Abstract
In this study, glass composition based on tungsten oxide (WO3) doped tellurium, titanium glasses: (100 − x − y) TeO2–xTiO2–yWO3: where (x = 5) and (y = 5, 10, 15, 20, 25) coded as TT5W5, TT5W10, TT5W15, TT5W20, and TT5W25 were investigated for shielding properties against ionizing radiation. Gamma radiation shielding parameters such as mass attenuation coefficients (MAC) are calculated through MCNPx code and Phy-X/PSD software in the energy range of 0.015–15 MeV. Obtained MAC values are then used to calculate other gamma radiation shielding parameters such as mean free path (MFP) and effective atomic number (Zeff). Besides this, the exposure buildup factor (EBF) was also calculated by using EXABCal software at different penetration depths (PDs) in the energy range of 0.015–15 MeV. Sample TT5W25, which has a larger WO3 content of 25 mol% shows higher values of MAC and lower values of MFP among all the examined glass samples. Our investigated TeO2–TiO2–WO3 glass samples possess the lowest MFP values in comparison with the different types of concretes and commercially available shielding glasses. In addition, fast neutron shielding characteristics in light of fast neutron removal cross-section have also been computed. Glass sample TT5W25 possesses the higher values of fast neutron removal cross-section as compared to the other glass samples. The results indicate that the adding up of WO3 improves shielding against the fast neutron and gamma radiation.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Stöklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicince. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar
2. Singh, B., Singh, J., Kaur, A. Applications of radioisotopes in agriculture. Int. J. Biotechnol. Bioeng Res. 2013, 4, 167–174.Suche in Google Scholar
3. Chmielewski, A. G., Haji-Saeid, M. Radiation technologies: past, present and future. Radiat. Phys. Chem. 2004, 71, 17–21; https://doi.org/10.1016/j.radphyschem.2004.05.040.Suche in Google Scholar
4. Mosleh, A. Comparative study of gamma radiation shielding parameters for different oxide glasses. Eur. Acad. Res. 2018, 6, 823–840.Suche in Google Scholar
5. Al-Buriahi, M. S., El-Agawany, F. I., Sriwunkum, C., Akyıldırım, H., Arslan, H., Tonguc, B. T., El-Mallawany, R., Rammah, Y. S. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B: Condens. Matter 2020, 581, 411946.Suche in Google Scholar
6. Waly, E. S. A., Al-Qous, G. S., Bourham, M. A. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 2018, 150, 120–124; https://doi.org/10.1016/j.radphyschem.2018.04.029.Suche in Google Scholar
7. Eid, A., Zawia, N. Consequences of lead exposure, and its emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 2016, 56, 254–261; https://doi.org/10.1016/j.neuro.2016.04.006.Suche in Google Scholar PubMed
8. Hsiao, C. L., Wu, K. H., Wan, K. S. Effects of environmental lead exposure on T-helper cell- specific cytokines in children. J. Immunot. 2011, 8, 284–287; https://doi.org/10.3109/1547691x.2011.592162.Suche in Google Scholar
9. Ogawa, M., Nakajima, Y., Kubota, R., Endo, Y. Two cases of acute lead poisoning due to occupational exposure to lead. Clin. Toxicol. 2008, 46, 332–335; https://doi.org/10.1080/15563650701816448.Suche in Google Scholar PubMed
10. Hulbert, S. M., Carlson, K. A. Is lead dust within nuclear medicine departments a hazard to pediatric patients? J. Nucl. Med. Technol. 2009, 37, 170–172; https://doi.org/10.2967/jnmt.109.062281.Suche in Google Scholar PubMed
11. Uosif, M. A, M., Mostafa, A. M. A., Issa, S. A. M., Tekin, H. O., Alrowaili, Z. A., Kilicoglu, O. Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study. J. Non-Cryst. Solids 2020, 532, 119882; https://doi.org/10.1016/j.jnoncrysol.2019.119882.Suche in Google Scholar
