Home Effect of bis(methylimidazolium) ionic liquid on the extraction of actinides and lanthanides with bis(carbamoylmethylphosphine oxide) extractant from nitric acid solutions
Article
Licensed
Unlicensed Requires Authentication

Effect of bis(methylimidazolium) ionic liquid on the extraction of actinides and lanthanides with bis(carbamoylmethylphosphine oxide) extractant from nitric acid solutions

  • Alexander N. Turanov , Vasilii К. Karandashev , Elena V. Sharova EMAIL logo , Оleg I. Аrtyushin , Galina V. Kostikova and Alexander M. Fedoseev
Published/Copyright: June 1, 2023

Abstract

A novel bis(methylimidazolium) ionic liquid 3,3′-(pentane-1,5-diyl) bis(1-methylimidazolium) bis(trifluoromethanesulfonul)imide [C5(mim)2][Tf2N]2 has been synthesized. Its effect on the extraction of U(VI), Th(IV), Am(III), and lanthanides(III) from nitric acid solutions with a polydentate neutral bis(carbamoylmethylphosphine oxide) ligand L containing two bidentate fragments Ph2P(O)CH2C(O)NH–, interconnected by 4,7,10-trioxatridecane spacer through amide nitrogen atoms has been investigated. The efficiency of the extraction of metal ions with solutions of L in 1,2-dichloroethane (DCE) significantly increases in the presence of [C5(mim)2][Tf2N]2. A synergistic effect in the extraction of metal ions in this system has been explained with the high hydrophobicity of the Tf2N anions, which are involved in the formation of extracted complexes as counterions. The value of the synergistic effect decreases with increasing acidity of the aqueous phase. The influence of the composition of the aqueous and organic phases on the efficiency of the extraction of metal ions into the organic phase is considered, and the stoichiometry of the extracted complexes is determined. The effect of the HTf2N coextraction with L on the extraction of metal ions in the L – [C5(mim)2][Tf2N]2 system is discussed. The synergistic effect in the extraction of Ln(III) from 3 M HNO3 solutions with the mixture of L and [C5(mim)2][Tf2N]2 in DCE is higher than that in the L – [C4mim][Tf2N] – DCE system.


Corresponding author: Elena V. Sharova, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russian Federation, E-mail:

Acknowledgments

The study was performed within the framework of the government assignment for the ISSP RAS, IMTHPM RAS, IPCE RAS and INEOS RAS (Contract/agreement No. 075-03-2023-642) and was financially supported by the Ministry of Science and Higher Education of the Russian Federation using the equipment of the Centre for Molecular Structure Studies, INEOS RAS and using equipment of CKP FMI IPCE RAS.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nash, K. L., Jensen, M. P. Analytical separations of lanthanides: basic chemistry and methods. In Handbook on the Physics and Chemistry of Rare Earths; Gschnedner, K. A., Eyring, L., Eds. Elsevier Scince B. V, Vol. 28, 2000; pp. 311–371.10.1016/S0168-1273(00)28008-2Search in Google Scholar

2. Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., Rogers, R. D. Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem. Commun. 1998, 1765; https://doi.org/10.1039/a803999b.Search in Google Scholar

3. Dai, S., Ju, Y. H., Barnes, C. E. Solvent extraction of strontium nitrate by a crown ether using room temperature ionic liquids. J. Chem. Soc. Dalton Trans. 1999, 1201; https://doi.org/10.1039/a809672d.Search in Google Scholar

4. Dietz, M. L., Dzielawa, J. A. Ion-exchange as a mode of cation transfer into room temperature ionic liquids containing crown ethers: implications for the ‘greennes’ of ionic liquids as diluents in liquid-liquid extraction. Chem. Commun. 2001, 2124.Search in Google Scholar

5. Chun, S., Dzyuba, S. V., Bartch, R. A. Influence of structural variation in room temperature ionic liquids on the selectivity and efficiency of competitive alkaline metal salt extraction by a crown ether. Anal. Chem. 2001, 73, 3737; https://doi.org/10.1021/ac010061v.Search in Google Scholar PubMed

