radioact. 2011, 102, 527–530. https://doi.org/10.1016/j.jenvrad.2011.02.002.Suche in Google Scholar PubMed
3. Clemens, B. Changing Environmental Strategies over Time: an Empirical Study of the Steel Industry in the United States. Environ. Manage. 2001, 62 (2), 221–231. https://doi.org/10.1006/jema.2001.0426.Suche in Google Scholar PubMed
4. IAEA. International Atomic Energy Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Technical Reports Series, ISSN 0074-1914; no. 419, ISBN 92-0-112503-3. STI/DOC/010/419; IAEA Publications: Vienna, 2003; pp 59–62.Suche in Google Scholar
5. DOEACC. Department of Energy and Climate Change, Welsh Government, DOE, Scottish Government: Strategy for the Management of NORM Waste in the United Kingdom, July 2014 (Strategy for the Management of NORM Waste in the United Kingdom; Scottish Government: Edinburgh, 2014. publishing.service.gov.uk.Suche in Google Scholar
6. Al-Kinani, A. T.; Hushari, M.; Alsadig, I. A.; Al-Sulaiti, H. Measurements of Recycling Steel Slug at Qatar Steel Using Low-level Gamma-ray Spectrometry and Calculation of Risk Factors. Donnish J. Res. Environ. Stud. 2015, 2 (4), 28–36. https://doi.org/10.5339/qfarc.2018.EEPP388.Suche in Google Scholar
7. Tsakiridis, P. E.; Papadimitriou, G. D.; Tsivilis, S.; Koroneos, C. Utilization of Steel Slag for Portland Cement Clinker Production. J. hazard. Mater. 2008, 152 (2), 805–811. https://doi.org/10.1016/j.jhazmat.2007.07.093.Suche in Google Scholar PubMed
8. Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An Overview of Utilization of Steel Slag. Procedia Environ. Sci. 2012, 16, 791–801. https://doi.org/10.1016/j.proenv.2012.10.108.Suche in Google Scholar
9. Moreira, D. T.; Batista, A. S. M.; Menezes, M. A. B. C. Characterization of Steel Slag by SEM-EDS, XRD, and INAA. Braz. J. Rad. Sci. 2021, 9 (1A), 1–12. https://doi.org/10.15392/bjrs.v9i1A.1491.Suche in Google Scholar
10. Sofilic, T.; Barisic, D.; Sofilic, U. Natural Radioactivity in Steel Slag Aggregate. Arch. Metall. Mate. 2011, 56 (3), 627–634; https://doi.org/10.2478/v10172-011-0068-y.Suche in Google Scholar
11. Rahman, M.; Barua, B.; Karim, M.; Kamal, M. Investigation of Heavy Metals and Radionuclide’s Impact on Environment due to the Waste Products of Different Iron Processing Industries in Chittagong, Bangladesh. J. Environ. Prot. 2017, 8, 974–989. https://doi.org/10.4236/jep.2017.89061.Suche in Google Scholar
12. Kessaratikoon, P.; Awaekechi, S. Natural Radioactivity Measurement in Soil Samples Collected from Municipal Area of Hat Yai District in Songkhla Province, Thailand. KMITL. Sci. Technol. J. 2008, 8, 52–58.Suche in Google Scholar
13. Chaurand, P.; Rose, J.; Briois, V.; Olivi, L.; Hazemann, J.-L.; Proux, O.; Domas, J.; Bottero, J.-Y. Environmental Impacts of Steel Slag Reused in Road Construction: a Crystallographic and Molecular (XANES) Approach. J. Hazard. Mater. 2007, B139, 537–542. https://doi.org/10.1016/j.jhazmat.2006.02.060.Suche in Google Scholar PubMed
14. Svyazhin, A. G.; Shakhpazov, E. K.; Romanovich, D. A. Recycling of Slags in Ferrous Metallurgy. Metallurgist 1998, 42, 129–132. https://doi.org/10.1007/BF02765164.Suche in Google Scholar
15. Fisher, L. V.; Barron, A. R. The Recycling and Reuse of Steelmaking Slags - a Review. Resour. Conserv. Recycl. 2019, 146, 244–255. https://doi.org/10.1016/j.resconrec.2019.03.010.Suche in Google Scholar
16. Malatova, I.; Flotanova, S.; Rulik, P. Contamination of Steel Produced in the Czech Republic by 60Co. In Proceedings of the Workshop on Radioactive Contaminated Metallurgical Scrap, Eds.; United Nations, European Committee, Prague, Czech Republic, 26–28 May 1999, pp 43–56.Suche in Google Scholar