12. Buyuk, B., Tuğrul, A. B. Comparison of lead and WC-Co materials against gamma irradiation. Acta Phys. Pol. 2014, 125, 423–425; https://doi.org/10.12693/aphyspola.125.423.Suche in Google Scholar
13. Abu-Al-Roos, N. J., Azman, M. N., Amin, N. A. B., Zainon, R. Tungsten-based material as promising new lead free gamma radiation shielding material in nuclear medicine. Phys. Med. 2020, 78, 48–57.10.1016/j.ejmp.2020.08.017Suche in Google Scholar PubMed
14. Ersundu, M. C., Ersundu, A. E., Sayyed, M. I., Lakshminarayana, G., Aydin, S. Evaluation of physical, structural properties and shielding parameters for K2O-WO3-TeO2 glasses for gamma ray shielding applications. J. Alloys Compd. 2017, 714, 278–286.10.1016/j.jallcom.2017.04.223Suche in Google Scholar
15. Sayyed, M. I. Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 2016, 94, 1133–1137; https://doi.org/10.1139/cjp-2016-0330.Suche in Google Scholar
16. Al-Buriahi, M. S., Singh, V. P., Amani, A., Sriwunkum, C., Tonguc, B. T. Mechanical features and radiation shielding properties of TeO2–Ag2O–WO3 glasses. Ceram. Int. 2020, 46, 15464–15472; https://doi.org/10.1016/j.ceramint.2020.03.091.Suche in Google Scholar
17. Ersundu, A. E., Büyükyıldız, M., Çelikbilek Ersundu, M., Şakar, E., Kurudirek, M. The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 2018, 104, 280–287; https://doi.org/10.1016/j.pnucene.2017.10.008.Suche in Google Scholar
18. Tekin, H. O., Sayyed, M. I., Manici, T., Altunsoy, E. E. Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPx Monte Carlo code. Mater. Chem. Phys. 2018, 211, 9–16.10.1016/j.matchemphys.2018.02.009Suche in Google Scholar
19. Çelikbilek, M., Ersundu, A. E., Solak, N., Aydin, S. Investigation on thermal and microstructural characterization of the TeO2–WO3 system. J. Alloys Compd. 2011, 509, 5646–5654.10.1016/j.jallcom.2011.02.109Suche in Google Scholar
20. Moiseev, A. N., Dorofeev, V. V., Chilyasov, A. V., Kraev, I. A., Churbanov, M. F., Kotereva, T. V., Pimenov, V. G., Snopatin, G. E., Pushkin, A. A., Gerasimenko, V. V., Kosolapov, A. F., Plotnichenko, V. G., Dianov, E. M. Production and properties of high purity TeO2–ZnO–Na2O–Bi2O3 and TeO2–WO3–La2O3–MoO3 glasses. Opt. Mater. 2011, 33, 1858–1861; https://doi.org/10.1016/j.optmat.2011.02.042.Suche in Google Scholar
21. Dorofeev, V. V., Moiseev, A. N., Churbanov, M. F., Snopatin, G. E., Chilyasov, A. V., Kraev, A. I., Lobanov, A. S., Kotereva, T. V., Ketkova, L. A., Pushkin, A. A., Gerasimenko, V. V., Plotnichenko, V. G., KosolapovDianov, A. F. E. M. High-purity TeO2-WO3- (La2O3, Bi2O3) glasses for fiber-optics. Opt. Mater. 2011, 33, 1911–1915; https://doi.org/10.1016/j.optmat.2011.03.032.Suche in Google Scholar
22. Upender, G., Ramesh, S., Prasad, M., Sathe, V. G., Mouli, V. C. Optical band gap, glass transition temperature and structural studies of (100-2x) TeO2–xAg2O–xWO3 glass system. J. Alloys Compd. 2010, 504, 468–474; https://doi.org/10.1016/j.jallcom.2010.06.006.Suche in Google Scholar
23. Gunha, J. V., Somer, A., Gonçalves, A., Sabino, S. do R., El-Mallawany, R., Jacinto, C., Novatski, A. Non-isothermal crystallization of TeO2-Na2O-TiO2 glasses. J. Non-Cryst. Solids 2019, 524, 119655; https://doi.org/10.1016/j.jnoncrysol.2019.119655.Suche in Google Scholar
24. Elkhoshkhany, N., Mohamed, H. M., Yousef, E. S. UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO2–B2o3–SrCl2–LiF–Bi2O3 for optical application. Results Phys. 2019, 13, 102222; https://doi.org/10.1016/j.rinp.2019.102222.Suche in Google Scholar
25. Manning, S., Ebendorff-Heidepriem, H., Monro, T. M. Ternary tellurite glasses for the fabrication of nonlinear optical fibers. Opt. Mater. Express 2012, 2, 140–152; https://doi.org/10.1364/ome.2.000140.Suche in Google Scholar