6. Jensen, M. P., Neuefeind, J., Beitz, J. V., Skanthakumar, S., Soderholm, L. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J. Amer. Chem. Soc. 2003, 125, 15466; https://doi.org/10.1021/ja037577b.Search in Google Scholar PubMed

7. Visser, A. E., Rogers, R. D. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 2003, 171, 109; https://doi.org/10.1016/s0022-4596(02)00193-7.Search in Google Scholar

8. Nakashima, K., Kubota, F., Maruyama, T., Goto, M. Feasibility of ionic liquids as alternative for industrial solvent extraction processes. Ind. Eng. Chem. Res. 2005, 44, 4368; https://doi.org/10.1021/ie049050t.Search in Google Scholar

9. Dietz, M. L. Ionic liquids as extraction solvents: where do we stand? Sep. Sci. Technol. 2006, 41, 2047; https://doi.org/10.1080/01496390600743144.Search in Google Scholar

10. Zhao, H., Xia, S., Ma, P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol. 2005, 80, 1089; https://doi.org/10.1002/jctb.1333.Search in Google Scholar

11. Kubota, F., Goto, M. Application of ionic liquids to solvent extraction. Solvent Extr. Res. Develop. Japan. 2006, 13, 23.Search in Google Scholar

12. Mallah, M. H., Shemirani, F., Maragheh, M. G., Jamali, M. R. Evaluation of synergism in dispersive liquid-liquid microextraction for simultaneous preconcentration of some lanthanoids. J. Mol. Liq. 2010, 151, 122; https://doi.org/10.1016/j.molliq.2009.12.003.Search in Google Scholar

13. Cholico-Gonzalez, D., Changes, A., Cote, G., Avila-Rodriguez, M. Separation of Co(II) and Ni(II) from aqueous solutions by bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) using trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) as solvent. J. Mol. Liq. 2015, 209, 203; https://doi.org/10.1016/j.molliq.2015.05.048.Search in Google Scholar

14. Wei, W., Cho, C.-W., Kim, S., Song, M.-H., Bediako, J. K., Yun, Y.-S. Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid-liquid extraction using ionic liquid Aliquat-336. J. Mol. Liq. 2016, 216, 18; https://doi.org/10.1016/j.molliq.2016.01.016.Search in Google Scholar

15. Pandey, A., Hashmi, S., Kathirvelu, V., Singh, K. S., Sengupta, A. Effect of alkyl chain length on the extraction properties of U and Th using novel CnmimNTf2/isophthalamide systems. J. Mol. Liq. 2021, 323, 114944; https://doi.org/10.1016/j.molliq.2020.114944.Search in Google Scholar

16. Billard, I., Ouadi, A., Gaillard, C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal. Bioanal. Chem. 2011, 400, 1555; https://doi.org/10.1007/s00216-010-4478-x.Search in Google Scholar PubMed

17. Kolaric, Z. Ionic Liquids: how far do they extend the potential of solvent extraction of f-elements? Solvent Extr. Ion Exch. 2013, 31, 24.10.1080/07366299.2012.700589Search in Google Scholar

18. Atanassova, M. Solvent extraction chemistry in ionic liquids: an overview of f-ions. J. Mol. Liq. 2021, 343, 117530; https://doi.org/10.1016/j.molliq.2021.117530.Search in Google Scholar

19. Luo, H., Dai, S., Bonnesen, P. V., Haverlock, T. J., Moyer, B. A., Buchanan, A. C.III A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6. Solvent Extr. Ion Exch. 2006, 24, 19; https://doi.org/10.1080/07366290500388624.Search in Google Scholar

20. Sun, X., Luo, H., Dai, S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 2012, 112, 2100; https://doi.org/10.1021/cr200193x.Search in Google Scholar PubMed

21. Vasudeva Rao, P. R., Venkatesan, K. A., Rout, A., Srinivasan, T. G., Nagarajan, K. Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep. Sci. Technol. 2012, 47, 204; https://doi.org/10.1080/01496395.2011.628733.Search in Google Scholar

