Abstract
Studies using theoretical models are of great importance for understanding of reaction process and its nature. In this study, nuclear level density model calculations of the cross sections of 27Al are investigated by using TALYS 1.96 computer code. The cross section calculations of 27Al(α,x)22Na, 27Al(α,x)24Na, 27Al(3He,x)22Na, 27Al(3He,x)24Na, 27Al(p,x)22Na and 27Al(p,x)24Na reactions were carried out for incident particle energy up to 100 MeV. In these calculations, four nuclear level density models, namely constant temperature model (CTM), back-shifted Fermi gas model (BSFGM), generalized superfluid model (GSM) and recently proposed semi-classical Fermi gas model (CSCFGM) are used. This model is developed using the simplest model BSFGM. The most obvious difference between CSCFGM and other models is the inclusion of the collective effects in the base of the formulation. The predicted results are discussed and compared with each other and the available experimental data taken from EXFOR library. In order to better evaluate the model results, chi-squared values are calculated and compared with each other for all analyzed reactions. According to the chi-squared results, CSCFGM gives closer predictions to the experimental data compared with the other models in 4 of the 6 analyzed reactions. Therefore, in this study, it is presented that this model can be reliably used in the reaction cross section calculations.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: No involvement.
-
Conflict of İnterest: The authors declare that they have no conflict of interest.
References
1. Smither, K., Greenwood, L. R. Measurement of the 27Al (n, 2n) 26Al reaction cross section for fusion reactor applications. J. Nucl. Mater. 1984, 123, 1071; https://doi.org/10.1016/0022-3115(84)90221-6.Search in Google Scholar
2. Bodemann, R., Lange, H. J., Leya, I., Michel, R., Schiekel, T., Rösel, R., Herpers, U., Hofmann, H. J., Dittrich-Hannen, B., Suter, M., Wölfli, W., Holmqvist, B., Conde, H., Malmborg, P. Production of residual nuclei by proton-induced reactions on C, N, O, Mg, AI and Si. Nucl. Instrum. Methods Phys. Res., Sect. B 1993, 82, 9; https://doi.org/10.1016/0168-583x(93)95077-i.Search in Google Scholar
3. Bouchard, G. H.Jr, Fairhall, A. W. Production of Be-7 in 30-42 MeV He-ion bombardment of oxygen, aluminum, and copper. Phys. Rev. 1959, 116, 160; https://doi.org/10.1103/physrev.116.160.Search in Google Scholar
4. Karpeles, A. Anregungsfunktionen für die Bildung von 68Ge, 65Zn und 22Na bei der Bestrahlung von Zink und Aluminium mit α-Teilchen. Radiochim. Acta 1969, 12, 115; https://doi.org/10.1524/ract.1969.12.2.115.Search in Google Scholar
5. Takács, S., Ditrói, F., Szűcs, Z., Haba, H., Komori, Y., Aikawa, M., Saito, M. Crosschecking of alpha particle monitor reactions up to 50 MeV. Nucl. Instrum. Methods Phys. Res., Sect. B 2017, 397, 33; https://doi.org/10.1016/j.nimb.2017.02.033.Search in Google Scholar
6. Mukherjee, S., Kumar, B. B., Singh, N. L. Excitation functions of alpha particle induced reactions on aluminium and copper. Pramana 1997, 49, 253; https://doi.org/10.1007/bf02845861.Search in Google Scholar
7. Karamyan, S. A., Oganesyan Yu, Ts., Tonchev, A., Vinogradov, V. G. Activation of aluminum foils by 4He ions in 25-45 MeV energy region. In Program and Thesis, Proc. 42nd Ann. Conf. Nucl. Nuclear Spectroscopy and Nuclear Structure, Alma-Ata, Vol. 24, 1992; p. 291.Search in Google Scholar
8. Rattan, S. S., Ramaswami, A., Singh, R. J., Prakash, S. Alpha particle induced reactions on 27Al at 55.2 and 58.2 MeV. Radiochim. Acta 1990, 51, 55; https://doi.org/10.1524/ract.1990.51.2.55.Search in Google Scholar
