Abstract
Targeted radiopharmaceuticals offer promising approaches for cancer diagnosis and therapy. This study developed freeze-dried kit formulations of 177Lu-Imatinib (IMT) and evaluated their potential efficacy through in vitro studies. Four formulations (F1–F4) containing IMT and chelating agents were prepared and characterized via Fourier transform infrared (FTIR), ultraviolet spectrum (UV), and thermogravimetric analysis (TGA) to confirm complex formation. Biocompatibility was assessed in NIH-3T3 cells using the MTT assay. Radiolabeling with 177Lu was optimized by varying pH, incubation time, and reactant ratios. Radiochemical purity and stability were analyzed over 7 days using HPLC. Binding affinity and cytotoxicity were evaluated in MCF-7 and NIH-3T3 cells. Spectroscopic analyses confirm successful complex formation. All formulations exhibited >90 % viability in NIH-3T3 cells. Optimal radiolabeling conditions (45 mg IMT-chelator, pH 5, 60 min incubation) yielded >90 % efficiency, with stable radiolabeling for 7 days. The 177Lu-IMT-DOTA (F3) formulation showed significantly higher binding and cytotoxic effects in MCF-7 cells compared to controls. The 177Lu-IMT-DOTA (F3) kit demonstrates high radiolabeling efficiency, stability, and selective in vitro cytotoxicity toward breast cancer cells, supporting its potential as a targeted radiopharmaceutical.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394; https://doi.org/10.3322/caac.21492.Suche in Google Scholar PubMed
2. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209; https://doi.org/10.3322/caac.21660.Suche in Google Scholar PubMed
3. Karpuz, M.; Silindir-Gunay, M.; Ozer, A. Y. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother. Radiopharm. 2018, 33, 39; https://doi.org/10.1089/cbr.2017.2378.Suche in Google Scholar PubMed
4. Kang, S. J.; Jeong, H. Y.; Kim, M. W.; Jeong, I. H.; Choi, M. J.; You, Y. M.; Im, C. S.; Song, I. H.; Lee, T. S.; Park, Y. S. Anti-EGFR Lipid Micellar Nanoparticles Co-Encapsulating Quantum Dots and Paclitaxel for Tumor-Targeted Theranosis. Nanoscale 2018, 10, 19338; https://doi.org/10.1039/c8nr05099f.Suche in Google Scholar PubMed
5. Ballinger, J. R. Theranostic Radiopharmaceuticals: Established Agents in Current Use. Br. J. Radiol. 2018, 91, 20170969; https://doi.org/10.1259/bjr.20170969.Suche in Google Scholar PubMed PubMed Central
6. Lee, S.-Y.; Hong, Y. D.; Kim, H.-S.; Choi, S.-J. Synthesis and Application of a Novel Cysteine-Based DTPA-NCS for Targeted Radioimmunotherapy. Nucl. Med. Biol. 2013, 40, 429; https://doi.org/10.1016/j.nucmedbio.2012.12.007.Suche in Google Scholar PubMed
7. Chakraborty, S.; Das, T.; Sarma, H. D.; Venkatesh, M.; Banerjee, S. Preparation and Preliminary Studies on 177Lu-Labeled Hydroxyapatite Particles for Possible Use in the Therapy of Liver Cancer. Nucl. Med. Biol. 2008, 35, 589. https://doi.org/10.1016/j.nucmedbio.2008.03.003.Suche in Google Scholar PubMed
