Abstract
Due to the relative abundance, long half-life and high mobility of radioactive cesium (Cs), new adsorbents are urgently needed to treat Cs to ensure public health. In this study, a graphene oxide (GO) based adsorbent for Cs(I) adsorption was prepared by 1-aza-18-crown-6 ether modification. XRD, FT-IR, XPS and SEM results showed that the properties of 1-aza-18-crown 6 ether modified GO (18C6-GO) changed dramatically compared with that of raw graphite. The adsorption properties of 18C6-GO for Cs(I) were studied by batch static adsorption experiments. The results showed that the adsorption equilibrium time of 18C6-GO was 20 h. Kinetic study revealed that the adsorption rate of Cs(I) conformed to pseudo-second-order kinetic model. Langmuir adsorption isotherm simulation indicated that the adsorption arises at homogeneous adsorption sites on 18C6-GO. Therefore, crown ether modified GO may have implications for the treatment of wastewater.
Funding source: Yantai Science and technology planning project
Award Identifier / Grant number: 2021MSGY029
Funding source: University and Local Integration Development Project of Yantai
Award Identifier / Grant number: 2020XDRHXMPT36
Funding source: Academic-Industry Partnership Fund
Award Identifier / Grant number: 210F0401006
Funding source: Yantai New Growth Drivers Fund
Award Identifier / Grant number: (YTDNY20220425-02)
Acknowledgments
The authors are grateful for all your support.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was financially supported by the Yantai Science and technology planning project (2021MSGY029), the University and Local Integration Development Project of Yantai (2020XDRHXMPT36), and the Academic-Industry Partnership Fund (210F0401006), the Yantai New Growth Drivers Fund (YTDNY20220425-02).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chen, Z., Zhao, Y., Tong, D., Nie, S., Wang, Q., Nie, X., Ji, Z. Chem. Phys. 2021, 553, 111380.10.1016/j.chemphys.2021.111380Search in Google Scholar
2. Park, B., Ghoreishian, S. M., Kim, Y., Park, B. J., Kang, S. M., Huh, Y. S. Chemosphere 2020, 263, 128266; https://doi.org/10.1016/j.chemosphere.2020.128266.Search in Google Scholar PubMed
3. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Search in Google Scholar PubMed
4. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A., Sugihara, Y. J. Colloid Interface Sci. 2020, 571, 66–79; https://doi.org/10.1016/j.jcis.2020.03.028.Search in Google Scholar PubMed
5. Lizaga, I., Gaspar, L., Quijano, L., Dercon, G., Navas, A. Sci. Total Environ. 2019, 651, 250–260; https://doi.org/10.1016/j.scitotenv.2018.09.075.Search in Google Scholar PubMed
6. Sharavanan, V. J., Sivaramakrishnan, M., Sivarajasekar, N., Senthilrani, N., Kothandan, R., Dhakal, N., Sivamani, S., Show, P. L., Awual, M. R., Naushad, M. Environ. Chem. Lett. 2020, 18, 325–343; https://doi.org/10.1007/s10311-019-00944-3.Search in Google Scholar
7. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, M. R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Search in Google Scholar PubMed
8. Strickland, E. IEEE Spectrum 2014, 51, 46–53; https://doi.org/10.1109/mspec.2014.6745884.Search in Google Scholar
9. Chen, G. R., Chang, Y. R., Liu, X., Kawamoto, T., Tanaka, H., Parajuli, D., Chen, M. L., Lo, Y. K., Lei, Z., Lee, D. J. Separ. Purif. Technol. 2015, 153, 37–42; https://doi.org/10.1016/j.seppur.2015.08.029.Search in Google Scholar
10. Borai, E. H., Harjula, R., Malinen, L., Paajanen, A. J. Hazard Mater. 2009, 172, 416–422; https://doi.org/10.1016/j.jhazmat.2009.07.033.Search in Google Scholar PubMed
11. Duste, T. A., Szymanowski, J., Fein, J. B. Environ. Sci. Technol. 2017, 51, 8510–8518.10.1021/acs.est.6b05776Search in Google Scholar PubMed
12. Bao, S., Yang, W., Wang, Y., Yu, Y., Sun, Y. J. Hazard Mater. 2020, 409, 124470.10.1016/j.jhazmat.2020.124470Search in Google Scholar PubMed
13. Qiao, D., Li, Z., Duan, J., He, X. Chem. Eng. J. 2020, 400, 125952; https://doi.org/10.1016/j.cej.2020.125952.Search in Google Scholar
14. Shamsipur, M., Taherpour, A., Pashabadi, A. Analyst 2016, 141, 4227–4234; https://doi.org/10.1039/c6an00592f.Search in Google Scholar PubMed
15. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., Ruoff, R. S. Carbon 2007, 45, 1558–1565; https://doi.org/10.1016/j.carbon.2007.02.034.Search in Google Scholar
16. Zhang, H., Huang, Z., Zhao, P., Hou, Y., Guo, J., Wu, Y. Mater. Res. Express 2019, 6, 125095; https://doi.org/10.1088/2053-1591/ab5d65.Search in Google Scholar