9. Ismail, M. Measurement and analysis of the excitation function for alpha-induced reactions on Ga and Sb isotopes. Phys. Rev. C 1990, 41, 87; https://doi.org/10.1103/physrevc.41.87.Search in Google Scholar PubMed
10. Rattan, S. S., Singh, R. J., Sahakundu, S. M., Prakash, S., Ramaniah, M. V. Alpha particle induced reactions of 209Bi and 63, 65Cu. Radiochim. Acta 1986, 39, 61, https://doi.org/10.1524/ract.1986.39.2.61.Search in Google Scholar
11. Michel, R., Brinkman, G., Herr, W. Alpha induced production of 24Na and 22Na from Al. Fed. Rep. Germ. Rep. I.N.D.C. 1980, 22, 45.Search in Google Scholar
12. Porile, N. T. Study of the 27Al 2(α, 7Be)24Na reaction from threshold to 41 MeV. Phys. Rev. 1962, 127, 224; https://doi.org/10.1103/physrev.127.224.Search in Google Scholar
13. Lindsay, R. H., Carr, R. H. (4He,7Be) reaction in magnesium, aluminum, titanium, cobalt, and copper from threshold to 42 Mev. Phys. Rev. 1960, 120, 2168, https://doi.org/10.1103/physrev.120.2168.Search in Google Scholar
14. Paul, R. L., Harris, L. J., Englert, P. A., Goldman, I. D., Jackson, C., Larimer, R. M., Lesko, K. T., Napier, B., Norman, E. B., Sur, B. Production of cosmogenic nuclides in thick targets by alpha bombardment. Part I—short-lived radioisotopes. Nucl. Instrum. Methods Phys. Res., Sect. B 1995, 100, 464; https://doi.org/10.1016/0168-583x(95)00355-x.Search in Google Scholar
15. Ismail, M. Measurement of excitation functions and mean projected recoil ranges of nuclei in α-induced reactions on F, Al, V, Co and Re nuclei. Pramana 1993, 40, 227; https://doi.org/10.1007/bf02900190.Search in Google Scholar
16. Vysotskij, O. N., Gonchar, A. V., Gorpinich, O. K. The absolute cross sections for production of long-lived radionuclides in reactions of alpha-particles on aluminium nuclei. In Proceedings of 39th Annual Conference on Nuclear Spectroscopy and Structure of Atomic Nuclei; Tashkent, Uzbekistan, 1989; p. 365.Search in Google Scholar
17. Ismail, M. Hybrid model analysis of the excitation function for alpha induced reaction on 121Sb and 123Sb. Pramana 1989, 32, 605; https://doi.org/10.1007/bf02847385.Search in Google Scholar
18. Rattan, S. S., Singh, R. J. Alpha induced fission of 209Bi. Radiochim. Acta 1985, 38, 69; https://doi.org/10.1524/ract.1985.38.2.69.Search in Google Scholar
19. Probst, H. J., Qaim, S. M., Weinreich, R. Excitation functions of high-energy α-particle induced nuclear reactions on aluminium and magnesium: production of 28Mg. Int. J. Appl. Radiat. Isot. 1976, 27, 431; https://doi.org/10.1016/0020-708x(76)90062-4.Search in Google Scholar
20. Lange, H. J., Hahn, T., Michel, R., Schiekel, T., Rösel, R., Herpers, U., Hofmann, H. J., Dittrich-Hannen, B., Suter, M., Wölfli, W., Kubik, P. W. Production of residual nuclei by α-induced reactions on C, N, O, Mg, Al and Si up to 170 MeV. Appl. Radiat. Isot. 1995, 46, 93; https://doi.org/10.1016/0969-8043(94)00124-i.Search in Google Scholar
21. Martens, U., Schweimer, G. W. Production of 7Be, 22Na, 24Na and 28Mg by irradiation of 27Al with 52 MeV deuterons and 104 MeV alpha particles. Z. für Physik A Hadrons Nucl. 1970, 233, 170; https://doi.org/10.1007/bf01396034.Search in Google Scholar
22. Bowman, W. W., Blann, M. Reactions of 51V and 27Al with 7–120 MeV α-particles (equilibrium and non-equilibrium statistical analyses). Nucl. Phys. 1969, 131, 513; https://doi.org/10.1016/0375-9474(69)90592-2.Search in Google Scholar
23. Crandall, W. E., Millburn, G. P., Pyle, R. V., Birnbaum, W. 12C(x, x n)11C and 27Al(x, x 2 p n)24Na cross sections at high energies. Phys. Rev. 1956, 101, 329; https://doi.org/10.1103/physrev.101.329.Search in Google Scholar