8. Rosar, F.; Hau, F.; Bartholomä, M.; Maus, S.; Stemler, T.; Linxweiler, J.; Ezziddin, S.; Khreish, F. Molecular Imaging and Biochemical Response Assessment after a Single Cycle of [225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 Tandem Therapy in mCRPC Patients Who Have Progressed on [177Lu]Lu-PSMA-617 Monotherapy. Theranostics 2021, 11, 4050; https://doi.org/10.7150/thno.56211.Suche in Google Scholar PubMed PubMed Central
9. Cardoso, H. J.; Vaz, C. V.; Carvalho, T. M. A.; Figueira, M. I.; Socorro, S. Tyrosine Kinase Inhibitor Imatinib Modulates the Viability and Apoptosis of Castrate-Resistant Prostate Cancer Cells Dependently on the Glycolytic Environment. Life Sci. 2019, 218, 274; https://doi.org/10.1016/j.lfs.2018.12.055.Suche in Google Scholar PubMed
10. Yao, Z.; Zhang, J.; Zhang, B.; Liang, G.; Chen, X.; Yao, F.; Xu, X.; Wu, H.; He, Q.; Ding, L.; Yang, B. Imatinib Prevents Lung Cancer Metastasis by Inhibiting M2-like Polarization of Macrophages. Pharmacol. Res. 2018, 133, 121; https://doi.org/10.1016/j.phrs.2018.05.002.Suche in Google Scholar PubMed
11. Qiu, H.-B.; Zhuang, W.; Wu, T.; Xin, S.; Lin, C.-Z.; Ruan, H.-L.; Zhu, X.; Huang, M.; Li, J.-L.; Hou, X.-Y.; Zhou, Z.-W.; Wang, X.-D. Imatinib-Induced Ophthalmological Side-Effects in GIST Patients are Associated with the Variations of EGFR, SLC22A1, SLC22A5 and ABCB1. Pharmacogenomics J. 2018, 18, 460; https://doi.org/10.1038/tpj.2017.40.Suche in Google Scholar PubMed
12. Yelamanchi, R.; Gupta, N.; Gupta, D.; Durga, C. K. Breast Disorders Due to Imatinib Mesylate: Rare but Significant. Indian J. Surg. 2022, 84, 839; https://doi.org/10.1007/s12262-021-02814-1.Suche in Google Scholar
13. Sunderland, J. J.; Ponto, L. B.; Capala, J. Radiopharmaceutical Delivery for Theranostics: Pharmacokinetics and Pharmacodynamics. Semin. Radiat. Oncol. 2021, 31, 12; https://doi.org/10.1016/j.semradonc.2020.07.009.Suche in Google Scholar PubMed
14. Mikolajczak, R.; van der Meulen, N. P.; Lapi, S. E. Radiometals for Imaging and Theranostics, Current Production, and Future Perspectives. J. Labelled Compd. Radiopharm. 2019, 62, 615; https://doi.org/10.1002/jlcr.3770.Suche in Google Scholar PubMed
15. Jeyamogan, S.; Khan, N. A.; Siddiqui, R. Application and Importance of Theranostics in the Diagnosis and Treatment of Cancer. Arch. Med. Res. 2021, 52, 131; https://doi.org/10.1016/j.arcmed.2020.10.016.Suche in Google Scholar PubMed
16. Miranda, A. C. C.; Durante, A. C. R.; Fuscaldi, L. L.; Barbezan, A. B.; de Lima, C. R.; Perini, E.; de Araújo, E. B. Anti-HER2 Monoclonal Antibody Based-Radioimmunoconjugates: Assessment of the Chelating Agent Influence. Bioorg. Med. Chem. 2021, 33, 115996; https://doi.org/10.1016/j.bmc.2021.115996.Suche in Google Scholar PubMed
17. Massicano, A. V. F.; Pujatti, P. B.; Alcarde, L. F.; Suzuki, M. F.; Spencer, P. J.; Araújo, E. B. Development and Biological Studies of 177Lu-DOTA-Rituximab for the Treatment of Non-Hodgkin’s Lymphoma. Curr. Radiopharm. 2016, 9, 54. https://doi.org/10.2174/1874471008666150313103849.Suche in Google Scholar PubMed