17. IAEA. International Atomic Energy Agency, Naturally Occurring Radioactive Materials (NORM IV), IAEA-TECDOC-1472 (ISBN 92-0-110305-0, ISSN 1011-4289), Identification of Enhanced Concentrations of 210Pb and 210Po in Iron Ore Industry by Doring, J.; Gerler, J.; Beyermann, M.; Schkade, U.-K.; Freese, J. In Proceedings of an International Conference held in Szczyrk, Poland, 17–21 May 2004; pp. 213–216.Suche in Google Scholar
18. IAEA. International Atomic Energy Management of NORM Residues. IAEA-TECDOC-1712 (ISBN 978-90-0-142710-6, ISSN 1011-4289); IAEA Publications: Vienna, 2013; p 13.Suche in Google Scholar
19. Bakr, W. F.; El-Mongy, S. A.; El-Tahawy, M. S.; Saad, E. Study of the Radiological Impact of NORM in Steel Industry, Case Study: Egyptian Iron & Steel Company. Eg0500322. In Proceedings of the 7th Radiation Physics & Protection Conference, 27–30 November 2004, Ismailia, Egypt, pp 493–500. https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/115/36115574.pdf.Suche in Google Scholar
20. Mohamed, R. S.; Bakr, W.; Arafat, A.; El-Hemamy, S.; Aboaly, M. M. Evaluation of Environmental Impact of Iron and Steel Industry in Egypt; Radiological and Heavy Metals Contribution. J. Nucl. Technol. Appl. Sci. 2019, 7 (1), 79–100.10.21608/jntas.2019.54555Suche in Google Scholar
21. El Afifi, E. M.; Khalifa, S. M.; Aly, H. F. Assessment of the 226Ra Content and the 222Rn Emanation Fraction of TE-NORM Wastes at Certain Sites of Petroleum and Gas Production in Egypt. J. Radioanal. Nucl. Chem. 2004, 260, 221–224. https://doi.org/10.1023/B:JRNC.0000027086.05230.45.10.1023/B:JRNC.0000027086.05230.45Suche in Google Scholar
22. El Afifi, E. M. Radiochemical Studies Related to Environmental Radioactivities; Chemistry Department, Faculty of Science, Ain Shams University: Cairo, Egypt, 2001.Suche in Google Scholar
23. El Afifi, E. M.; Hilal, M. A.; Khalifa, S. M.; Aly, H. F. Evaluation of Uranium (U), Thorium (Th), Potassium (K-40) and Emanated Radon (Rn-222) in some NORM and TE-NORM Samples. Radiat. Meas. 2006, 41 (5), 627–633; https://doi.org/10.1016/j.radmeas.2005.09.014. https://doi.org/10.1016/j.radmeas.2005.09.014.Suche in Google Scholar
24. El Afifi, E. M.; Hilal, M. A.; Attallah, M. F. Performance Characteristics and Validation of Alpha Particle Spectrometers for Radiometric Analysis of Natural and Anthropogenic Radionuclides of Environmental Impacts. Appl. Radiat. Isotop. 2021, 168, 109548. https://doi.org/10.1016/j.apradiso.2020.109548.Suche in Google Scholar PubMed
25. El Afifi, E. M.; Awwad, N. S. Characterization of the TE-NORM Waste Associated with Oil and Natural Gas Production in Abu Rudeis, Egypt. J. Environ. Radioactiv. 2005, 82 (1), 7–19. https://doi.org/10.1016/j.jenvrad.2004.11.001.Suche in Google Scholar PubMed
26. Strachnov, V.; Valkovic, V.; Zeisler, R.; Dekner, R. Report on the Intercomparison Run IAEA-314: 226Ra, Th and U in Stream Sediment; International Atomic Energy Agency (IAEA): Vienna, Austria, 1991a.Suche in Google Scholar
27. Strachnov, V.; Valkovic, V.; Zeisler, R.; Dekner, R. Report on the Intercomparison Run IAEA-312: 226Ra, Th and U in Soil; International Atomic Energy Agency (IAEA): Vienna, Austria, 1991b.Suche in Google Scholar
28. Currie, L. A. Limits for Qualitative Detection and Quantitative Determination Application to Radiochemistry. Anal. Chemi. 1968, 40 (3), 586–593. https://doi.org/10.1021/ac60259a007.Suche in Google Scholar
