Abstract
The Bi2O3–PbO–CdO–B2O3 glasses were shaped via the melt-quenching process. The XRD spectra reveal that the glasses are composed of amorphous material. Four distinct bands may be seen in the FTIR spectra at wavelengths between 400 and 600, 600–800, 800–1200, and 1200–1500 cm−1 range. This is due to a variety of bond stretching and vibration modes present in the system. A Monte Carlo simulation was used to verify the radiation shielding capabilities. The µ values grow as the amount of Bi2O3 in the manufactured glasses increases. The rise in µ values was coupled with a drop in the Δ0.5 values when the Bi2O3 concentration was increased. Additionally, the TF and RPE values were influenced by the enhancement in the µ values, with the RPE increasing from 34.61 to 44.42 percent and the TF values decreasing from 65.39 to 55.58 percent at 0.662 MeV when the Bi2O3 concentration was increased. The study showed that raising the Bi2O3 content improves the shielding capabilities. Thus, the produced glass samples, particularly BPCB25, exhibit excellent shielding capabilities, making them suitable for use in radiation shielding fields.
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest.
References
1. Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690; https://doi.org/10.1007/s10854-021-05904-8.Search in Google Scholar
2. Sayyed, M. I., Akyildirim, H., Al-Buriahi, M. S., Lacomme, E., Ayad, R., Bonvicini, G. Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO. Appl. Phys. A 2020, 126, 88; https://doi.org/10.1007/s00339-019-3265-6.Search in Google Scholar
3. Dong, M., Zhou, S., Xue, X., Feng, X., Sayyed, M. I., Khandaker, M. U., Bradley, D. A. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601; https://doi.org/10.1016/j.radphyschem.2021.109601.Search in Google Scholar
4. Ezz-Eldin, F. M. Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes. Nucl. Instrum. Methods Phys. Res. B 2001, 183, 285; https://doi.org/10.1016/s0168-583x(01)00590-0.Search in Google Scholar
5. Abdelghany, A. M., Behairy, A. Optical parameters, antibacterial characteristics and structure correlation of copper ions in cadmium borate glasses. J. Mater. Res. Technol. 2020, 9, 10491; https://doi.org/10.1016/j.jmrt.2020.07.057.Search in Google Scholar
6. Kumar, J. S., Kumari, J. L., Rao, M. S., Cole, S. EPR, optical and physical properties of chromium ions in CdO–SrO–B2O3–SiO2 (CdSBSi) glasses. Opt. Mater. 2013, 35, 1320; https://doi.org/10.1016/j.optmat.2013.01.012.Search in Google Scholar
7. El Batal, H. A., El Batal, F. H., Azooz, M. A., Marzouk, M. A., El Kheshen, A. A., Ghoneim, N. A., Din, F. M. E. E., Abdelghany, A. M. Comparative shielding behavior of binary PbO–B2O3 and Bi2O3–B2O3 glasses with high heavy metal oxide contents towards gamma irradiation revealed by collective optical, FTIR and ESR measurements. J. Non-Cryst Solids 2021, 572, 121090; https://doi.org/10.1016/j.jnoncrysol.2021.121090.Search in Google Scholar
8. Prasad, R. N. A., Rao, L. S., Babu, T. A., Neeraja, K., Mohan, N. K. Structural and photoluminescence characteristics of PbO–M2O3 (M2O3=Al2O3, Sb2O3 and Bi2O3)–WO3–B2O3: Sm2O3 glasses suitable for orange-red lasers. Opt. 2021, 244, 167563.10.1016/j.ijleo.2021.167563Search in Google Scholar
9. Prasad, R. N. A., Siva, B. V., Neeraja, K., Mohan, N. K., Rojas, J. I. Influence of modifier oxides on spectroscopic features of Nd2O3 doped PbO–Ro2O3–WO3–B2O3 glasses (with Ro2O3=Sb2O3, Al2O3, and Bi2O3). J. Lumin. 2020, 223, 117171.10.1016/j.jlumin.2020.117171Search in Google Scholar