26. Stalin, S., Gaikwad, D. K., Samee, M. A., Edukondalu, A., Ahmmad, S. K., Joshi, A. A., Syed, R. Structural, optical features and gamma ray shielding properties of Bi2O3–TeO2–B2o3–GeO2 glass system. Ceram. Int. 2020, 46, 17325–17334; https://doi.org/10.1016/j.ceramint.2020.04.021.Suche in Google Scholar
27. Lakshminarayana, G., Kumar, A., Lira, A., Dahshan, A., Hegazy, H. H., Kityk, I. V., Lee, D. E., Yoon, J., Park, T. Comparative study of gamma-ray shielding features and some properties of different heavy metal oxide-based tellurite-rich glass systems. Radiat. Phys. Chem. 2020, 170, 108633; https://doi.org/10.1016/j.radphyschem.2019.108633.Suche in Google Scholar
28. Al-Buriahi, M. S., El-Agawany, F. I., Sriwunkum, C., Akyıldırım, H., Arslan, H., Tonguc, B. T., El-Mallawany, R., Rammah, Y. S. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B: Condens. Matter 2020, 581, 411946; https://doi.org/10.1016/j.physb.2019.411946.Suche in Google Scholar
29. Sayyed, M. I., Rashad, M., Rammah, Y. S. Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceram. Int. 2020, 46, 22964–22972; https://doi.org/10.1016/j.ceramint.2020.06.071.Suche in Google Scholar
30. Cağlar, İ., Cengiz, G. B., Bilir, G. Gamma radiation shielding properties of some binary tellurite glasses. J. Non-Cryst. Solids 2021, 574, 121139.10.1016/j.jnoncrysol.2021.121139Suche in Google Scholar
31. Tagiara, N. S., Palles, D., Simandiras, E. D., Psycharis, V., Kyritsis, A., Kamitsos, E. I. Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 2017, 457, 116–125; https://doi.org/10.1016/j.jnoncrysol.2016.11.033.Suche in Google Scholar
32. Zaki, M. R., Hamani, D., Dutreilh-Colas, M., Duclère, J. R., Masson, O., Thomas, P. Synthesis, thermal, structural and linear optical properties of new glasses within the TeO2–TiO2–WO3 system. J. Non-Cryst. Solids 2018, 484, 139–148; https://doi.org/10.1016/j.jnoncrysol.2018.01.034.Suche in Google Scholar
33. Waters, L. S., McKinney, G. W., Durkee, J. W., Fensin, M. L., Hendricks, J. S., James, M. R., Johns, R. C., Pelowitz, D. B. The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. 2007, 896, 31–49; https://doi.org/10.1063/1.2720459.Suche in Google Scholar
34. Şakar, E., Özpolat, F., Alım, B., Sayyed, M. I., Kurudirek, M. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496.10.1016/j.radphyschem.2019.108496Suche in Google Scholar
35. Olarinoye, I. O., Odiaga, R. I., EXABCal, P. S. A program for calculating photon exposure and energy absorption buildup factors. Heliyon 2019, 5, e02017; https://doi.org/10.1016/j.heliyon.2019.e02017.Suche in Google Scholar PubMed PubMed Central
36. Kamislioglu, M. Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results Phys. 2021, 22, 103844; https://doi.org/10.1016/j.rinp.2021.103844.Suche in Google Scholar
37. Singh, K., Singh, S., Dhaliwal, A. S., Singh, G. Gamma radiation shielding analysis of lead-flyash concretes Gamma radiation shielding analysis of lead- fl yash concretes. Appl. Radiat. Isot. 2015, 95, 174–179; https://doi.org/10.1016/j.apradiso.2014.10.022.Suche in Google Scholar PubMed
38. Sharma, A., Sayyed, M. I., Agar, O., Tekin, H. O. Simulation of shielding parameters for TeO2–WO3–GeO2 glasses using FLUKA code. Results Phys. 2019, 13, 102199; https://doi.org/10.1016/j.rinp.2019.102199.Suche in Google Scholar
39. Kaur, P., Singh, D., Singh, T. Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 2016, 307, 364–376; https://doi.org/10.1016/j.nucengdes.2016.07.029.Suche in Google Scholar
40. Rammah, Y. S., El-Agawany, F. I., Gamal, A., Olarinoye, O. I., Ahmed, E. M., Abouhaswa, A. S. Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses. J. Inorg. Organomet. Polym. 2021, 31, 3505; https://doi.org/10.1007/s10904-021-01976-5.Suche in Google Scholar