29. Borai, E. H.; El Afifi, E. M.; Shahr El-Din, A. M. Selective Elimination of Natural Radionuclides During the Processing of High Grade Monazite Concentrates by Caustic Conversion Method. Korean J. Chem. Eng. 2017, 34 (4), 1091–1099; https://doi.org/10.1007/s11814-016-0350-9.Suche in Google Scholar
30. Calin, M. R.; Saizu, M. A.; Radulescu, I.; Druker, A. E. Experimental Characterization of a multi-chamber Alpha Spectrometry System Using Standard Actinide Sources. Nucl. Instrum. Methods Phys. Res. 2013, 705, 13–16. https://doi.org/10.1016/j.nima.2012.12.070.Suche in Google Scholar
31. USEPA. The Toxicity Characteristics Leaching Procedure (TCLP 1311), 40th ed.; US EPA. US Code of Federal Regulations: Washington, DC, Part 261, Appendix II, 1992.Suche in Google Scholar
32. CEN. Characterization of waste–Leaching–Compliance Test for Leaching of Granular Waste Material and Sludge. Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg with Article Size Below 4 Mm (without or with size reduction); Comite Europeen de Normalisation: Brusells, 2002. EN 12457–2.Suche in Google Scholar
33. Shahr El-Din, A. M.; El Afifi, E. M.; Hilal, M. A. Utilization of Organic Substrates for Remediation of TENORM Waste Generated from Strategic Industries. Chem. Afr. 2024, 7, 3703–3715. https://doi.org/10.1007/s42250-024-00994-3.Suche in Google Scholar
34. El Afifi, E. M.; Shahr El-Din, A. M.; Aglan, R. F.; Borai, E. H.; Abo-Aly, M. M. Baseline Evaluation for Natural Radioactivity Level and Radiological Hazardous Parameters Associated with Processing of High Grade Monazite. Regul. Toxicol. Pharmacol. 2017, 89, 215–223; https://doi.org/10.1016/j.yrtph.2017.07.029.Suche in Google Scholar PubMed
35. Tiwari, M.; Sahu, S. K.; Bhangare, R. C.; Ajmal, P. Y.; Pandit, G. G. Elemental Characterization of Coal, Fly Ash, and Bottom Ash Using an Energy Dispersive X-ray Fluorescence Technique. Appl. Radiat. Isot. 2014, 90, 53–57; https://doi.org/10.1016/j.apradiso.2014.03.002.Suche in Google Scholar PubMed
36. Tamim, U.; Khan, R.; Jolly, Y. N.; Fatema, K.; Das, S.; Naher, K.; Islam, M. A.; Islam, S. M. A.; Hossain, S. M. Elemental Distribution of Metals in Urban River Sediments near an Industrial Effluent Source. Chemosphere 2016, 155, 509–518; https://doi.org/10.1016/j.chemosphere.2016.04.099.Suche in Google Scholar PubMed
37. Turhan, Ş. Evaluation of Agricultural Soil Radiotoxic Element Pollution Around a lignite-burning Thermal Power Plant. Radiochim. Acta 2020, 108, 77–85; https://doi.org/10.1515/ract-2018-3051.Suche in Google Scholar
38. Saleh, A.; Dawood, Y. H.; Gad, A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land 2022, 11 (3), 319. https://doi.org/10.3390/land11030319.Suche in Google Scholar
39. Tabatabai, M. A. Chemistry of Sulfur in Soils, Book Chapter 3. In Chemical Processes in Soils, Soil Science Society of America (SSSA) Book Series No. 8, 677 S. Segoe Road, Madison, WI 53711, USA, 2005; p 193.Suche in Google Scholar
40. Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geo. J. 1968, 2, 108–118.Suche in Google Scholar
41. Förstner, U. Contaminated Sediments; Lecture Notes in Earth Science, Vol. 21; Springer: Berlin, Germany, 1990.Suche in Google Scholar
42. Navarro, C.; Díaz, M.; Villa-García, M. A. Physico-Chemical Characterization of Steel Slag. Study of its Behavior Under Simulated Environmental Conditions. Environ. Sci. Technol. 2010, 44 (14), 5383–5388. https://doi.org/10.1021/es100690b.Suche in Google Scholar PubMed
