Home An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions
Article
Licensed
Unlicensed Requires Authentication

An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions

  • M. Shuza Uddin , Ingo Spahn ORCID logo EMAIL logo , M. Shamsuzzoha Basunia ORCID logo , Andrew S. Voyles , Stefan Spellerberg ORCID logo , Mazhar Hussain ORCID logo , Sándor Sudár , Lee A. Bernstein , Bernd Neumaier ORCID logo and Syed M. Qaim ORCID logo
Published/Copyright: March 13, 2025

Abstract

A very brief overview of the hitherto investigated production routes of 86gY is given, and a comparative analysis of its production via the two low-energy reactions, namely (p,n) and (d,2n) on 96.4 % enriched 86Sr as target material, is presented. Based on our recent cross-section measurements, the calculated yields of 86gY via the two reactions were compared, and the levels of co-produced isotopic impurities were estimated. At low-energy medical cyclotrons (Ep < 20 MeV; Ed < 10 MeV) the use of the (p,n) reaction is superior, both in terms of the yield of 86gY and the levels of radionuclidic impurities. At medium-sized cyclotrons, on the other hand, the (d,2n) reaction leads to higher yield of 86gY, but the level of radionuclidic impurities is also higher. The method of choice for production of 86gY thus remains the (p,n) reaction on enriched 86Sr.


Corresponding author: Ingo Spahn, Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany, E-mail:

Acknowledgments

M.S. Uddin thanks the Alexander von Humboldt Foundation in Germany for financial support and acknowledges the Bangladesh Atomic Energy Commission and the Ministry of Science and Technology, Dhaka, Bangladesh, for granting leave of absence to do some research abroad. M. Hussain also thanks the Alexander von Humboldt Foundation in Germany for a stipend to do research at FZJ.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The work at LBNL was performed under the auspices of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics.

  7. Data availability: Not applicable.

References

1. Rösch, F.; Qaim, S. M.; Stöcklin, G. Nuclear Data Relevant to the Production of the Positron Emitting Radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-Processes. Radiochim. Acta 1993, 61, 1–8; https://doi.org/10.1524/ract.1993.61.1.1.Search in Google Scholar

2. Rösch, F.; Qaim, S. M.; Stöcklin, G. Production of the Positron Emitting Radioisotope 86Y for Nuclear Medical Application. Appl. Radiat. Isot. 1993, 44, 677–681; https://doi.org/10.1016/0969-8043(93)90131-s.Search in Google Scholar

3. Herzog, H.; Rösch, F.; Stöcklin, G.; Lueders, C.; Qaim, S. M.; Feinendegen, L. E. Measurement of Pharmacokinetics of 86Y Radiopharmaceuticals with PET and Radiation Dose Calculation of Analogous 90Y Radiotherapeutics. J. Nucl. Med. 1993, 34, 2222–2226.Search in Google Scholar

4. Nayak, T.; Brechbiel, M. W. 86Y Based PET Radiopharmaceuticals: Radiochemistry and Biological Applications. Med. Chem. 2011, 7 (5), 380–388; https://doi.org/10.2174/157340611796799249.Search in Google Scholar PubMed PubMed Central

5. Rösch, F.; Herzog, H.; Qaim, S. M. The Beginning and Development of the Theranostic Approach in Nuclear Medicine, as Exemplified by the Radionuclide Pair 86Y and 90Y. Pharmaceuticals 2017, 10 (1–28), 56; https://doi.org/10.3390/ph10020056.Search in Google Scholar PubMed PubMed Central

6. Qaim, S. M.; Scholten, B.; Neumaier, B. New Developments in the Production of Theranostic Pairs of Radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

7. Qaim, S. M. Theranostic Radionuclides; Recent Advances in Production Methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar

8. International Atomic Energy Agency (IAEA). Therapeutic Radionuclide Generators: 90Sr/90Y and 188W/188Re Generators. Technical Report Series No. 470, 2009, 1–233.Search in Google Scholar

9. Gula, A. C.; McCutchan, E. A.; Lister, C. J.; Greene, J. P.; Zhu, S.; Ellison, P. A.; Nickles, R. J.; Carpenter, M. P.; Smith, S. V.; Sonzogni, A. A. State-of-the-art γ-ray Assay of 86Y for Medical Imaging. Phys. Rev. C 2020, 102, 034316; https://doi.org/10.1103/physrevc.102.034316.Search in Google Scholar