18. Trumbo, T. A.; Schultz, E.; Borland, M. G.; Pugh, M. E. Applied Spectrophotometry: Analysis of a Biochemical Mixture. Biochem. Mol. Biol. Educ. 2013, 41, 242; https://doi.org/10.1002/bmb.20694.Suche in Google Scholar PubMed
19. Guleria, M.; Sharma, R.; Amirdhanayagam, J.; Sarma, H. D.; Rangarajan, V.; Dash, A.; Das, T. Formulation and Clinical Translation of [177Lu]Lu-Trastuzumab for Radioimmunotheranostics of Metastatic Breast Cancer. RSC Med. Chem. 2020, 12, 263; https://doi.org/10.1039/d0md00319k.Suche in Google Scholar PubMed PubMed Central
20. Guleria, M.; Das, T.; Kumar, C.; Sharma, R.; Amirdhanayagam, J.; Sarma, H. D.; Dash, A. Effect of Number of Bifunctional Chelating Agents on the Pharmacokinetics and Immunoreactivity of 177Lu-Labeled Rituximab: A Systemic Study. Anti-Cancer Agents Med. Chem. 2018, 18, 146; https://doi.org/10.2174/1871520617666170725164530.Suche in Google Scholar PubMed
21. Baran, Y.; Ceylan, C.; Camgoz, A. The Roles of Macromolecules in Imatinib Resistance of Chronic Myeloid Leukemia Cells by Fourier Transform Infrared Spectroscopy. Biomed. Pharmacother. 2013, 67, 221; https://doi.org/10.1016/j.biopha.2012.12.001.Suche in Google Scholar PubMed
22. Zhang, L.; Liu, T.; Xiao, Y.; Yu, D.; Zhang, N. Hyaluronic Acid-Chitosan Nanoparticles to Deliver Gd-DTPA for MR Cancer Imaging. Nanomaterials 2015, 5, 1379; https://doi.org/10.3390/nano5031379.Suche in Google Scholar PubMed PubMed Central
23. Sadat Shandiz, S. A.; Shafiee Ardestani, M.; Shahbazzadeh, D.; Assadi, A.; Ahangari Cohan, R.; Asgary, V.; Salehi, S. Novel Imatinib-Loaded Silver Nanoparticles for Enhanced Apoptosis of Human Breast Cancer MCF-7 Cells. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 1082; https://doi.org/10.1080/21691401.2016.1202257.Suche in Google Scholar PubMed
24. Sattarzadeh Khameneh, E.; Kakaei, S.; Moharreri, M. M. Synthesis and Characterization of DTPA and DOTA Modified Fe3O4@SiO2 Core-Shell Nanoparticles. Adv. Nanochem. 2019, 1, 62.Suche in Google Scholar
25. Rele, R. V.; Tiwatane, P. P. UV Spectrophotometric Estimation of Imatinib Mesylate by Area under Curve Methods in Bulk and Pharmaceutical Dosage Form. Asian J. Res. Chem. 2019, 12, 213; https://doi.org/10.5958/0974-4150.2019.00040.3.Suche in Google Scholar
26. Matejtschuk, P.; Duru, C.; Malik, K.; Ezeajughi, E.; Gray, E.; Raut, S.; Mawas, F. Use of Thermogravimetric Analysis for Moisture Determination in Difficult Lyophilized Biological Samples. Am. J. Anal. Chem. 2016, 7, 260; https://doi.org/10.4236/ajac.2016.73023.Suche in Google Scholar
27. Mojarrad, P.; Zamani, S.; Seyedhamzeh, M.; Omoomi, F. D.; Karimpourfard, N.; Hadadian, S.; Ebrahimi, S. E. S.; Hamedani, M. P.; Farzaneh, J.; Ardestani, M. S. Novel Radiopharmaceutical (Technetium-99m)-(DOTA-NHS-Ester)-Methionine as a SPECT-CT Tumor Imaging Agent. Eur. J. Pharm. Sci. 2020, 141, 105112; https://doi.org/10.1016/j.ejps.2019.105112.Suche in Google Scholar PubMed