43. Namduri, H.; Nasrazadani, S. Quantative Analysis of Iron Oxides Using Fourier Transform Infrared Spectrophotometry. Corros. Sci. 2008, 50 (9), 2493–2497. https://doi.org/10.1016/j.corsci.2008.06.034.Suche in Google Scholar
44. USEPA. United States Environmental Protection Agency, Code of Federal Regulations. Title 40, Vol. 7, Parts 61.202 and 61.204 (40CFR61.202 and 40CFR61.204), 1998.Suche in Google Scholar
45. ICRP Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37 (2–4).Suche in Google Scholar
46. IAEA. International Atomic Energy Agency. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards: Vienna, 2014. European Commission, Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Eur. European Commission Publication, OJ L13, 17.1.2014; pp. 1–73.Suche in Google Scholar
47. Sofilić, T.; Barišić, D.; Rastovčan Mioč, A.; Sofilic, U. Radionuclides in Steel Slag Intended for Road Construction. J. Radioanal. Nucl. Chem. 2010, 284, 73–77. https://doi.org/10.1007/s10967-009-0431-x.Suche in Google Scholar
48. Al-Kawari, M. S.; Hushari, M. Doses and Radiation Risks Estimation of Adding Steel Slag to Asphalt for Road Construction in Qatar. Constr. Build. Mater. 2019, 228, 116741. https://doi.org/10.1016/j.conbuildmat.2019.116741.Suche in Google Scholar
49. Ishimori, Y.; Lange, K.; Martin, P.; Mayya, Y. S.; Phaneuf, M. Measurement and Calculation of Radon Releases from NORM Residues. Technical reports series No. 474; International Atomic Energy Agency: Vienna, 2013.Suche in Google Scholar
50. Hilal, M. A.; Attallah, M. F.; Mansy, M. S.; El Afifi, E. M. Examination of the Parameters Affecting of 222Rn Emanation for Some Industrial and Environmental Samples Using gamma-spectroscopy. Appl. Radiat. Isotop. 2022, 186, 110272. https://doi.org/10.1016/j.apradiso.2022.110272.Suche in Google Scholar PubMed
51. Rutherford, P. M.; Dudas, M. J.; Samek, R. A. Environmental Impacts of Phosphogypsum. Sci. Total Environ. 1994, 149, 1–38. https://doi.org/10.1016/0048-9697(94)90002-7.Suche in Google Scholar
52. Hilal, M. A.; El Afifi, E. M.; Nayl, A. A. Investigation of Some Factors Affecting on Release of radon-222 from Phosphogypsum Waste Associated with Phosphate Ore Processing. J. Environ. Radioact. 2015, 145, 40–47. https://doi.org/10.1016/j.jenvrad.2015.03.030.Suche in Google Scholar PubMed
53. IAOGP. International Association of Oil and Gas Production. Managing Naturally Occurring Radioactive Material (NORM). Version 2.0, Report 412, 2016, London EC2V 5DE, UK.Suche in Google Scholar
54. WHO. World Health Organization Guidelines for Drinking-Water Quality. Fourth: Geneva, 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1.Suche in Google Scholar
55. WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, 2017.Suche in Google Scholar
56. USEPA Announcement of Preliminary Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List: U.S., 2014. Environmental Protection Agency Web. https://www.federalregister.gov/documents/2014/10/20/2014-24582/announcement-of-preliminary-regulatory-determinations-for-contaminants-on-the-third-drinking-water.Suche in Google Scholar
57. Porcelli, D.; Kim, C. H.-K.; Martin, P.; Moore, W. S.; Phaneuf, M. Properties of Radium. Book Chapter, In The environmental behavior of radium: Revised edition. Technical reports series no. 476; International Atomic Energy Agency (IAEA): Vienna, 2014, pp 6–32).Suche in Google Scholar
58. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. Toxicity, Mechanism and Health Effects of Some Heavy Metals – Review Article. Interdiscip. Toxicol. 2014, 7 (2), 60–72; https://doi.org/10.2478/intox-2014-0009.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston