Home 1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater
Article
Licensed
Unlicensed Requires Authentication

1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater

  • Peng Liu , Zhuang Shen , Jiaxian Cheng , Zhen Han , Wenda Xu , Mingbo Ji EMAIL logo and Fuqiu Ma EMAIL logo
Published/Copyright: October 3, 2022

Abstract

Due to the relative abundance, long half-life and high mobility of radioactive cesium (Cs), new adsorbents are urgently needed to treat Cs to ensure public health. In this study, a graphene oxide (GO) based adsorbent for Cs(I) adsorption was prepared by 1-aza-18-crown-6 ether modification. XRD, FT-IR, XPS and SEM results showed that the properties of 1-aza-18-crown 6 ether modified GO (18C6-GO) changed dramatically compared with that of raw graphite. The adsorption properties of 18C6-GO for Cs(I) were studied by batch static adsorption experiments. The results showed that the adsorption equilibrium time of 18C6-GO was 20 h. Kinetic study revealed that the adsorption rate of Cs(I) conformed to pseudo-second-order kinetic model. Langmuir adsorption isotherm simulation indicated that the adsorption arises at homogeneous adsorption sites on 18C6-GO. Therefore, crown ether modified GO may have implications for the treatment of wastewater.


Corresponding authors: Mingbo Ji and Fuqiu Ma, Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264006, China; and College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, E-mail: (M. Ji),  (F. Ma)

Funding source: Yantai Science and technology planning project

Award Identifier / Grant number: 2021MSGY029

Funding source: University and Local Integration Development Project of Yantai

Award Identifier / Grant number: 2020XDRHXMPT36

Funding source: Academic-Industry Partnership Fund

Award Identifier / Grant number: 210F0401006

Funding source: Yantai New Growth Drivers Fund

Award Identifier / Grant number: (YTDNY20220425-02)

Acknowledgments

The authors are grateful for all your support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Yantai Science and technology planning project (2021MSGY029), the University and Local Integration Development Project of Yantai (2020XDRHXMPT36), and the Academic-Industry Partnership Fund (210F0401006), the Yantai New Growth Drivers Fund (YTDNY20220425-02).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, Z., Zhao, Y., Tong, D., Nie, S., Wang, Q., Nie, X., Ji, Z. Chem. Phys. 2021, 553, 111380.10.1016/j.chemphys.2021.111380Search in Google Scholar

2. Park, B., Ghoreishian, S. M., Kim, Y., Park, B. J., Kang, S. M., Huh, Y. S. Chemosphere 2020, 263, 128266; https://doi.org/10.1016/j.chemosphere.2020.128266.Search in Google Scholar PubMed

3. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Search in Google Scholar PubMed

4. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A., Sugihara, Y. J. Colloid Interface Sci. 2020, 571, 66–79; https://doi.org/10.1016/j.jcis.2020.03.028.Search in Google Scholar PubMed

5. Lizaga, I., Gaspar, L., Quijano, L., Dercon, G., Navas, A. Sci. Total Environ. 2019, 651, 250–260; https://doi.org/10.1016/j.scitotenv.2018.09.075.Search in Google Scholar PubMed

6. Sharavanan, V. J., Sivaramakrishnan, M., Sivarajasekar, N., Senthilrani, N., Kothandan, R., Dhakal, N., Sivamani, S., Show, P. L., Awual, M. R., Naushad, M. Environ. Chem. Lett. 2020, 18, 325–343; https://doi.org/10.1007/s10311-019-00944-3.Search in Google Scholar

7. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, M. R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Search in Google Scholar PubMed

8. Strickland, E. IEEE Spectrum 2014, 51, 46–53; https://doi.org/10.1109/mspec.2014.6745884.Search in Google Scholar

9. Chen, G. R., Chang, Y. R., Liu, X., Kawamoto, T., Tanaka, H., Parajuli, D., Chen, M. L., Lo, Y. K., Lei, Z., Lee, D. J. Separ. Purif. Technol. 2015, 153, 37–42; https://doi.org/10.1016/j.seppur.2015.08.029.Search in Google Scholar

10. Borai, E. H., Harjula, R., Malinen, L., Paajanen, A. J. Hazard Mater. 2009, 172, 416–422; https://doi.org/10.1016/j.jhazmat.2009.07.033.Search in Google Scholar PubMed

11. Duste, T. A., Szymanowski, J., Fein, J. B. Environ. Sci. Technol. 2017, 51, 8510–8518.10.1021/acs.est.6b05776Search in Google Scholar PubMed

12. Bao, S., Yang, W., Wang, Y., Yu, Y., Sun, Y. J. Hazard Mater. 2020, 409, 124470.10.1016/j.jhazmat.2020.124470Search in Google Scholar PubMed

13. Qiao, D., Li, Z., Duan, J., He, X. Chem. Eng. J. 2020, 400, 125952; https://doi.org/10.1016/j.cej.2020.125952.Search in Google Scholar

14. Shamsipur, M., Taherpour, A., Pashabadi, A. Analyst 2016, 141, 4227–4234; https://doi.org/10.1039/c6an00592f.Search in Google Scholar PubMed

15. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., Ruoff, R. S. Carbon 2007, 45, 1558–1565; https://doi.org/10.1016/j.carbon.2007.02.034.Search in Google Scholar

16. Zhang, H., Huang, Z., Zhao, P., Hou, Y., Guo, J., Wu, Y. Mater. Res. Express 2019, 6, 125095; https://doi.org/10.1088/2053-1591/ab5d65.Search in Google Scholar

17. Restiawaty, E., Maulana, A., Culsum, N., Aslan, C., Suendo, V., Nishiyama, N., Budhi, Y. W. RSC Adv. 2021, 11, 16500–16509; https://doi.org/10.1039/d1ra00704a.Search in Google Scholar PubMed PubMed Central

18. Wang, J., Han, Z. Polym. Adv. Technol. 2010, 17, 335–340; https://doi.org/10.1002/pat.698.Search in Google Scholar

19. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Search in Google Scholar

20. Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y. J. Nat. Mater. 2010, 9, 840–845; https://doi.org/10.1038/nmat2858.Search in Google Scholar PubMed

21. Pham, V. H., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., Chung, J. S J. Mater. Chem. 2011, 21, 3371–3377; https://doi.org/10.1039/c0jm02790a.Search in Google Scholar

22. Khandaker, S., Kuba, T., Toyohara, Y., Kamida, S. Earth Environ. Sci. 2017, 82, 012001; https://doi.org/10.1088/1755-1315/82/1/012002.Search in Google Scholar

23. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. Nature 2007, 446, 60–63; https://doi.org/10.1038/nature05545.Search in Google Scholar PubMed

24. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X. Environ. Sci. Technol. 2015, 49, 4255–4262; https://doi.org/10.1021/es505590j.Search in Google Scholar PubMed

25. Xing, M., Zhuang, S., Wang, J. Prog. Nucl. Energy 2019, 119, 103167.10.1016/j.pnucene.2019.103167Search in Google Scholar

26. Tan, L., Wang, S., Du, W., Hu, T. Chem. Eng. J. 2016, 292, 92–97; https://doi.org/10.1016/j.cej.2016.01.073.Search in Google Scholar

27. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Search in Google Scholar

28. Yuan, L. Y., Gao, G., Feng, C. Q., Chai, Z. F., Shi, W. Q. Chem. Eng. J. 2020, 385, 123892; https://doi.org/10.1016/j.cej.2019.123892.Search in Google Scholar

29. Khandaker, K., Toyohara, T., Kamida, S., Kuba, T. Water Resour. Ind. 2018, 19, 35–46; https://doi.org/10.1016/j.wri.2018.01.001.Search in Google Scholar

30. Sugiura, Y., Saito, Y., Endo, T., Makita, Y. Cryst. Growth Des. 2019, 19, 4162–4171; https://doi.org/10.1021/acs.cgd.9b00656.Search in Google Scholar

31. Awual, M. R., Yaita, T., Kobayashi, T., Shiwaku, H., Suzuki, S. J. Environ. Chem. Eng. 2020, 8, 103684; https://doi.org/10.1016/j.jece.2020.103684.Search in Google Scholar

32. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Search in Google Scholar PubMed

33. Awual, M. R. Chem. Eng. J. 2016, 303, 539–546; https://doi.org/10.1016/j.cej.2016.06.040.Search in Google Scholar

34. Qian, Y., Yuan, Y., Wang, H., Liu, H., Zhang, J., Shi, S., Guo, Z., Wang, N. J. Mater. Chem. 2018, 6, 24676–24685; https://doi.org/10.1039/c8ta09486a.Search in Google Scholar

35. Yang, H., Ding, H., Zhang, X., Luo, X., Zhang, Y. Colloids Surf., A 2019, 583, 123914; https://doi.org/10.1016/j.colsurfa.2019.123914.Search in Google Scholar

36. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Search in Google Scholar PubMed

37. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385–470.10.1515/zpch-1907-5723Search in Google Scholar

38. Pillai, S. S., Mullassery, M. D., Fernandez, N. B., Girija, N., Geetha, P., Koshy, M. Ecotoxicol. Environ. Saf. 2013, 92, 199–205; https://doi.org/10.1016/j.ecoenv.2013.01.020.Search in Google Scholar PubMed

39. Temkin, M. J., Pyzhev, V. Acta Physiochim. USSR 1940, 12, 217–222.Search in Google Scholar

40. Dubinin, M. M., Radushkevich, L. V. Chem. Zent 1947, 1, 875.Search in Google Scholar

41. Helfferich, F. Ion Exchange; McGraw-Hill: New York, 1962.Search in Google Scholar

42. Li, N., Yang, L., Wang, D., Tang, C., Deng, W., Wang, Z. Environ. Sci. Technol. 2021, 55, 9181–9188; https://doi.org/10.1021/acs.est.0c08743.Search in Google Scholar PubMed

Received: 2022-07-05
Accepted: 2022-09-09
Published Online: 2022-10-03
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0068/html
Scroll to top button