10. Uddin, M. S.; Qaim, S. M.; Scholten, B.; Basunia, M. S.; Bernstein, L. A.; Spahn, I.; Neumaier, B. Positron Emission Intensity in the Decay of 86gY for Use in Dosimetry Studies. Molecules 2022, 27 (3), 768; https://doi.org/10.3390/molecules27030768.Search in Google Scholar PubMed PubMed Central

11. Herzog, H.; Tellmann, L.; Scholten, B.; Coenen, H. H.; Qaim, S. M. PET Imaging Problems with the Non-standard Positron Emitters Yttrium-86 and Iodine-124. Q. J. Nucl. Med. Mol. Imaging 2008, 52 (2), 159–165.Search in Google Scholar

12. Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A. I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R. A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O. O.; Herman, M.; Hlavač, S.; Katō, K.; Lalremruata, B.; Lee, Y. O.; Makinaga, A.; Matsumoto, K.; Mikhaylyukova, M.; Pikulina, G.; Pronyaev, V. G.; Saxena, A.; Schwerer, O.; Simakov, S. P.; Soppera, N.; Suzuki, R.; Takács, S.; Tao, X.; Taova, S.; Tárkányi, F.; Varlamov, V. V.; Wang, J.; Yang, S. C.; Zerkin, V.; Zhuang, Y. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 2014, 120, 272–276; https://doi.org/10.1016/j.nds.2014.07.065.Search in Google Scholar

13. Zaneb, H.; Hussain, M.; Amjed, N.; Qaim, S. M. Nuclear Model Analysis of Excitation Functions of Proton Induced Reactions on 86Sr, 88Sr and natZr: Evaluation of Production Routes of 86Y. Appl. Radiat. Isot. 2015, 104, 232–241; https://doi.org/10.1016/j.apradiso.2015.07.004.Search in Google Scholar PubMed

14. Zaneb, H.; Hussain, M.; Amjad, N.; Qaim, S. M. Evaluation of Nuclear Reaction Cross Section Data for the Production of 87Y and 88Y via Proton, Deuteron and Alpha-Particle Induced Transmutations. Appl. Radiat. Isot. 2016, 112, 69–79; https://doi.org/10.1016/j.apradiso.2016.03.016.Search in Google Scholar PubMed

15. Tárkányi, F. T.; Ignatyuk, A. V.; Hermanne, A.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G. N.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Verpelli, M. Recommended Nuclear Data for Medical Radioisotope Production: Diagnostic Positron Emitters. J. Radioanal. Nucl. Chem. 2019, 319, 533–666; https://doi.org/10.1007/s10967-018-6380-5.Search in Google Scholar

16. Medvedev, D. G.; Mausner, L. F.; Srivastava, S. C. Irradiation of Strontium Chloride Targets at Proton Energies above 35 MeV to Produce PET Radioisotope Y-86. Radiochim. Acta 2011, 99, 755–761; https://doi.org/10.1524/ract.2011.1880.Search in Google Scholar

17. Baimukhanova, A.; Radchenko, V.; Kozempel, J.; Marinova, A.; Brown, V.; Karandashev, V.; Karaivanov, D.; Schaffer, P.; Filosofov, D. Utilization of (P, 4n) Reaction for 86Zr Production with Medium Energy Protons and Development of a 86Zr → 86Y Radionuclide Generator. J. Radioanal. Nucl. Chem. 2018, 316, 191–199; https://doi.org/10.1007/s10967-018-5730-7.Search in Google Scholar

18. Qaim, S. M. The Present and Future of Medical Radionuclide Production. Radiochim. Acta 2012, 100, 635–651; https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar

19. Uddin, M. S.; Scholten; Basunia, M. S.; Sudár, S.; Spellerberg, S.; Voyles, A. S.; Morrell, J. T.; Zaneb, H.; Rios, J. A.; Spahn, I.; Bernstein, L. A.; Qaim, S. M.; Neumaier, B. Accurate Determination of Production Data of the Non-standard Positron Emitter 86Y via the 86Sr(p,n)-Reaction. Radiochim. Acta 2020, 108, 747–756; https://doi.org/10.1515/ract-2020-0021.Search in Google Scholar

20. Uddin, M. S.; Basunia, M. S.; Sudár, S.; Scholten, B.; Spellerberg, S.; Voyles, A. S.; Morrell, J. T.; Fox, M. B.; Spahn, I.; Felden, O.; Gebel, R.; Bernstein, L. A.; Neumaier, B.; Qaim, S. M. Excitation Functions of Proton-Induced Nuclear Reactions on 86Sr, with Particular Emphasis on the Formation of Isomeric States in 86Y and 85Y. Eur. Phys. J. A 2022, 58, 67; https://doi.org/10.1140/epja/s10050-022-00714-w.Search in Google Scholar