24. Yashima, H., Uwamino, Y., Iwase, H., Sugita, H., Nakamura, T., Ito, S., Fukumura, A. Measurement and calculation of radioactivities of spallation products by high-energy heavy ions. Radiochim. Acta 2003, 91, 689; https://doi.org/10.1524/ract.91.12.689.23423.Search in Google Scholar
25. Lindner, R. N., Osborne, R. N. The cross section for the reaction 27Al(α, α 2 p n)24Na from threshold to 380 MeV. Phys. Rev. 1953, 91, 342; https://doi.org/10.1103/physrev.91.342.Search in Google Scholar
26. Church, L. B. Study of (α, α n) reactions with 900-MeV helium ions. Phys. Rev. C 1972, 6, 1293; https://doi.org/10.1103/physrevc.6.1293.Search in Google Scholar
27. Gadioli, E., Gadioli Erba, E., Asher, J., Parker, D. J. Analysis of 59Co (α, xpynz α) reactions up to 170 MeV incident α energy. Z. für Physik A Hadrons Nucl. 1984, 317, 155, https://doi.org/10.1007/bf01421250.Search in Google Scholar
28. Ismail, M., Divatia, A. S. Measurement and analysis of alpha-induced reactions on Ta, Ag and Co. Pramana 1988, 30, 193; https://doi.org/10.1007/bf02846693.Search in Google Scholar
29. Sahakundu, S. M., Qaim, S. M., Stöcklin, G. Cyclotron production of short-lived 30P. Int. J. Appl. Radiat. Isot. 1979, 30, 3; https://doi.org/10.1016/0020-708x(79)90088-7.Search in Google Scholar
30. Cochran, D. R., Knight, J. D. Excitation functions of some reactions of 6 to 24 MeV 3He ions with carbon and aluminum. Phys. Rev. 1962, 128, 1281, https://doi.org/10.1103/physrev.128.1281.Search in Google Scholar
31. Kondratyev, S. N., Lobach, I. Y., Lobach, Y. N., Sklyarenko, V. D. Production of residual nuclei by 3He-induced reactions on 27Al and natCu. Appl. Radiat. 1997, 48, 601, https://doi.org/10.1016/s0969-8043(96)00329-6.Search in Google Scholar
32. Michel, R., Brinkmann, G., Galas, M., Stuck, R. Production of 24-Na and 22-Na by 2-H-induced reactions on aluminum. In Private Comminication; EXFOR A0158, 1982.Search in Google Scholar
33. Aslanides, E., Fassnacht, P., Dellacasa, G., Gallio, M., Tuyn, J. W. N. 12C(3He,3Hen)11C cross section at 910 MeV. Phys. Rev. C 1981, 23, 1826; https://doi.org/10.1103/physrevc.23.1826.Search in Google Scholar
34. Frantsvog, D. J., Kunselman, A. R., Wilson, R. L., Zaidins, C. S., Détraz, C. Reactions induced by 3He and 4He ions on natural Mg, Al, and Si. Phys. Rev. C 1982, 25, 770; https://doi.org/10.1103/physrevc.25.770.Search in Google Scholar
35. Merchel, S., Qaim, S. M. Excitation functions of (3He, 7Be) reactions on light mass target elements. Radiochim. Acta 1997, 77, 137; https://doi.org/10.1524/ract.1997.77.3.137.Search in Google Scholar
36. Buthelezi, E. Z., Nortier, F. M., Schroeder, I. W. Excitation functions for the production of 82Sr by proton bombardment of natRb at energies up to 100 MeV. Appl. Radiat. Isot. 2006, 64, 915; https://doi.org/10.1016/j.apradiso.2006.03.009.Search in Google Scholar PubMed
37. Sisterson, J. M., Kim, K., Beverding, A., Englert, P. A. J., Caffee, M. W., Vincent, J., Castaneda, C., Reedey, R. C. Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks. AIP Conf. Proc. 1997, 392, 811.10.1063/1.52469Search in Google Scholar
38. Steyn, G. F., Mills, S. J., Nortier, F. M., Simpson, B. R., Meyer, B. R. Production of 52Fe via proton-induced reactions on manganese and nickel. Appl. Radiat. Isot. 1990, 41, 315; https://doi.org/10.1016/0883-2889(90)90197-o.Search in Google Scholar PubMed
39. Grütter, A. Cross sections for reactions with 593 and 540 MeV protons in aluminium, arsenic, bromine, rubidium and yttrium. Int. J. Appl. Radiat. Isot. 1982, 33, 725; https://doi.org/10.1016/0020-708x(82)90092-8.Search in Google Scholar