22. Shimojo, K., Kurahashi, K., Naganawa, H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans. 2008, 5083; https://doi.org/10.1039/b810277p.Search in Google Scholar PubMed

23. Mincher, M. E., Quach, D. L., Liao, Y. J., Mincher, B. J., Wai, C. M. The partitioning of americium and lanthanides using tetrabutyldiglycolamide (TBDGA) in octanol and ionic liquid solution. Solvent Extr. Ion Exch. 2012, 30, 735; https://doi.org/10.1080/07366299.2012.700583.Search in Google Scholar

24. Panja, S., Mohapatra, P. K., Tripathi, S. C., Gandhi, P. M., Janardan, P. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 2012, 96, 289; https://doi.org/10.1016/j.seppur.2012.06.015.Search in Google Scholar

25. Li, S.G. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem. Commun. 2006, 1049.10.1039/b514140kSearch in Google Scholar PubMed

26. Odinets, I. L., Sharova, E. V., Artyushin, O. I., Lyssenko, K. A., Nelyubina, Yu. V., Myasoedova, G. V., Molochnikova, N. P., Zakharchenro, E. A. Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery. Dalton Trans. 2010, 39, 4170; https://doi.org/10.1039/b926377b.Search in Google Scholar PubMed

27. Mohapatra, P. K., Kandwal, P., Iqbal, M., Huskens, J., Murali, M. S., Verboom, W. A. A novel CMPO-functionalized task-specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans. 2013, 42, 4343; https://doi.org/10.1039/c3dt32967d.Search in Google Scholar PubMed

28. Ternova, D., Ouadi, A., Mazan, V., Georg, S., Boltoeva, M., Kalchenko, V., Miroshnichenko, S., Billard, I., Gaillard, C. New ionic liquid based on the CMPO pattern for sequential extraction of U(VI), Am(III) and Eu(III). J. Solut. Chem. 2018, 47, 1309; https://doi.org/10.1007/s10953-018-0730-3.Search in Google Scholar

29. Turanov, A. N., Karandashev, V. K., Baulin, V. E. Effect of anions on the extraction of lanthanides(III) by N,N’-dimethyl-N,N’-diphenyl-3-oxapentanediamide. Solvent Extr. Ion Exch. 2008, 26, 77; https://doi.org/10.1080/07366290801904871.Search in Google Scholar

30. Turanov, A. N., Karandashev, V. K., Baulin, V. E. Extraction of alkaline earth metal ions with TODGA in the presence of ionic liquids. Solvent Extr. Ion Exch. 2010, 28, 367; https://doi.org/10.1080/07366291003684238.Search in Google Scholar

31. Turanov, A. N., Karandashev, V. K., Boltoeva, M., Gailard, C., Mazan, V. Sinergistic extraction of uranium(VI) with TODGA and hydrophobic ionic liquid mixtures into molecular diluents. Sep. Purif. Technol. 2016, 164, 97; https://doi.org/10.1016/j.seppur.2016.03.004.Search in Google Scholar

32. Turanov, A. N., Karandashev, V. K., Baulin, V. E. Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions. Russ. J. Inorg. Chem. 2008, 53, 970; https://doi.org/10.1134/s0036023608060272.Search in Google Scholar

33. Turanov, A. N., Karandashev, V. K., Baulin, V. E. Extraction of lanthanides(III) with N,N’-bis(diphenylphosphinylmethylcarbonyl)diaza-18-crown-6 in the presence of ionic liquids. Solvent Extr. Ion Exch 2012, 30, 244; https://doi.org/10.1080/07366299.2011.639248.Search in Google Scholar

34. Turanov, A. N., Karandashev, V. K., Yarkevich, A. N. Extraction of REEs(III), U(VI), and Th(IV) from nitric acid solutions with carbamoylmethylphosphine oxides in the presence of an ionic liquid. Radiochemistry 2013, 55, 382; https://doi.org/10.1134/s1066362213040073.Search in Google Scholar