21. Avila-Rodriguez, M. A.; Nye, J. A.; Nickles, R. J. Production and Separation of Non-carrier-added 86Y from Enriched 86Sr Targets. Appl. Radiat. Isot. 2008, 66, 9–13; https://doi.org/10.1016/j.apradiso.2007.07.027.Search in Google Scholar PubMed

22. Oehlke, E.; Hoehr, C.; Hou, X. C.; Hanemaayer, V.; Zeisler, S.; Adam, M. J.; Ruth, T. J.; Celler, A.; Buckley, K.; Benard, F.; Schaffer, P. Production of 86Y and Other Radiometals for Research Purposes Using a Solution Target System. Nucl. Med. Biol. 2015, 42, 842–849; https://doi.org/10.1016/j.nucmedbio.2015.06.005.Search in Google Scholar PubMed

23. Uddin, M. S.; Sudár, S.; Basunia, M. S.; Scholten, B.; Spellerberg, S.; Voyles, A. S.; Morrell, J. T.; Spahn, I.; Hermanne, A.; Bernstein, L. A.; Neumaier, B.; Qaim, S. M. Excitation Functions and Isomeric Cross-Section Ratios of (D,xn) Reactions on 86Sr. Eur. Phys. J. A 2024, 60, 128; https://doi.org/10.1140/epja/s10050-024-01330-6.Search in Google Scholar

24. Qaim, S. M. Nuclear Data for Production and Medical Application of Radionuclides: Present Status and Future Needs. Nucl. Med. Bio. 2017, 44, 31–49; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed

25. Kettern, K.; Linse, K.-H.; Spellerberg, S.; Coenen, H. H.; Qaim, S. M. Radiochemical Studies Relevant to the Production of 86Y and 88Y at a Small-Sized Cyclotron. Radiochim. Acta 2002, 90, 845–849; https://doi.org/10.1524/ract.2002.90.12_2002.845.Search in Google Scholar

26. Reischl, G.; Rösch, F.; Machulla, H.-J. Electrochemical Separation and Purification of Yttrium-86. Radiochim. Acta 2002, 90, 225–228; https://doi.org/10.1524/ract.2002.90.4_2002.225.Search in Google Scholar

27. Yoo, J.; Tang, L.; Perkins, T. A.; Rowland, D. J.; Laforest, R.; Lewis, J. S.; Welch, M. J. Preparation of High Specific Activity 86Y Using a Small Biomedical Cyclotron. Nucl. Med. Biol. 2005, 32, 891–897; https://doi.org/10.1016/j.nucmedbio.2005.06.007.Search in Google Scholar PubMed

28. Lukic, D.; Tamburella, C.; Buchegger, F.; Beyer, G.-J.; Comor, J. J.; Seimbille, Y. High Efficient Production and Purification of 86Y Based on Electrochemical Separation. Appl. Radiat. Isot. 2009, 67, 523–529; https://doi.org/10.1016/j.apradiso.2008.12.008.Search in Google Scholar PubMed

29. Uddin, M. S.; Basunia, M. S.; Spahn, I.; Spellerberg, S.; Khan, R.; Uddin, M. M.; Bernstein, L. A.; Neumaier, B.; Qaim, S. M. Cross Sections and Calculated Yields of Some Radionuclides of Yttrium, Strontium and Rubidium Formed in Proton-Induced Reactions on Enriched Strontium-86: Possibility of Production of 85gSr, 83Rb and 82mRb in No-Carrier-Added Form. Radiochim. Acta 2023, 111 (2), 81–90; https://doi.org/10.1515/ract-2022-0086.Search in Google Scholar

30. Qaim, S. M. Nuclear Data Relevant to Cyclotron Produced Short-Lived Medical Radioisotopes. Radiochim. Acta 1982, 30, 147–162.Search in Google Scholar

31. Otuka, N.; Takács, S. Definitions of Radioisotope Thick Target Yields. Radiochim. Acta 2015, 103, 1–6; https://doi.org/10.1515/ract-2013-2234.Search in Google Scholar

Received: 2024-12-12
Accepted: 2025-02-17
Published Online: 2025-03-13
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0375/html?lang=en
Scroll to top button