40. Lefort, M., Tarrago, X. Emission of alpha particles from the spallation of bismuth by protons of 240 to 600 MeV. Nucl. Phys. 1963, 46, 161; https://doi.org/10.1016/0029-5582(63)90576-5.Search in Google Scholar
41. Batzel, R. E., Coleman, G. H. Cross sections for formation of Na-22 from aluminum and magnesium bombarded with protons. Phys. Rev. 1954, 93, 280; https://doi.org/10.1103/physrev.93.280.Search in Google Scholar
42. Titarenko, Y. E., Borovlev, S. P., Butko, M. A., Zhivun, V. M., Pavlov, K. V., Rogov, V. I., Titarenko A. Yu, Tikhonov, R. S., Florya, S. N., Koldobskiy, A. B. Cross section of 27Al(p, x) 24Na, 27Al(p, x)22Na, 27Al(p, x)7Be monitor reaction at proton energies 0.04–2.6 GeV. Phys. Atom. Nucl. 2011, 74, 507.10.1134/S1063778811040156Search in Google Scholar
43. Kaufman, S. B., Weisfield, M. W., Steinberg, E. P., Wilkins, B. D., Henderson, D. J. Spallation of aluminum by 300 GeV protons. Phys. Rev. C 1979, 19, 962; https://doi.org/10.1103/physrevc.19.962.Search in Google Scholar
44. Pulfer, P. Determination of Absolute Production Cross Sections for Proton Induced Reactions in the Energy Range 15 to 72 MeV and at 1820 MeV. Exfor # D0053006, 1979.Search in Google Scholar
45. Miyano, K. The 7Be, 22Na and 24Na production cross sections with 22-to 52-MeV proton on 27Al. J Phys. Soc. Japan 1973, 34, 853; https://doi.org/10.1143/jpsj.34.853.Search in Google Scholar
46. Gauvin, H., Lefort, M., Tarrago, X. Emission of alpha particles in spallation reactions. Nucl. Phys. 1962, 1, 39.10.1016/0029-5582(62)90403-0Search in Google Scholar
47. Brun, C., Lefort, M., Tarrago, X. Détermination des intensités de faisceaux de protons de 40 à 150 MeV. J. Phys. Radium 1962, 23, 371; https://doi.org/10.1051/jphysrad:01962002306037100.10.1051/jphysrad:01962002306037100Search in Google Scholar
48. Morgan, G. L., Alrick, K. R., Saunders, A., Cverna, F. C., King, N. S. P., Merril, F. E., Waters, L. S., Hanson, A. L., Greene, G. A., Liljestrand, R. P., Thompson, R. T., Henry, E. A. Total cross sections for the production of 22Na and 24Na in proton-induced reactions on 27Al from 0.40 to 22.4 GeV. Nucl. Instrum. Methods Phys. Res., Sect. B 2003, 211, 297, https://doi.org/10.1016/s0168-583x(03)01364-8.Search in Google Scholar
49. Taddeucci, T. N., Ullmann, J., Rybarcyk, L. J., Butler, G. W., Ward, T. E. Total cross sections for production of 7Be, 22Na, and 24Na in p+ 7Li and p+ 27Al reactions at 495 and 795 MeV. Phys. Rev. C 1997, 55, 1551; https://doi.org/10.1103/physrevc.55.1551.Search in Google Scholar
50. Khandaker, M. U., Kim, K., Lee, M. W., Kim, K. S., Kim, G. N., Cho, Y. S., Lee, Y. O. Excitation functions for the 27Al(p, x)22,24Na nuclear reactions up to 40 MeV. In KAERI/TR-3608; Korea Atomic Energy Research Institute (KAERI): Daejeon, Korea, 2011; p. 91.Search in Google Scholar
51. Titarenko Yu, E., Baytaev, V. F., Karpikhin, E. I., Zhivun, V. M., Ignatyuk, A. V., Lunev, V. P., Titarenko, N. N., Shubin, Y. N., Barashenkov, V. S. Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40-2600 MeV protons. INDC(CCP)-0447 2009, 0447, 317.Search in Google Scholar
52. Schneider, R. J., Sisterson, J. M., Koehler, A. M., Klein, J., Middleton, R. Measurement of cross sections for aluminum-26 and sodium-24 induced by protons in aluminum. Nucl. Instrum. Methods Phys. Res., Sect. B 1987, 29, 271; https://doi.org/10.1016/0168-583x(87)90248-5.Search in Google Scholar
53. Cumming, J. B., Agoritsas, V., Witkover, R. Absolute cross sections for the 27Al(p,3pn)24Na reaction at 28 and 0.8 GeV. Nucl. Instrum. Methods 1981, 180, 37; https://doi.org/10.1016/0029-554x(81)90007-0.Search in Google Scholar