17. Restiawaty, E., Maulana, A., Culsum, N., Aslan, C., Suendo, V., Nishiyama, N., Budhi, Y. W. RSC Adv. 2021, 11, 16500–16509; https://doi.org/10.1039/d1ra00704a.Search in Google Scholar PubMed PubMed Central
18. Wang, J., Han, Z. Polym. Adv. Technol. 2010, 17, 335–340; https://doi.org/10.1002/pat.698.Search in Google Scholar
19. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Search in Google Scholar
20. Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y. J. Nat. Mater. 2010, 9, 840–845; https://doi.org/10.1038/nmat2858.Search in Google Scholar PubMed
21. Pham, V. H., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., Chung, J. S J. Mater. Chem. 2011, 21, 3371–3377; https://doi.org/10.1039/c0jm02790a.Search in Google Scholar
22. Khandaker, S., Kuba, T., Toyohara, Y., Kamida, S. Earth Environ. Sci. 2017, 82, 012001; https://doi.org/10.1088/1755-1315/82/1/012002.Search in Google Scholar
23. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. Nature 2007, 446, 60–63; https://doi.org/10.1038/nature05545.Search in Google Scholar PubMed
24. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X. Environ. Sci. Technol. 2015, 49, 4255–4262; https://doi.org/10.1021/es505590j.Search in Google Scholar PubMed
25. Xing, M., Zhuang, S., Wang, J. Prog. Nucl. Energy 2019, 119, 103167.10.1016/j.pnucene.2019.103167Search in Google Scholar
26. Tan, L., Wang, S., Du, W., Hu, T. Chem. Eng. J. 2016, 292, 92–97; https://doi.org/10.1016/j.cej.2016.01.073.Search in Google Scholar
27. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Search in Google Scholar
28. Yuan, L. Y., Gao, G., Feng, C. Q., Chai, Z. F., Shi, W. Q. Chem. Eng. J. 2020, 385, 123892; https://doi.org/10.1016/j.cej.2019.123892.Search in Google Scholar
29. Khandaker, K., Toyohara, T., Kamida, S., Kuba, T. Water Resour. Ind. 2018, 19, 35–46; https://doi.org/10.1016/j.wri.2018.01.001.Search in Google Scholar
30. Sugiura, Y., Saito, Y., Endo, T., Makita, Y. Cryst. Growth Des. 2019, 19, 4162–4171; https://doi.org/10.1021/acs.cgd.9b00656.Search in Google Scholar
31. Awual, M. R., Yaita, T., Kobayashi, T., Shiwaku, H., Suzuki, S. J. Environ. Chem. Eng. 2020, 8, 103684; https://doi.org/10.1016/j.jece.2020.103684.Search in Google Scholar
32. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Search in Google Scholar PubMed
33. Awual, M. R. Chem. Eng. J. 2016, 303, 539–546; https://doi.org/10.1016/j.cej.2016.06.040.Search in Google Scholar
34. Qian, Y., Yuan, Y., Wang, H., Liu, H., Zhang, J., Shi, S., Guo, Z., Wang, N. J. Mater. Chem. 2018, 6, 24676–24685; https://doi.org/10.1039/c8ta09486a.Search in Google Scholar
35. Yang, H., Ding, H., Zhang, X., Luo, X., Zhang, Y. Colloids Surf., A 2019, 583, 123914; https://doi.org/10.1016/j.colsurfa.2019.123914.Search in Google Scholar
36. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Search in Google Scholar PubMed
37. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385–470.10.1515/zpch-1907-5723Search in Google Scholar
38. Pillai, S. S., Mullassery, M. D., Fernandez, N. B., Girija, N., Geetha, P., Koshy, M. Ecotoxicol. Environ. Saf. 2013, 92, 199–205; https://doi.org/10.1016/j.ecoenv.2013.01.020.Search in Google Scholar PubMed
39. Temkin, M. J., Pyzhev, V. Acta Physiochim. USSR 1940, 12, 217–222.Search in Google Scholar
40. Dubinin, M. M., Radushkevich, L. V. Chem. Zent 1947, 1, 875.Search in Google Scholar
41. Helfferich, F. Ion Exchange; McGraw-Hill: New York, 1962.Search in Google Scholar
42. Li, N., Yang, L., Wang, D., Tang, C., Deng, W., Wang, Z. Environ. Sci. Technol. 2021, 55, 9181–9188; https://doi.org/10.1021/acs.est.0c08743.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Progress in solid state and coordination chemistry of actinides in China
- Original Papers
- Np(V) dicyanamide complexes with electroneutral N-donor ligands
- Comparison of the performance of solvent wash reagents used for the primary cleanup of degraded PUREX solvent
- 1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater
- Evaluation of nuclear data analysis techniques for volume fraction prediction in the flow meter
Articles in the same Issue
- Frontmatter
- Review
- Progress in solid state and coordination chemistry of actinides in China
- Original Papers
- Np(V) dicyanamide complexes with electroneutral N-donor ligands
- Comparison of the performance of solvent wash reagents used for the primary cleanup of degraded PUREX solvent
- 1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater
- Evaluation of nuclear data analysis techniques for volume fraction prediction in the flow meter