10. Sekhar, K. C., Hameed, A., Narsimlu, N., Alzahrani, J. S., Alothman, M. A., Olarinoye, I. O., Al-Buriahi, M. S., Shareefuddin, M. Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: an experimental and in silico study. Opt. Mater. 2021, 117, 111173; https://doi.org/10.1016/j.optmat.2021.111173.Search in Google Scholar
11. Aboud, H., Aldhuhaibat, M. J. R., Alajermi, Y. Gamma radiation shielding traits of B2O3–Bi2O3–CdO–BaO–PbO glasses. Radiat. Phys. Chem. 2022, 191, 109836; https://doi.org/10.1016/j.radphyschem.2021.109836.Search in Google Scholar
12. Tekin, H. O., Sayyed, M. I., Manici, T., Altunsoy, E. E. Photon shielding characterizations of bismuth modified borate –silicate–tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 2018, 211, 9–16; https://doi.org/10.1016/j.matchemphys.2018.02.009.Search in Google Scholar
13. Hanfi, M. Y., Sayyed, M. I., Lacomme, E., Mahmoud, K. A., Akkurt, I. The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nucl. Eng. Technol. 2021, 53, 2000; https://doi.org/10.1016/j.net.2020.12.012.Search in Google Scholar
14. Alothman, M. A., Kurtulus, R., Olarinoye, I. O., Kavas, T., Mutuwong, C., Al-Buriahi, M. S. Optical, elastic, and radiation shielding properties of Bi2O3–PbO–B2O3 glass system: a role of SnO2 addition. Opt. 2021, 248, 168047; https://doi.org/10.1016/j.ijleo.2021.168047.Search in Google Scholar
15. Sayyed, M. I., Rammah, Y., Abouhaswa, A. S., Tekin, H. O., Elbashir, B. O. ZnO-B2O3-PbO glasses: Synthesis and radiation shielding characterization. Phys. B: Condens. Matter 2018, 548, 20–26; https://doi.org/10.1016/j.physb.2018.08.024.Search in Google Scholar
16. Bagheri, R., Moghaddam, A. K., Yousefnia, H. Gamma ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 2017, 49, 216; https://doi.org/10.1016/j.net.2016.08.013.Search in Google Scholar
17. Alsaif, N., Alotiby, M., Hanfi, M., Sayyed, M. A. A., Mahmoud, K. A., Alotaibi, B., Alyousef, H., Alhadeethi, Y. A comprehensive study on the optical, mechanical, and radiation shielding properties of the TeO2–Li2O–GeO2 glass system. J. Mater. Sci. Mater. Electron. 2021, 32, 15226; https://doi.org/10.1007/s10854-021-06074-3.Search in Google Scholar
18. Çağlar, M., Karabul, Y., Kılıç, M., Özdemir, Z. G., İçelli, O. Na2Si3O7/Ag micro and nano-structured glassy composites: the experimental and MCNP simulation surveys of their radiation shielding performances. Prog. Nucl. Energy 2021, 139, 103855; https://doi.org/10.1016/j.pnucene.2021.103855.Search in Google Scholar
19. Akçalı, Ö., Çağlar, M., Toker, O., Bilmez, B., Kavanoz, H. B., İçelli, O. An investigation on gamma-ray shielding properties of quaternary glassy composite (Na2Si3O7/Bi2O3/B2O3/Sb2O3) by BXCOM and MCNP 6.2 code. Prog. Nucl. Energy 2020, 125, 103364; https://doi.org/10.1016/j.pnucene.2020.103364.Search in Google Scholar
20. Malidarre, R. B., Akkurt, I., Kavas, T. Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for alumino-boro-silicate glasses. Radiat. Phys. Chem. 2021, 186, 109540; https://doi.org/10.1016/j.radphyschem.2021.109540.Search in Google Scholar
21. Alsaif, N. A. M., Alotiby, M., Hanfi, M. Y., Sayyed, M. I. A., Mahmoud, K. A., Alotaibi, B. M., Alyousef, H. A., Al-Hadeethi, Y. Comprehensive study of radiation shielding and mechanical features of Bi2O3–TeO2–B2O3–GeO2 glasses. J. Australas. Ceram. Soc. 2021, 57, 1267; https://doi.org/10.1007/s41779-021-00623-z.Search in Google Scholar
22. Bagheri, R., Shirmardi, S. P. Gamma-ray shielding studies on borate glasses containing BaO, Bi2O3, and PbO in different concentrations. Radiat. Phys. Chem. 2021, 184, 109434; https://doi.org/10.1016/j.radphyschem.2021.109434.Search in Google Scholar
