Home Analytical chemistry of some trace elements in Tamarix gallica L. using instrumental neutron activation analysis (INAA)
Article
Licensed
Unlicensed Requires Authentication

Analytical chemistry of some trace elements in Tamarix gallica L. using instrumental neutron activation analysis (INAA)

  • Bouzid Nedjimi ORCID logo EMAIL logo
Published/Copyright: May 4, 2023

Abstract

Salt cedar (Tamarix gallica L.) is an important xero–halophytic tree used for its medicinal properties to treat cancer, gastrointestinal syndromes, diabetes and infections. In the present investigation, instrumental neutron activation analysis (INAA) was carried out to evaluate some major and trace elements (As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, K, La, Na, Rb, Sb, Sc, Sm, Tb, Th, and Zn) in this species. The quality of the results was assessed by the analysis of CRM-GSV4 tea leaves; a good agreement was achieved between the measured and recommended data. The results show that T. gallica contained high levels of Ca, K, Na and Fe, while elements toxic to humans (As, Br, and Sb) were below the tolerable limits reported in the World Health Organization database (WHO/FAO). Macro–and microelements essential to humans were present in T. gallica leaves with significant levels in the following order: Ca > Na > K > Fe > Zn > Cr > Co. T. gallica could provide a new promising therapeutic source for pharmacological purposes.


Corresponding author: Bouzid Nedjimi, Laboratory of Exploration and Valorization of Steppe Ecosystem, Faculty of Science of Nature and Life, Ziane Achour University of Djelfa, Cité Aîn Chih, P.O. Box 3117, Djelfa 17000, Algeria, E-mail:

Acknowledgments

The technical assistance of the staff of Es–Salam Nuclear Research Centre of Birine, Djelfa was appreciated. The research described in this paper was supported by the Algerian Ministry of Higher Education and Scientific Research (PRFU Project #D04N01UN170120200003). Author acknowledges gratefully the critical review of the anonymous referees, and both John M. Cheeseman emeritus Prof., Department of Plant Biology, University of Illinois, Urbana-Champaign, USA, and Tim J. Flowers emeritus Prof., School of Life Sciences, University of Sussex, Brighton, UK, for reviewing the English of the manuscript.

  1. Author contributions: The author has accepted responibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest: No conflict of interest to declare by author.

References

1. Nedjimi, B., Beladel, B., Guit, B. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea) by instrumental neutron activation analysis. J. Radiat. Res. Appl. Sci. 2015, 8, 243; https://doi.org/10.1016/j.jrras.2015.01.009.Search in Google Scholar

2. Wang, W., Xu, J., Fang, H., Li, Z., Li, M. Advances and challenges in medicinal plant breeding. Plant Sci. 2020, 298, 110573; https://doi.org/10.1016/j.plantsci.2020.110573.Search in Google Scholar PubMed

3. Abouzid, S., Sleem, A. Hepatoprotective and antioxidant activities of Tamarix nilotica flowers. Pharm. Biol. 2011, 49, 392; https://doi.org/10.3109/13880209.2010.518971.Search in Google Scholar PubMed

4. Boulaaba, M., Tsolmon, S., Ksouri, R., Han, J., Kawada, K., Smaoui, A., Abdelly, C., Isoda, H. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 2013, 65, 927; https://doi.org/10.1007/s10616-013-9564-4.Search in Google Scholar PubMed PubMed Central

5. Hebi, M., Farid, O., Ajebli, M., Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2017, 87, 230; https://doi.org/10.1016/j.biopha.2016.12.111.Search in Google Scholar PubMed

6. Gadallah, A. S., Mujeeb-Ur-Rehman, Atta-Ur-Rahman, Yousuf, S., Atia-Tul-Wahab, Jabeen, A., Swilam, M. M., Khalifa, S. A. M., El-Seedi, H. R., Choudhary, M. I. Anti-inflammatory principles from Tamarix aphylla L.: a bioassay-guided fractionation study. Molecules 2020, 25, 2994.10.3390/molecules25132994Search in Google Scholar PubMed PubMed Central

7. Blamey, M., Grey-Wilson, C. La Flore D’Europe Occidentale; Edit. Flammarion: Paris, 2003.Search in Google Scholar

8. Mehri, A. Trace elements in human nutrition (II) – an update. Int. J. Prev. Med. 2020, 11, 2; https://doi.org/10.4103/ijpvm.IJPVM_48_19.Search in Google Scholar PubMed PubMed Central

9. Elayaperumal, M., Vedachalam, Y., Loganathan, D., Kumaravelu, T. A., Anusuya, G. S., Kennedy, J. Ion beam analysis of proton-induced x-ray emission (PIXE) techniques for elemental investigation of young stage neem leaf of southern India, Tamil Nadu. Biol. Trace Elem. Res. 2021, 199, 3540; https://doi.org/10.1007/s12011-020-02443-x.Search in Google Scholar PubMed

10. Otmakhov, V. I., Rabchevich, E. S., Petrova, E. V., Shilova, I. V., Gindullina, T. M., Sheleg, E. S., Babenkov, D. E. New method for detection and quantitative determination of macroelements and trace elements in plant raw material by arc atomic emission spectroscopy with a multichannel analyzer. Pharm. Chem. J. 2022, 56, 277; https://doi.org/10.1007/s11094-022-02631-0.Search in Google Scholar