41. Rammah, Y. S., Mahmoud, K. A ., El-Agawany, F. I., Tashlykov, O. L., Yousef, E. Tm3+ ions-doped phosphate glasses: nuclear shielding competence and elastic moduli. Appl. Phys. A 2020, 126, 927 https://doi.org/10.1007/s00339-020-04109-w.Suche in Google Scholar
42. Manohara, S. R., Hanagodimath, S. M., Thind, K. S., Gerward, L. On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 3906–3912; https://doi.org/10.1016/j.nimb.2008.06.034.Suche in Google Scholar
43. Issa, S. A. M., Tekin, H. O., Elsaman, R., Kilicoglu, O., Saddeek, Y. B., Sayyed, M. I. Radiation shielding and mechanical properties of Al2O3-Na2O-B2o3-Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 2019, 223, 209–219; https://doi.org/10.1016/j.matchemphys.2018.10.064.Suche in Google Scholar
44. El-Khayatt, A. M. Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 2010, 37, 218–222; https://doi.org/10.1016/j.anucene.2009.10.022.Suche in Google Scholar
45. Sayyed, M. I., Ati, A. A., Mhareb, M. H. A., Mahmoud, K. A., Kaky, K. M., Baki, S. O., Mahdi, M. A. Novel tellurite glass (60-x)TeO2–10GeO2–20ZnO–10BaO–xBi2O3 for radiation shielding. J. Alloys Compd. 2020, 844, 155668; https://doi.org/10.1016/j.jallcom.2020.155668.Suche in Google Scholar
46. Alalawi, A., Al-Buriahi, M. S., Sayyed, M. I., Akyildirim, H., Arslan, H., Zaid, M. H. M., Tonguc, B. T. Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram. Int. 2020, 46, 17300–17306; https://doi.org/10.1016/j.ceramint.2020.04.017.Suche in Google Scholar
47. Sirin, M. The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Prog. Nucl. Energy 2020, 128, 103470; https://doi.org/10.1016/j.pnucene.2020.103470.Suche in Google Scholar
48. Mostafa, A. M. A., Issa, S. A. M., Zakaly, H. M. H., Zaid, M. H. M., Taken, H. O., Matori, K. A., Sidek, H. A. A., Elsaman, R. The influence of heavy elements on the ionizing radiation shielding efficiency and elastic properties of some tellurite glasses: theoretical investigation. Results Phys. 2020, 19, 103496; https://doi.org/10.1016/j.rinp.2020.103496.Suche in Google Scholar
49. Bashter, I. I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389–1401; https://doi.org/10.1016/s0306-4549(97)00003-0.Suche in Google Scholar
50. Radiation, shielding glass. 2013. https://www.schott.com/d/advanced_optics/352fbb5f-4d56-49d3-bb47-256437d58f0a/1.4/schott-radiation-shielding-glass-may-2013-eng.pdf.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Np(V) azide complexes with electroneutral N-donor ligands
- Electrochemical extraction of the fission element samarium from tin electrodes and its kinetic analysis in an electrolytic refining process in LiCl-KCl molten salts
- Removal and isolation of radioactive cobalt using DNA aptamers
- Compton scattering geometry: a tool to study radiation interaction characteristics of rare earth compounds doped in low-Z organic compound
- Improving the nutritional quality and bio-ingredients of stored white mushrooms using gamma irradiation and essential oils fumigation
- Effect of WO3 on the radiation shielding ability of TeO2–TiO2–WO3 glass system
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Np(V) azide complexes with electroneutral N-donor ligands
- Electrochemical extraction of the fission element samarium from tin electrodes and its kinetic analysis in an electrolytic refining process in LiCl-KCl molten salts
- Removal and isolation of radioactive cobalt using DNA aptamers
- Compton scattering geometry: a tool to study radiation interaction characteristics of rare earth compounds doped in low-Z organic compound
- Improving the nutritional quality and bio-ingredients of stored white mushrooms using gamma irradiation and essential oils fumigation
- Effect of WO3 on the radiation shielding ability of TeO2–TiO2–WO3 glass system