54. Cumming, J. B., Friedlander, G., Hudis, J., Poskanzer, A. M. Spallation of aluminum by 28-GeV protons. Phys. Rev. 1962, 127, 950; https://doi.org/10.1103/physrev.127.950.Search in Google Scholar
55. Parikh, V. Cross-sections for 27Al(p,3pn)24Na, 27Al(p,5p5n)18F and 12C(p,3p3n)7Be relative to 12C(p,pn)11C. Nucl. Phys. 1960, 18, 638; https://doi.org/10.1016/0029-5582(60)90431-4.Search in Google Scholar
56. Parikh, V. The activities induced in beryllium, oxygen and fluorine by protons of 220 MeV to 362 MeV. Nucl. Phys. 1960, 18, 646, https://doi.org/10.1016/0029-5582(60)90432-6.Search in Google Scholar
57. Cumming, J. B., Friedlander, G., Swartz, C. E. 12C(p,pn)11C cross section at 2 and 3 MeV. Phys. Rev. 1958, 111, 1386; https://doi.org/10.1103/physrev.111.1386.Search in Google Scholar
58. Friedlander, G., Hudis, J., Wolfgang, R. L. Disintegration of aluminum by protons in the energy range 0.4 to 3.0 MeV. Phys. Rev. 1955, 99, 263, https://doi.org/10.1103/physrev.99.263.Search in Google Scholar
59. Marquez, L. The yield of F-18 from medium and heavy elements with 420 MeV protons. Phys. Rev. 1952, 86, 405, https://doi.org/10.1103/physrev.86.405.Search in Google Scholar
60. Fukuchi, T., Okauchi, T., Shigeta, M., Yamamoto, S., Watanabe, Y., Enomot, S. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging. Med. Phys. 2017, 44, 2257; https://doi.org/10.1002/mp.12149.Search in Google Scholar PubMed
61. Hasegawa, T., Oda, K., Wada, Y., Sasaki, T., Sato, Y., Yamada, T., Matsumoto, M., Murayama, H., Kikuchi, K., Miyatake, H., Abe, Y., Miwa, K., Akimoto, K., Wagatsuma, K. Validation of novel calibration scheme with traceable point-like 22Na sources on six types of PET scanners. Ann. Nucl. Med. 2013, 27, 346, https://doi.org/10.1007/s12149-013-0692-x.Search in Google Scholar PubMed
62. Zhang, Z., Zhao, Y., Chai, Z. Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials. Chin. Sci. Bull. 2009, 54, 173, https://doi.org/10.1007/s11434-009-0016-7.Search in Google Scholar
63. Canbula, B. Collective effects in deuteron induced reactions of aluminum. Nucl. Instrum. Methods Phys. Res., Sect. B 2017, 391, 73; https://doi.org/10.1016/j.nimb.2016.11.006.Search in Google Scholar
64. Canbula, B. Analysis of some tellur isotopes neutron capture cross sections. Celal Bayar Uni. J. Sci. 2017, 13, 445.10.18466/cbayarfbe.319917Search in Google Scholar
65. Canbula, B. Collective nuclear level density effect on photonuclear cross section of 55Mn isotope. Süleyman Demirel Uni. J. Nat. Appl. Sci. 2020, 24, 138.10.19113/sdufenbed.639828Search in Google Scholar
66. Azhdarli, K., Kucuk, Y., Canbula, B., Zholdybayev, T., Mukan, Zh., Emre, B., Sapmaz, E. B., Boztosun, I. Analyzing the (p, xp) and (p, xα) reactions on 59Co at E= 30 MeV by using the statistical models. In Tenth AASPP Workshop on Asian Nuclear Reaction Database Development; IAEA, INDC: International Nuclear Data Committee: Almaty, Kazakhstan, 2019; p. 53.Search in Google Scholar
67. Canbula, D. Cross section analysis of proton-induced nuclear reactions of thorium. Nucl. Instrum. Methods Phys. Res., Sect. B 2020, 478, 229; https://doi.org/10.1016/j.nimb.2020.06.041.Search in Google Scholar
68. Canbula, D. Calculation of photonuclear cross section of light rare earth element 144Sm. Int. J Pure Appl. Sci. 2021, 7, 314.10.29132/ijpas.879068Search in Google Scholar
69. Yiğit, M., Tel, E., Tanır, G. Calculations of proton emission cross sections in deuteron induced reactions of some fusion structural materials. J. Fusion Energy 2013, 32, 317; https://doi.org/10.1007/s10894-012-9569-6.Search in Google Scholar
70. Koning, A., Hilaire, S., Goriely, S. TALYS–1.95 A Nuclear Reaction Program User Manual, 2019. http://www.talys.eu.Search in Google Scholar