11. Arı, A., Arı, P. E., Ermişer, D., Cındık, B., Yalçın, E., Gaga, E. O. Multi-elemental characterization of semolina samples by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Biol. Trace Elem. Res. 2022, 200, 3462; https://doi.org/10.1007/s12011-021-02933-6.Search in Google Scholar PubMed

12. Nedjimi, B. Trace element quantification in two Algerian thymes (Thymus algeriensis Boiss & Reut. and Thymus capitatus (L.) Hoffm. & Link) using EDXRF spectrometry. Biol. Trace Elem. Res. 2023, 201, 455; https://doi.org/10.1007/s12011-022-03128-3.Search in Google Scholar PubMed

13. Nedjimi, B. Measurement of selenium in two Algerian chenopods (Atriplex canescens (Pursh.) Nutt. And Suaeda fruticosa (Linn.) Forssk). Measurement 2018, 129, 256; https://doi.org/10.1016/j.measurement.2018.07.029.Search in Google Scholar

14. Nedjimi, B. Analytical determination of some mineral and trace elements in medicinal Castor plant (Ricinus communis L.) by instrumental neutron activation analysis. J. Trace Elem. Minerals 2022, 2, 100024; https://doi.org/10.1016/j.jtemin.2022.100024.Search in Google Scholar

15. Bahramsoltani, R., Kalkhorani, M., Zaidi, S. M. A., Farzaei, M. H., Roja, R. The genus Tamarix: traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacol. 2020, 246, 112245; https://doi.org/10.1016/j.jep.2019.112245.Search in Google Scholar PubMed

16. Han, Z., Yin, W., Zhang, J., Niu, S., Ren, L. Active anti-erosion protection strategy in Tamarisk (Tamarix aphylla). Sci. Rep. 2013, 3, 3429; https://doi.org/10.1038/srep03429.Search in Google Scholar PubMed PubMed Central

17. Greenberg, R. R., Bode, P., Fernandes, E. A. N. Neutron activation analysis: a primary method of measurement. Spectrochim. Acta B: At. Spectrosc. 2011, 66, 193; https://doi.org/10.1016/j.sab.2010.12.011.Search in Google Scholar

18. Siddique, N., Waheed, S. Evaluation of laboratory performance using proficiency test exercise results. J. Radioanal. Nucl. Chem. 2012, 291, 817; https://doi.org/10.1007/s10967-011-1357-7.Search in Google Scholar

19. Nedjimi, B., Beladel, B. Instrumental neutron activation analysis of Marrubium vulgare L., a valuable medicinal herb. Radiochim. Acta 2016, 104, 285; https://doi.org/10.1515/ract-2015-2406.Search in Google Scholar

20. Dung, H. M., Freitas, M. C., Blaauw, M., Almeida, S. M., Dionisio, I., Canha, N. H. Quality control and performance evaluation of k0-based neutron activation analysis at the Portuguese research reactor. Nucl. Instrum. Methods Phys. Res. A 2010, 622, 392; https://doi.org/10.1016/j.nima.2010.04.003.Search in Google Scholar

21. Beto, J. A. The role of calcium in human aging. Clin. Nutr. Res. 2015, 4, 1; https://doi.org/10.7762/cnr.2015.4.1.1.Search in Google Scholar PubMed PubMed Central

22. Castro, H., Raij, L. Potassium in hypertension and cardiovascular disease. Semin. Nephrol. 2013, 33, 277; https://doi.org/10.1016/j.semnephrol.2013.04.008.Search in Google Scholar PubMed

23. Shubham, K., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020, 99, 58; https://doi.org/10.1016/j.tifs.2020.02.021.Search in Google Scholar

24. Otten, J. J., Hellwig, J. P., Meyers, L. D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, D.C, 2006.Search in Google Scholar

25. Vincent, J. B. New evidence against chromium as an essential trace element. J. Nutr. 2017, 147, 2212; https://doi.org/10.3945/jn.117.255901.Search in Google Scholar PubMed

26. Prasad, A. S. Zinc in human health: effect of zinc on immune cells. Molecular Med. 2008, 14, 353; https://doi.org/10.2119/2008-00033.prasad.Search in Google Scholar

27. Nedjimi, B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 33; https://doi.org/10.1186/s43088-021-00123-w.Search in Google Scholar PubMed PubMed Central

28. Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, 2011.10.1201/b10158Search in Google Scholar

29. WHO/FAO. Expert committee on food additives, summary and conclusions. In 53rd Meeting, Rome, Italy, 1999.Search in Google Scholar

30. Ali, M., Badri, M. A., Moalla, S. N., Pulford, I. D. Cycling of metals in desert soils: effects of Tamarix nilotica and inundation by lake water. Environ. Geochem. Health 2001, 23, 373.10.1023/A:1012261628432Search in Google Scholar

31. Arab, H., Mehennaoui, S. Comparative study of chemical composition of three forages from South-East Algeria. Options Mediterr. 2014, 109, 111.Search in Google Scholar

Received: 2022-07-13
Accepted: 2023-04-20
Published Online: 2023-05-04
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0074/html
Scroll to top button