28. Iqbal, N.; Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 357027; https://doi.org/10.1155/2014/357027.Suche in Google Scholar PubMed PubMed Central
29. Kang, C. S.; Sun, X.; Jia, F.; Song, H. A.; Chen, Y.; Lewis, M.; Chong, H.-S. Synthesis and Preclinical Evaluation of Bifunctional Ligands for Improved Chelation Chemistry of 90Y and 177Lu for Targeted Radioimmunotherapy. Bioconjugate Chem. 2012, 23, 1775; https://doi.org/10.1021/bc200696b.Suche in Google Scholar PubMed PubMed Central
30. Laznickova, A.; Biricova, V.; Laznicek, M.; Hermann, P. Mono(pyridine-N-oxide) DOTA Analog and its G1/G4-PAMAM Dendrimer Conjugates Labeled with 177Lu: Radiolabeling and Biodistribution Studies. Appl. Radiat. Isot. 2014, 84, 70; https://doi.org/10.1016/j.apradiso.2013.10.021.Suche in Google Scholar PubMed
31. Wunderlich, G.; Schiller, E.; Bergmann, R.; Pietzsch, H.-J. Comparison of the Stability of Y-90-, Lu-177- and Ga-68- Labeled Human Serum Albumin Microspheres (DOTA-HSAM). Nucl. Med. Biol. 2010, 37, 861; https://doi.org/10.1016/j.nucmedbio.2010.05.004.Suche in Google Scholar PubMed
32. Agency IAE. Quality Control in the Production of Radiopharmaceuticals; International Atomic Energy Agency: Vienna, Austria, 2018.Suche in Google Scholar
33. Ghai, A.; Singh, B.; Panwar Hazari, P.; Schultz, M. K.; Parmar, A.; Kumar, P.; Sharma, S.; Dhawan, D.; Kumar Mishra, A. Radiolabeling Optimization and Characterization of 68Ga Labeled DOTA-Polyamido-Amine Dendrimer Conjugate - Animal Biodistribution and PET Imaging Results. Appl. Radiat. Isot. 2015, 105, 40; https://doi.org/10.1016/j.apradiso.2015.07.021.Suche in Google Scholar PubMed PubMed Central
34. Breeman, W. A. P.; De Jong, M.; Visser, T. J.; Erion, J. L.; Krenning, E. P. Optimising Conditions for Radiolabelling of DOTA-Peptides with 90Y, 111In and 177Lu at High Specific Activities. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 917; https://doi.org/10.1007/s00259-003-1142-0.Suche in Google Scholar PubMed
35. Das, T.; Chakraborty, S.; Unni, P. R.; Banerjee, S.; Samuel, G.; Sarma, H. D.; Venkatesh, M.; Pillai, M. R. A. 177Lu-Labeled Cyclic Polyaminophosphonates as Potential Agents for Bone Pain Palliation. Appl. Radiat. Isot. 2002, 57, 177. https://doi.org/10.1016/s0969-8043(02)00104-5.Suche in Google Scholar PubMed
36. Baur, B.; Solbach, C.; Andreolli, E.; Winter, G.; Machulla, H.-J.; Reske, S. N. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A″-DTPA-DUPA-Pep. Pharmaceuticals 2014, 7, 517; https://doi.org/10.3390/ph7050517.Suche in Google Scholar PubMed PubMed Central
37. Choy, C. J.; Ling, X.; Geruntho, J. J.; Beyer, S. K.; Latoche, J. D.; Langton-Webster, B.; Anderson, C. J.; Berkman, C. E. 177Lu-Labeled Phosphoramidate-Based PSMA Inhibitors: The Effect of an Albumin Binder on Biodistribution and Therapeutic Efficacy in Prostate Tumor-Bearing Mice. Theranostics 2017, 7, 1928; https://doi.org/10.7150/thno.18719.Suche in Google Scholar PubMed PubMed Central