71. Herman, M., Capote, R., Sin, M., Trkov, A., Carlson, B. V., Oblozinsky, P., Mattoon, C. M., Wienke, H., Hoblit, S., Cho, Y. S., Nobre, G. P. EMPIRE-3.2 Malta Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation Users Manual; Brookhaven National Laboratory (BNL) National Nuclear Data Center, 2013.10.2172/1108585Search in Google Scholar
72. Broeders, C. H. M., Konobeyev, A. Y, Korovin, A. Y, Lunev, V. P., Blann, M. ALICE/ASH—Pre-Compound and Evaporation Model Code. FZK 7183, 2006.Search in Google Scholar
73. Baba, H. A shell-model nuclear level density. Nucl. Phys. 1970, 159, 625; https://doi.org/10.1016/0375-9474(70)90862-6.Search in Google Scholar
74. Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N. Role of collective effects in systematics of level density of nuclei. Yad. Fiz. 1979, 29, 875.Search in Google Scholar
75. Ignatyuk, A. V., Itkis, M. G., Okolovich, V. N., Smirenkin, G. N., Tishin, A. S. Fission of pre-actinide nuclei. Excitation functions for the (α, f) reaction. Yad. Fiz. 1975, 21, 1185.Search in Google Scholar
76. Koning, A. J., Hilaire, S., Goriely, S. Global and local level density models. Nucl. Phys. 2008, 810, 13; https://doi.org/10.1016/j.nuclphysa.2008.06.005.Search in Google Scholar
77. Canbula, B., Bulur, R., Canbula, D., Babacan, H. A Laplace-like formula for the energy dependence of the nuclear level density parameter. Nucl. Phys. 2014, 929, 54; https://doi.org/10.1016/j.nuclphysa.2014.05.020.Search in Google Scholar
78. Bethe, H. A. An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 1936, 50, 332; https://doi.org/10.1103/physrev.50.332.Search in Google Scholar
79. Myers, W. D., Swiatecki, W. J. Nuclear masses and deformations. Nucl. Phys. 1966, 81, 1; https://doi.org/10.1016/0029-5582(66)90639-0.Search in Google Scholar
80. Koning, A. J., Rochman, D., Sublet, J., Dzysiuk, N., Fleming, M., van der Marck, S. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nucl. Data Sheets 2019, 155, 1.10.1016/j.nds.2019.01.002Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Investigation of charged-particle induced reactions on 27Al up to 100 MeV leading to the formation of 22Na and 24Na
- Preparation and potential application of amino-functionalized titanosilicates to removal of Th(IV) in aqueous solutions: optimization using response surface methodology (RSM)
- Radiation fabrication of hybrid activated carbon and functionalized terpolymer hydrogel for sorption of Eu(III) and Sm(III) ions
- Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
- Production of 192Ir sealed sources in Es Salam research reactor for non-destructive testing
- Eco-friendly flaxseed mucilage biofilms fabricated by gamma irradiation
- Grafting of heavy metal oxides onto pure polyester for the interest of enhancing radiation shielding performance
Articles in the same Issue
- Frontmatter
- Original Papers
- Investigation of charged-particle induced reactions on 27Al up to 100 MeV leading to the formation of 22Na and 24Na
- Preparation and potential application of amino-functionalized titanosilicates to removal of Th(IV) in aqueous solutions: optimization using response surface methodology (RSM)
- Radiation fabrication of hybrid activated carbon and functionalized terpolymer hydrogel for sorption of Eu(III) and Sm(III) ions
- Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
- Production of 192Ir sealed sources in Es Salam research reactor for non-destructive testing
- Eco-friendly flaxseed mucilage biofilms fabricated by gamma irradiation
- Grafting of heavy metal oxides onto pure polyester for the interest of enhancing radiation shielding performance