35. Turanov, A. N., Karandashev, V. K., Sharova, E. V., Genkina, G. K., Аrtyushin, О. I., Baimukhanova, A. Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole-modified carbamoylmethylphosphine oxide from nitric acid solutions. Radiochim. Acta 2018, 106, 355; https://doi.org/10.1515/ract-2017-2851.Search in Google Scholar

36. Gan, Q., Cai, Y., Fu, K., Yuan, L., Feng, W. Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions. Radiochim. Acta 2020, 108, 239; https://doi.org/10.1515/ract-2019-3147.Search in Google Scholar

37. Horwitz, E. P., Kalina, D. G., Diamond, H., Vandergrift, G. F., Schulz, W. W. The TRUEX process: a process for the extraction of the transuranic elements from nitric acid wastes utilizing modified PUREX solvent. Solvent Extr. Ion Exch. 1985, 3, 75.10.1080/07366298508918504Search in Google Scholar

38. Horwitz, E. P., Kalina, D. G., Kaplan, L., Mason, G. W., Diamond, H. Selected alkyl-(phcnyl)-N,N-dialcyl-carbamoyl methyl-phosphine as extractants for Am(lII) from nitric acid media. Sep. Sci. Technol. 1982, 17, 1261; https://doi.org/10.1080/01496398208060649.Search in Google Scholar

39. Chmutova, M. K., Ivanova, L. A., Kochetkova, N. E., Nesterova, N. P., Myasoedov, B. F., Rozen, A. M. Dependence of extraction of nitric acid and americium(III) from structure of diaryl(dialkyl)[diethylcarbamoylmethyl]phosphines. Radiokhimiya 1995, 37, 422.Search in Google Scholar

40. Arduini, A., Böchmer, V., Delmau, L., Desreux, J. F., Dozol, J.-F., Carrera, A. G., Lambert, B., Musigmann, C., Pochini, A., Shivanyuk, A., Ugozzoli, F. Rigidified calixarenes bearing four carbamoylmethylphosphineoxide or carbamoylmethylphosphoryl functions at the wide rim. Chem. Eur. J. 2000, 6, 2135; https://doi.org/10.1002/1521-3765(20000616)6:12<2135::aid-chem2135>3.0.co;2-a.10.1002/1521-3765(20000616)6:12<2135::AID-CHEM2135>3.0.CO;2-ASearch in Google Scholar

41. Atamas, L., Klimchuk, O., Rudzevich, V., Pirozhenko, V., Kalchenko, V., Smirnov, I., Babain, V., Efremova, T., Varnek, A., Wipff, G., Arnaud-New, F., Roch, M., Saadioui, M., Bohmer, V. New organophosphorus calix[4]arene ionophores for trivalent lanthanide and actinide cations. J. Supramolecular Chem. 2002, 2, 421; https://doi.org/10.1016/s1472-7862(03)00052-2.Search in Google Scholar

42. Delmau, L. H., Simon, N., Schwing-Weill, M.-J., Arnaud-New, F., Dozol, J.-F., Eymard, S., Tournois, B., Gruttner, C., Musigmann, C., Tunayar, A., Böhmer, V. Extraction of trivalent lanthanides and actinides by “CMPO-like” calixarenes. Sep. Sci. Technol. 1999, 34, 863; https://doi.org/10.1081/ss-100100687.Search in Google Scholar

43. Boerrigter, H., Verboom, W., Reinhoudt, D. N. Novel resorcinarene cavitand-based CMP(O) cation ligands: synthesis and extraction properties. J. Org. Chem. 1997, 62, 7148; https://doi.org/10.1021/jo9703414.Search in Google Scholar

44. Reinoso-Garcia, M. M., Verboom, W., Reinhoudt, D. N., Brisach, F., Arnaud-New, F., Liger, K. Solvent extraction of actinides and lanthanides by CMP(O)- and N-acyl(thio)urea-tetrafunctionalized cavitands: strong synergistic effect of cobalt bis(dicarbollide) ions. Solvent Extr. Ion Exch. 2005, 23, 425; https://doi.org/10.1081/sei-200056542.Search in Google Scholar