38. Hu, F.; Cutler, C. S.; Hoffman, T.; Sieckman, G.; Volkert, W. A.; Jurisson, S. S. Pm-149 DOTA Bombesin Analogs for Potential Radiotherapy In Vivo Comparison with Sm-153 and Lu-177 Labeled Do3A-amide-betaAla-BBN(7-14)NH(2). Nucl. Med. Biol. 2002, 29, 423. https://doi.org/10.1016/s0969-8051(02)00290-1.Suche in Google Scholar PubMed
39. Fiedler, L.; Kellner, M.; Gosewisch, A.; Oos, R.; Böning, G.; Lindner, S.; Albert, N.; Bartenstein, P.; Reulen, H.-J.; Zeidler, R.; Gildehaus, F. J. Evaluation of 177Lu[Lu]-CHX-A″-DTPA-6A10 Fab as a Radioimmunotherapy Agent Targeting Carbonic Anhydrase XII. Nucl. Med. Biol. 2018, 60, 55; https://doi.org/10.1016/j.nucmedbio.2018.02.004.Suche in Google Scholar PubMed
40. Dash, A.; Pillai, M. R. A.; Knapp, F. F. Production of 177Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85; https://doi.org/10.1007/s13139-014-0315-z.Suche in Google Scholar PubMed PubMed Central
41. Vera, D. R. B.; Eigner, S.; Henke, K. E.; Lebeda, O.; Melichar, F.; Beran, M. Preparation and Preclinical Evaluation of 177Lu-Nimotuzumab Targeting Epidermal Growth Factor Receptor Overexpressing Tumors. Nucl. Med. Biol. 2012, 39, 3; https://doi.org/10.1016/j.nucmedbio.2011.07.001.Suche in Google Scholar PubMed
42. Guleria, M.; Das, T.; Kumar, C.; Amirdhanayagam, J.; Sarma, H. D.; Banerjee, S. Preparation of Clinical-Scale 177Lu-Rituximab: Optimization of Protocols for Conjugation, Radiolabeling, and Freeze-Dried Kit Formulation. J. Labelled Compd. Radiopharm. 2017, 60, 234; https://doi.org/10.1002/jlcr.3493.Suche in Google Scholar PubMed
43. Elitez, Y.; Ekinci, M.; Ilem-Ozdemir, D.; Gundogdu, E.; Asikoglu, M. Tc-99m Radiolabeled Alendronate Sodium Microemulsion: Characterization and Permeability Studies Across Caco-2 Cells. Curr. Drug. Deliv. 2018, 15, 342; https://doi.org/10.2174/1567201814666170613082752.Suche in Google Scholar PubMed
44. İlem-Özdemir, D.; Karavana, S. Y.; Şenyiğit, Z. A.; Çalışkan, Ç.; Ekinci, M.; Asikoglu, M.; Baloğlu, E. Radiolabeling and Cell Incorporation Studies of Gemcitabine HCl Microspheres on Bladder Cancer and Papilloma Cell Line. J. Radioanal. Nucl. Chem. 2016, 310, 515. https://doi.org/10.1007/s10967-016-4805-6.Suche in Google Scholar
45. Müller, C.; Struthers, H.; Winiger, C.; Zhernosekov, K.; Schibli, R. DOTA Conjugate with an Albumin-Binding Entity Enables the First Folic Acid–Targeted 177Lu-Radionuclide Tumor Therapy in Mice. J. Nucl. Med. 2013, 54, 124; https://doi.org/10.2967/jnumed.112.107235.Suche in Google Scholar PubMed
46. Gibbens-Bandala, B.; Morales-Avila, E.; Ferro-Flores, G.; Santos-Cuevas, C.; Meléndez-Alafort, L.; Trujillo-Nolasco, M.; Ocampo-García, B. 177Lu-Bombesin-PLGA (Paclitaxel): A Targeted Controlled-Release Nanomedicine for Bimodal Therapy of Breast Cancer. Mater. Sci. Eng. C. 2019, 105, 110043; https://doi.org/10.1016/j.msec.2019.110043.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston