Startseite Radiosynthesis and preclinical evaluation of [99mTc]Tc-HYNIC–durvalumab for immuno-SPECT imaging of PD-L1 expression in tumor models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radiosynthesis and preclinical evaluation of [99mTc]Tc-HYNIC–durvalumab for immuno-SPECT imaging of PD-L1 expression in tumor models

  • Syed Qaiser Shah ORCID logo EMAIL logo , Ralph Santos-Oliveira , DeryaIlem-Ozdemir und Saba Shirin
Veröffentlicht/Copyright: 2. September 2025
Radiochimica Acta
Aus der Zeitschrift Radiochimica Acta

Abstract

Accurate, non-invasive measurement of programmed death-ligand 1 (PD-L1) expression is crucial for the optimization of immune checkpoint inhibitor cancer treatments. We describe the radiosynthesis and preclinical assessment of a new technetium-99m (99mTc) conjugated immuno-SPECT agent, [99mTc]Tc-HYNIC–durvalumab, for PD-L1 imaging in vivo. Durvalumab was conjugated with hydrazinonicotinamide (HYNIC) through lysine residues using an N-hydroxysuccinimide (NHS) ester-based method and subsequently radiolabeled with technetium-99m (99mTc) in the presence of tricine and ethylenediamine-N,N′-diacetic acid (EDDA) as co-ligands. Radiochemical purity, physicochemical stability in physiologically relevant media, and immunoreactivity were determined. Specific binding affinity and kinetics of internalization were studied in PD-L1-positive A549 cells. Biodistribution and SPECT imaging were carried out in A549 xenograft-bearing mice and rabbits. Specificity was confirmed by co-injection with an excess of unlabeled durvalumab. 99mTc-HYNIC-Durvalumab had 98.14 ± 0.27 % radiochemical purity and good stability (>90 % intact at 4 h in serum). The tracer showed high PD-L1 affinity and extensive receptor-mediated binding (28.54 ± 0.65 % at 4 h). In vivo, tumor uptake at 4 h post-injection was 6.42 ± 0.11 %ID/g, significantly reduced by co-administration of excess unlabeled antibody (1.56 ± 0.05 %ID/g, p < 0.01). Tumor-to-background ratio was 3.84, allowing for high-contrast SPECT imaging that accurately defined PD-L1-expressing tumors. These findings support 99mTc-HYNIC-Durvalumab to be a highly specific, stable, and clinically translatable SPECT radiotracer for quantitative PD-L1 expression imaging. This agent has great promise to enable patient stratification and therapeutic monitoring in immuno-oncology. Further studies toward clinical translation is warranted.


Corresponding author: Prof. Syed Qaiser Shah, Ph.D, Nuclear Medicine Research Laboratory, Institute of Chemical Sciences University of Peshawar, Peshawar, 25120 K.P, Pakistan, E-mail:

  1. Research ethics: The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013).

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, A Third Member of the B7 Family, Co-Stimulates T-cell Proliferation and Interleukin-10 Secretion. Nat. Med. 1999, 5 (12), 1365–1369; https://doi.org/10.1038/70932.Suche in Google Scholar PubMed

2. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 380 (10), 989–990; https://doi.org/10.1056/nejmc1900407.Suche in Google Scholar

3. Powles, T.; Durán, I.; van der Heijden, M. S.; Loriot, Y.; Vogelzang, N. J.; De Giorgi, U.; Oudard, S.; Retz, M. M.; Castellano, D.; Bamias, A.; Fléchon, A.; Gravis, G.; Hussain, S.; Takano, T.; Leng, N.; Kadel, E. E.III; Banchereau, R.; Hegde, P. S.; Mariathasan, S.; Cui, N.; Shen, X.; Derleth, C. L.; Green, M. C.; Ravaud, A. Atezolizumab Versus Chemotherapy in Patients with Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma (IMvigor211): a Multicentre, Open-Label, Phase 3 Randomised Controlled Trial. Lancet 2018, 391 (10122), 748–757.10.1016/S0140-6736(17)33297-XSuche in Google Scholar PubMed

4. Pawelec, G. Faculty Opinions Recommendation of Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature 2012. https://doi.org/10.3410/f.717548111.793153300.Suche in Google Scholar

5. Diggs, L. P.; Hsueh, E. C. Utility of PD-L1 Immunohistochemistry Assays for Predicting PD-1/PD-L1 Inhibitor Response. Biomarker Res. 2017, 5, 12; https://doi.org/10.1186/s40364-017-0093-8.Suche in Google Scholar PubMed PubMed Central

6. Hu, W. Multiplex immunohistochemistry/Immunofluorescence is Superior to Tumor Mutational Burden and PD-L1 Immunohistochemistry for Predicting Response to Anti-PD-1/PD-L1 Immunotherapy. Thoracic Cancer 2020, 11 (1), 3–5; https://doi.org/10.1111/1759-7714.13233.Suche in Google Scholar PubMed PubMed Central

7. Niemeijer, A. N.; Leung, D.; Huisman, M. C.; Bahce, I.; Hoekstra, O. S.; van Dongen, G. A. M. S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; Windhorst, A. D.; Hendrikse, N. H.; Poot, A.; Vugts, D. J.; Thunnissen, E.; Morin, P.; Lipovsek, D.; Donnelly, D. J.; Bonacorsi, S. J.; Velasquez, L. M.; de Gruijl, T. D.; Smit, E. F.; de Langen, A. J. Whole Body PD-1 and PD-L1 Positron Emission Tomography in Patients with Non-Small-Cell Lung Cancer. Nat. Commun. 2018, 9 (1), 4664; https://doi.org/10.1038/s41467-018-07131-y.Suche in Google Scholar PubMed PubMed Central

8. Zhao, L.; Gong, J.; Liao, S.; Huang, W.; Zhao, J.; Xing, Y. Preclinical Evaluation and Preliminary Clinical Study of (68) Ga-NODAGA-NM-01 for PET Imaging of PD-L1 Expression. Cancer Imaging 2025, 25 (1), 6; https://doi.org/10.1186/s40644-025-00826-8.Suche in Google Scholar PubMed PubMed Central

9. Jurisson, S. S.; Lydon, J. D. Potential Technetium Small Molecule Radiopharmaceuticals. Chem. Rev. 1999, 99 (9), 2205–2218; https://doi.org/10.1021/cr980435t.Suche in Google Scholar PubMed

10. Pauwels, E. K. J.; Welling, M. M.; Lupetti, A.; Paulusma-Annema, A.; Nibbering, P. H.; Balter, H. S. Concerns About 99mTc-Labelled Ciprofloxacin for Infection Detection. Eur. J. Nucl. Med. 2000, 27 (12), 1866; https://doi.org/10.1007/s002590000378.Suche in Google Scholar PubMed

11. Liu, S. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides. Adv. Drug Delivery Rev. 2008, 60 (12), 1347–1370; https://doi.org/10.1016/j.addr.2008.04.006.Suche in Google Scholar PubMed PubMed Central

12. Pimm, M.; Rajput, R.; Frier, M.; Gribben, S. Anomalies in Reduction-Mediated Technetium-99m Labelling of Monoclonal Antibodies. Eur. J. Nucl. Med. 1991, 18 (12), 973; https://doi.org/10.1007/bf00180418.Suche in Google Scholar PubMed

13. Liu, S.; Edwards, D. S. Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals. Bioconjugate Chem. 2001, 12 (4), 653; https://doi.org/10.1021/bc010069b.Suche in Google Scholar

14. Zhou, P.; Li, Z.; Li, D.; Xue, S.; Li, R.; Zhang, L.; Bai, Q.; Li, X. [(99m)Tc]Tc-labeled cyc-DX600-HYNIC as a SPECT Probe for ACE2-Specific Pancreatic Cancer Imaging. Am. J. Nucl. Med. Mol. Imaging 2024, 14 (2), 122–133; https://doi.org/10.62347/VFHT4078.Suche in Google Scholar PubMed PubMed Central

15. Auletta, S.; Baldoni, D.; Varani, M.; Galli, F.; Hajar, I. A.; Duatti, A.; Ferro-Flores, G.; Trampuz, A.; Signore, A. Comparison of 99mTc-UBI 29-41, 99mTc-ciprofloxacin, 99mTc-ciprofloxacin dithiocarbamate and 111In-biotin for Targeting Experimental Staphylococcus aureus and Escherichia coli Foreign-Body Infections: An Ex-Vivo Study. Q. J. Nucl. Med. Mol. Imaging 2019, 63 (1). https://doi.org/10.23736/s1824-4785.17.02975-2.Suche in Google Scholar

16. Sciuk, J.; Brandau, W.; Vollet, B.; Stücker, R.; Erlemann, R.; Bartenstein, P.; Peters, P. E.; Schober, O. Comparison of Technetium 99m Polyclonal Human Immunoglobulin and Technetium 99m Monoclonal Antibodies for Imaging Chronic Osteomyelitis. Eur. J. Nucl. Med. 1991, 18 (6), 401–407; https://doi.org/10.1007/bf02258431.Suche in Google Scholar PubMed

17. Chen, K.; Conti, P. S. Target-Specific Delivery of Peptide-Based Probes for PET Imaging. Adv. Drug Delivery Rev. 2010, 62 (11), 1005–1022; https://doi.org/10.1016/j.addr.2010.09.004.Suche in Google Scholar PubMed

18. Qi, S.; Hoppmann, S.; Xu, Y.; Cheng, Z. PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules. Mol. Imaging Biol. 2019, 21 (5), 907–916; https://doi.org/10.1007/s11307-018-01310-5.Suche in Google Scholar PubMed

19. Sgouros, G.; Bodei, L.; McDevitt, M. R.; Nedrow, J. R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discovery 2020, 19 (9), 589–608; https://doi.org/10.1038/s41573-020-0073-9.Suche in Google Scholar PubMed PubMed Central

Received: 2025-05-31
Accepted: 2025-08-18
Published Online: 2025-09-02

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0054/html
Button zum nach oben scrollen