45. Amrhein, P., Wash, P. L., Shivanyuk, A., Rebek, J. Metal ligation regulates conformational equilibria and binding properties of cavitands. J. Org. Lett. 2002, 4, 319; https://doi.org/10.1021/ol0167661.Search in Google Scholar

46. Amerhein, P., Shivanyuk, A., Jonson, D. W., Rebek, J. Metal-switching and self-inclusion of functional cavitands. J. Am. Chem. Soc. 2002, 124, 10349; https://doi.org/10.1021/ja0204269.Search in Google Scholar

47. Boerrigter, H., Tomasberger, T., Verboom, W., Reinhoudt, D. N. Novel ligands for the separation of trivalent lanthanides and actinides - tetrakis(phosphane sulfide) and -(phosphinic acid) cavitands. Eur. J. Org. Chem. 1999, 3, 665; https://doi.org/10.1002/(sici)1099-0690(199903)1999:3<665::aid-ejoc665>3.0.co;2-f.10.1002/(SICI)1099-0690(199903)1999:3<665::AID-EJOC665>3.0.CO;2-FSearch in Google Scholar

48. Peters, M. W., Werner, E. J., Scott, M. J. Enhanced selectivity for actinides over lanthanides with CMPO ligands secured to a C3-symmetric triphenoxymethane platform. Inorg. Chem. 2002, 41, 1707; https://doi.org/10.1021/ic011144x.Search in Google Scholar

49. Matloka, K., Sah, A. K., Peters, M. W., Srinivasan, P., Gelis, A. V., Regalbuto, M., Scott, M. J. CMPO-functionalized C3-symmetric tripodal ligands in liquid/liquid extractions: efficient, selective recognition of Pu(IV) with low affinity for 3+ metal ions. Inorg. Chem. 2007, 46, 10549; https://doi.org/10.1021/ic700800a.Search in Google Scholar

50. Reinoso-Garcia, M. M., Jacczewski, D., Reinhoudt, D. N., Verboom, W., Malinowska, E., Pietrzak, M., Hill, C., Baca, J., Gruner, B., Seluchky, P., Gruttner, C. CMP(O) tripodands: synthesis, potentiometric studies and extractions. New J. Chem. 2006, 30, 1480; https://doi.org/10.1039/b600412a.Search in Google Scholar

51. Sharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M., Odinets, I. L. N-Tris[(2-aminoethyl)-2-(diphenylphosphoryl)acetamide)] - novel CMPO tripodand: synthesis, extraction studies and luminescent properties of lanthanide complexes. Centr. Eur. J. Chem. 2012, 10, 146; https://doi.org/10.2478/s11532-011-0124-5.Search in Google Scholar

52. Dam, H. H., Reinhoudt, D. N., Verboom, W. Multicoordinate ligands for actinide/lanthanide separations. Chem. Soc. Rev. 2007, 36, 367; https://doi.org/10.1039/b603847f.Search in Google Scholar

53. Turanov, A. N., Karandashev, V. K., Bondarenko, N. A. Extraction properties of polyfunctional P,N-containing podands with diphenylphosphorylacetamide terminal groups in nitric acid solutions. Radiochemistry 2006, 48, 175; https://doi.org/10.1134/s1066362206020147.Search in Google Scholar

54. Turanov, A. N., Karandashev, V. K., Sharova, E. V., Artyushin, O. I., Odinets, I. L. Extraction and sorption preconcentration of U(VI) and Th(IV) from nitric acid solutions using bis(diphenylphosphorylmethylcarbonylamino)alkanes. Radiochemistry 2010, 52, 258; https://doi.org/10.1134/s1066362210030069.Search in Google Scholar

55. Turanov, A. N., Karandashev, V. K., Sharova, E. V., Artyushin, O. I., Odinets, I. L. Extraction of lanthanides(III), U(VI), and Th(IV) from nitric acid solutions with 1,5-N,N’- bis[(diphenylphosphoryl)acetylamino]pentanes. Solvent Extr. Ion Exch. 2012, 30, 604; https://doi.org/10.1080/07366299.2012.671117.Search in Google Scholar