23. Issa, S. A. M., Saddeek, Y. B., Sayyed, M. I., Tekin, H. O., Kilicoglu, O. Radiation shielding features using MCNPX code and mechanical properties of the PbO–Na2O–B2O3–CaO–Al2O3–SiO2 glass systems. Compos. B. Eng. 2019, 167, 231–240; https://doi.org/10.1016/j.compositesb.2018.12.029.Search in Google Scholar
24. Agar, O., Sayyed, M. I., Tekin, H. O., Kaky, K. M., Baki, S. O., Kityk, I. An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code. Res. Phys. 2019, 12, 629; https://doi.org/10.1016/j.rinp.2018.12.003.Search in Google Scholar
25. Issa, S. A. M., Ahmad, M., Tekind, H. O., Saddeek, Y. B., Sayyed, M. I. Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3–MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Res. Phys. 2019, 13, 102165; https://doi.org/10.1016/j.rinp.2019.102165.Search in Google Scholar
26. Almuqrin, A. H., Albarzan, B., Olarinoye, O. I., Kumar, A., Alwadai, N., Sayyed, M. I. Mechanical and gamma ray absorption behavior of PbO–WO3–Na2O–MgO–B2O3 glasses in the low energy range. Mater. 2021, 14, 3466; https://doi.org/10.3390/ma14133466.Search in Google Scholar PubMed PubMed Central
27. Al-Harbi, F. F., Prabhu, N. S., Sayyed, M. I., Almuqrin, A. H., Kumar, A., Kamath, S. D. Evaluation of structural and gamma ray shielding competence of Li2O–K2O–B2O3–HMO (HMO=SrO/TeO2/PbO/Bi2O3) glass system. Opt. 2021, 248, 168074.10.1016/j.ijleo.2021.168074Search in Google Scholar
28. Aloraini, D. A., Almuqrin, A. H., Sayyed, M. I., Al-Ghamdi, H., Kumar, A., Elsafi, M. Experimental investigation of radiation shielding competence of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems. Mater. 2021, 14, 5061; https://doi.org/10.3390/ma14175061.Search in Google Scholar PubMed PubMed Central
29. X-5 Monte Carlo Team. MCNP — A General Monte Carlo N-Particle Transport Code, Version 5, LA-CP-03-0284, California, Los Alamos National Laboratory, 2003.Search in Google Scholar
30. Kumar, A., Jain, A., Sayyed, M. I., Laariedh, F., Mahmoud, K. A., Nebhen, J., Khandaker, M. U., Faruque, M. R. I. Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation. Sci. Rep. 2021, 11, 1; https://doi.org/10.1038/s41598-021-87256-1.Search in Google Scholar PubMed PubMed Central
31. Kurtulus, R., Sayyed, M. I., Kavas, T., Mahmoud, K. A., Tashlykov, O. L., Khandaker, M. U., Bradley, D. A lanthanum-barium-borovanadate glass containing Bi2O3 for radiation shielding applications. Radiat. Phys. Chem. 2021, 186, 109557; https://doi.org/10.1016/j.radphyschem.2021.109557.Search in Google Scholar
32. Tashlykov, O. L., Vlasova, S. G., Kovyazina, I. S., Mahmoud, K. A. Repercussions of yttrium oxides on radiation shielding capacity of sodium-silicate glass system: experimental and Monte Carlo simulation study. Eur. Phys. J. Plus 2021, 136, 428; https://doi.org/10.1140/epjp/s13360-021-01420-0.Search in Google Scholar
33. Mahmoud, K. A., El-Agwany, F. I., Rammah, Y. S., Tashlykov, O. L. Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. J. Non-Cryst Solids. 2020, 541, 120110; https://doi.org/10.1016/j.jnoncrysol.2020.120110.Search in Google Scholar
34. Albarzan, B., Hanfi, M. Y., Almuqrin, A. H., Sayyed, M. I., Alsafi, H. M., Mahmoud, K. A. The Influence of titanium dioxide on silicate-based glasses: an evaluation of the mechanical and radiation shielding properties. Mater. 2021, 14, 3414; https://doi.org/10.3390/ma14123414.Search in Google Scholar PubMed PubMed Central