56. Turanov, А. N., Karandashev, V. K., Sharova, E. V., Аrtyushin, О. I. (Bis(diphenylcarbamoylmethylphosphine oxide) ligand containing 4, 7, 10 – trioxatridecane spacer: novel effective extractant for actinides and lanthanides. Solvent Extr. Ion Exch. 2016, 34, 26; https://doi.org/10.1080/07366299.2015.1129197.Search in Google Scholar

57. Sun, T., Zhang, Y., Wu, Q., Chen, J., Xia, L., Xu, C. Comparative study on the extraction of trivalent americium and europium by CMPO in imidazolium-based ionic liquids and dodecane. Solvent Extr. Ion Exch. 2017, 35, 408; https://doi.org/10.1080/07366299.2017.1379142.Search in Google Scholar

58. Hawker, R. R., Haines, R. S., Harper, J. B. Rational selection of the cation of an ionic liquid solvent to control the reaction outcome of a substitution reaction. Chem. Commun. 2018, 54, 2296; https://doi.org/10.1039/c8cc00241j.Search in Google Scholar PubMed

59. Rozen, A. M., Krupnov, B. V. Dependence of extraction ability of organic compounds on their structure. Russ. Chem. Rev. 1996, 65, 973; https://doi.org/10.1070/rc1996v065n11abeh000241.Search in Google Scholar

60. Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A., Ternova, D., Henning, C. Insights into the mechanism of extraction of uranium (VI) from nitric acid solution into an ionic liquid by using tri-n-butyl phosphate. ChemPhysChem 2015, 16, 2653; https://doi.org/10.1002/cphc.201500283.Search in Google Scholar PubMed

61. Binnemans, K. Lanthanides and actinides in ionic liquids. Chem. Rev. 2007, 107, 2592; https://doi.org/10.1021/cr050979c.Search in Google Scholar PubMed

62. Litvina, M. N., Chmutova, M. K., Myasoedov, B. F., Kabachnik, M. I. Extraction of rare-earth elements and americium and their separation factor in systems nitric acid – diaryl(dialkyl)[dialkylcarbamoylmethyl]phosphine oxides. Radiokhimiya 1996, 38, 525.Search in Google Scholar

63. Horwitz, E. P., Martin, K. A., Diamond, H., Kaplan, L. Extraction of Am from nitric acid by carbamoyl-phosphoryl extractants: the influence of substituents on the selectivity of Am over Fe and selected fission products. Solvent Extr. Ion Exch. 1986, 4, 449; https://doi.org/10.1080/07366298608917877.Search in Google Scholar

64. Horwitz, E. P., Diamond, H., Martin, K. A., Chiarizia, R. Extraction of americium (III) from chloride media by octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide. Solvent Extr. Ion Exch. 1987, 5, 419; https://doi.org/10.1080/07366298708918575.Search in Google Scholar

65. El Guendouzi, M., Errougui, A. Solubility in the ternary aqueous systems containing M, Cl-, NO3-, and SO42- with M = NH4+, Li+, or Mg2+ at T = 298.15K. J. Chem. Eng. Data 2009, 54, 376; https://doi.org/10.1021/je800425z.Search in Google Scholar

66. Okamura, H., Aoyagi, N., Shimojo, K., Naganawa, H., Imura, H. Role of Tf2N- anions in the ionic liquid – water distribution of europium(III) chelates. RSC Adv. 2017, 7, 7610; https://doi.org/10.1039/c6ra27208h.Search in Google Scholar

67. Katsuta, S., Watanabe, Y., Araki, Y., Kudo, Y. Extraction of gold(III) from hydrochloric acid into various ionic liquids: relationship between extraction efficiency and aqueous solubility of ionic liquids. ACS Sustainable Chem. Eng. 2015, 4, 564; https://doi.org/10.1021/acssuschemeng.5b00976.Search in Google Scholar

Received: 2022-10-03
Accepted: 2023-05-10
Published Online: 2023-06-01
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0096/html
Scroll to top button