35. Bhemarajam, J., Prasad, P. S., Babu, M. M., Özcan, M., Prasad, M. Investigations on structural and optical properties of various modifier oxides (MO = ZnO, CdO, BaO, and PbO) containing bismuth borate lithium glasses. Compost Sci. 2021, 5, 308; https://doi.org/10.3390/jcs5120308.Search in Google Scholar
36. Alotaibi, B. M., Alotiby, M., Kumar, A., Mahmoud, K. A., Sayyed, M. I., Al-Yousef, H. A., Al-Hadeethi, Y. Gamma-ray shielding, physical, and structural characteristics of TeO2–CdO–PbO–B2O3 glasses. Opt. Mater. 2021, 119, 111333; https://doi.org/10.1016/j.optmat.2021.111333.Search in Google Scholar
37. Khan, S., Kaur, G., Singh, K. Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceram. Int. 2017, 43, 722; https://doi.org/10.1016/j.ceramint.2016.09.219.Search in Google Scholar
38. El-Maaref, A. A., Shaaban, K. H. S., Abdelawwad, M., Saddeek, Y. B. Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 2017, 72, 169; https://doi.org/10.1016/j.optmat.2017.05.062.Search in Google Scholar
39. Saritha, D., Markandeya, Y., Salagram, M., Vithal, M., Singh, A. K., Bhikshamaiah, G. Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. Non-Cryst. Solids 2008, 354, 5573; https://doi.org/10.1016/j.jnoncrysol.2008.09.017.Search in Google Scholar
40. Koubisy, M. S. I., Shaaban, Kh. S., Wahab, E. A. Abdelb, Sayyed, M. I., Mahmoud, K. A. Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses. Eur. Phys. J. Plus 2021, 136, 156; https://doi.org/10.1140/epjp/s13360-021-01125-4.Search in Google Scholar
41. Divina, R., Sathiyapriya, G., Marimuthu, K., Askin, A., Sayyed, M. I. Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses. J. Non-Cryst. Solids 2020, 545, 120269; https://doi.org/10.1016/j.jnoncrysol.2020.120269.Search in Google Scholar
42. Djamal, M., Yuliantini, L., Hidayat, R., Rauf, N., Horprathum, M., Rajaramakrishna, R., Boonin, K., Yasaka, P., Kaewkhao, J., Venkatramu, V., Kothan, S. Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Opt. Mater. 2020, 107, 110018; https://doi.org/10.1016/j.optmat.2020.110018.Search in Google Scholar
43. Coelho, J., Freire, C., Hussain, N. S. Structural studies of lead lithium borate glasses doped with silver oxide. Spectrochim. Act. A Mol. Biomol. Spectrosc. 2012, 86, 392; https://doi.org/10.1016/j.saa.2011.10.054.Search in Google Scholar PubMed
44. Hivrekar, M. M., Sable, D. B., Solunke, M. B., Jadhav, K. M. Network structure analysis of modifier CdO doped sodium borate glass using FTIR and Raman spectroscopy. J. Non-Cryst. Solids 2017, 474, 58; https://doi.org/10.1016/j.jnoncrysol.2017.08.028.Search in Google Scholar
45. Mahmoud, K. A., Sayyed, M. I., Alhuthali, A. M., Hanfi, M. Y. The effect of CuO additive on the mechanical and radiation shielding features of Li2B4O7–Pb2O3 glass system. Bol. Soc. Esp. Ceram. Vidr. 2020, https://doi.org/10.1016/j.bsecv.2020.11.005, in press.Search in Google Scholar
46. Al-Yousef, H. A., Alotiby, M., Kumar, A., Alotaibi, B. M., Alsaif, N. A. M., Sayyede, M. I., Mahmoud, K. A., Al-Hadeethi, Y. Physical, structural and gamma ray shielding studies on novel (35+x) PbO–5TeO2–20Bi2O3–(20-x) MgO–20B2O3 glasses. J. Australas. Ceram. Soc. 2021, 57, 971–981.10.1007/s41779-021-00600-6Search in Google Scholar
47. Schott, A. G. Schoot-Radiation Shielding Glass, Version May 2013. www.schott.com/advanced_optics.Search in Google Scholar
48. Islam, S., Mahmoud, K. A., Sayyed, M. I., Alim, B., Rahman, Md. M., Mollah, A. S. Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiat. Phys. Chem. 2020, 172, 108559; https://doi.org/10.1016/j.radphyschem.2019.108559.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding
Articles in the same Issue
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding